/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkTriangle.h,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ // .NAME vtkTriangle - a cell that represents a triangle // .SECTION Description // vtkTriangle is a concrete implementation of vtkCell to represent a triangle // located in 3-space. #ifndef __vtkTriangle_h #define __vtkTriangle_h #include "vtkCell.h" #include "vtkMath.h" // Needed for inline methods class vtkLine; class vtkQuadric; class VTK_FILTERING_EXPORT vtkTriangle : public vtkCell { public: static vtkTriangle *New(); vtkTypeRevisionMacro(vtkTriangle,vtkCell); void PrintSelf(ostream& os, vtkIndent indent); // Description: // Get the edge specified by edgeId (range 0 to 2) and return that edge's // coordinates. vtkCell *GetEdge(int edgeId); // Description: // See the vtkCell API for descriptions of these methods. int GetCellType() {return VTK_TRIANGLE;}; int GetCellDimension() {return 2;}; int GetNumberOfEdges() {return 3;}; int GetNumberOfFaces() {return 0;}; vtkCell *GetFace(int) {return 0;}; int CellBoundary(int subId, double pcoords[3], vtkIdList *pts); void Contour(double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd); int EvaluatePosition(double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights); void EvaluateLocation(int& subId, double pcoords[3], double x[3], double *weights); int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts); void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs); virtual double *GetParametricCoords(); // Description: // Clip this triangle using scalar value provided. Like contouring, except // that it cuts the triangle to produce other triangles. void Clip(double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut); // Description: // vtkTriangle specific methods. static void InterpolationFunctions(double pcoords[3], double sf[3]); static void InterpolationDerivs(double pcoords[3], double derivs[6]); // Description: // Plane intersection plus in/out test on triangle. The in/out test is // performed using tol as the tolerance. int IntersectWithLine(double p1[3], double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId); // Description: // Return the center of the triangle in parametric coordinates. int GetParametricCenter(double pcoords[3]); // Description: // Return the distance of the parametric coordinate provided to the // cell. If inside the cell, a distance of zero is returned. double GetParametricDistance(double pcoords[3]); // Description: // Compute the center of the triangle. static void TriangleCenter(double p1[3], double p2[3], double p3[3], double center[3]); // Description: // Compute the area of a triangle in 3D. static double TriangleArea(double p1[3], double p2[3], double p3[3]); // Description: // Compute the circumcenter (center[3]) and radius squared (method // return value) of a triangle defined by the three points x1, x2, // and x3. (Note that the coordinates are 2D. 3D points can be used // but the z-component will be ignored.) static double Circumcircle(double p1[2], double p2[2], double p3[2], double center[2]); // Description: // Given a 2D point x[2], determine the barycentric coordinates of the point. // Barycentric coordinates are a natural coordinate system for simplices that // express a position as a linear combination of the vertices. For a // triangle, there are three barycentric coordinates (because there are // three vertices), and the sum of the coordinates must equal 1. If a // point x is inside a simplex, then all three coordinates will be strictly // positive. If two coordinates are zero (so the third =1), then the // point x is on a vertex. If one coordinates are zero, the point x is on an // edge. In this method, you must specify the vertex coordinates x1->x3. // Returns 0 if triangle is degenerate. static int BarycentricCoords(double x[2], double x1[2], double x2[2], double x3[2], double bcoords[3]); // Description: // Project triangle defined in 3D to 2D coordinates. Returns 0 if // degenerate triangle; non-zero value otherwise. Input points are x1->x3; // output 2D points are v1->v3. static int ProjectTo2D(double x1[3], double x2[3], double x3[3], double v1[2], double v2[2], double v3[2]); // Description: // Compute the triangle normal from a points list, and a list of point ids // that index into the points list. static void ComputeNormal(vtkPoints *p, int numPts, vtkIdType *pts, double n[3]); // Description: // Compute the triangle normal from three points. static void ComputeNormal(double v1[3], double v2[3], double v3[3], double n[3]); // Description: // Compute the (unnormalized) triangle normal direction from three points. static void ComputeNormalDirection(double v1[3], double v2[3], double v3[3], double n[3]); // Description: // Given a point x, determine whether it is inside (within the // tolerance squared, tol2) the triangle defined by the three // coordinate values p1, p2, p3. Method is via comparing dot products. // (Note: in current implementation the tolerance only works in the // neighborhood of the three vertices of the triangle. static int PointInTriangle(double x[3], double x1[3], double x2[3], double x3[3], double tol2); // Description: // Calculate the error quadric for this triangle. Return the // quadric as a 4x4 matrix or a vtkQuadric. (from Peter // Lindstrom's Siggraph 2000 paper, "Out-of-Core Simplification of // Large Polygonal Models") static void ComputeQuadric(double x1[3], double x2[3], double x3[3], double quadric[4][4]); static void ComputeQuadric(double x1[3], double x2[3], double x3[3], vtkQuadric *quadric); protected: vtkTriangle(); ~vtkTriangle(); vtkLine *Line; private: vtkTriangle(const vtkTriangle&); // Not implemented. void operator=(const vtkTriangle&); // Not implemented. }; //---------------------------------------------------------------------------- inline int vtkTriangle::GetParametricCenter(double pcoords[3]) { pcoords[0] = pcoords[1] = 1./3; pcoords[2] = 0.0; return 0; } //---------------------------------------------------------------------------- inline void vtkTriangle::ComputeNormalDirection(double v1[3], double v2[3], double v3[3], double n[3]) { double ax, ay, az, bx, by, bz; // order is important!!! maintain consistency with triangle vertex order ax = v3[0] - v2[0]; ay = v3[1] - v2[1]; az = v3[2] - v2[2]; bx = v1[0] - v2[0]; by = v1[1] - v2[1]; bz = v1[2] - v2[2]; n[0] = (ay * bz - az * by); n[1] = (az * bx - ax * bz); n[2] = (ax * by - ay * bx); } //---------------------------------------------------------------------------- inline void vtkTriangle::ComputeNormal(double v1[3], double v2[3], double v3[3], double n[3]) { double length; vtkTriangle::ComputeNormalDirection(v1, v2, v3, n); if ( (length = sqrt((n[0]*n[0] + n[1]*n[1] + n[2]*n[2]))) != 0.0 ) { n[0] /= length; n[1] /= length; n[2] /= length; } } //---------------------------------------------------------------------------- inline void vtkTriangle::TriangleCenter(double p1[3], double p2[3], double p3[3], double center[3]) { center[0] = (p1[0]+p2[0]+p3[0]) / 3.0; center[1] = (p1[1]+p2[1]+p3[1]) / 3.0; center[2] = (p1[2]+p2[2]+p3[2]) / 3.0; } //---------------------------------------------------------------------------- inline double vtkTriangle::TriangleArea(double p1[3], double p2[3], double p3[3]) { double a,b,c; a = vtkMath::Distance2BetweenPoints(p1,p2); b = vtkMath::Distance2BetweenPoints(p2,p3); c = vtkMath::Distance2BetweenPoints(p3,p1); return (0.25* sqrt(fabs(4.0*a*c - (a-b+c)*(a-b+c)))); } #endif