/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkVoxel.cxx,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkVoxel.h" #include "vtkCellArray.h" #include "vtkCellData.h" #include "vtkLine.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPixel.h" #include "vtkPointData.h" #include "vtkPointLocator.h" #include "vtkPoints.h" #include "vtkBox.h" vtkCxxRevisionMacro(vtkVoxel, "$Revision: 1.2 $"); vtkStandardNewMacro(vtkVoxel); //---------------------------------------------------------------------------- // Construct the voxel with eight points. vtkVoxel::vtkVoxel() { int i; this->Points->SetNumberOfPoints(8); this->PointIds->SetNumberOfIds(8); for (i = 0; i < 8; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); } for (i = 0; i < 8; i++) { this->PointIds->SetId(i,0); } this->Line = vtkLine::New(); this->Pixel = vtkPixel::New(); } //---------------------------------------------------------------------------- vtkVoxel::~vtkVoxel() { this->Line->Delete(); this->Pixel->Delete(); } //---------------------------------------------------------------------------- int vtkVoxel::EvaluatePosition(double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights) { double pt1[3], pt2[3], pt3[3], pt4[3]; int i; subId = 0; // // Get coordinate system // this->Points->GetPoint(0, pt1); this->Points->GetPoint(1, pt2); this->Points->GetPoint(2, pt3); this->Points->GetPoint(4, pt4); // // Develop parametric coordinates // pcoords[0] = (x[0] - pt1[0]) / (pt2[0] - pt1[0]); pcoords[1] = (x[1] - pt1[1]) / (pt3[1] - pt1[1]); pcoords[2] = (x[2] - pt1[2]) / (pt4[2] - pt1[2]); if ( pcoords[0] >= 0.0 && pcoords[0] <= 1.0 && pcoords[1] >= 0.0 && pcoords[1] <= 1.0 && pcoords[2] >= 0.0 && pcoords[2] <= 1.0 ) { if (closestPoint) { closestPoint[0] = x[0]; closestPoint[1] = x[1]; closestPoint[2] = x[2]; } dist2 = 0.0; // inside voxel this->InterpolationFunctions(pcoords,weights); return 1; } else { double pc[3], w[8]; if (closestPoint) { for (i=0; i<3; i++) { if (pcoords[i] < 0.0) { pc[i] = 0.0; } else if (pcoords[i] > 1.0) { pc[i] = 1.0; } else { pc[i] = pcoords[i]; } } this->EvaluateLocation(subId, pc, closestPoint, (double *)w); dist2 = vtkMath::Distance2BetweenPoints(closestPoint,x); } return 0; } } //---------------------------------------------------------------------------- void vtkVoxel::EvaluateLocation(int& vtkNotUsed(subId), double pcoords[3], double x[3], double *weights) { double pt1[3], pt2[3], pt3[3], pt4[3]; int i; this->Points->GetPoint(0, pt1); this->Points->GetPoint(1, pt2); this->Points->GetPoint(2, pt3); this->Points->GetPoint(4, pt4); for (i=0; i<3; i++) { x[i] = pt1[i] + pcoords[0]*(pt2[i] - pt1[i]) + pcoords[1]*(pt3[i] - pt1[i]) + pcoords[2]*(pt4[i] - pt1[i]); } this->InterpolationFunctions(pcoords,weights); } //---------------------------------------------------------------------------- // // Compute Interpolation functions // void vtkVoxel::InterpolationFunctions(double pcoords[3], double sf[8]) { double rm, sm, tm; double r = pcoords[0], s = pcoords[1], t = pcoords[2]; rm = 1. - r; sm = 1. - s; tm = 1. - t; sf[0] = rm * sm * tm; sf[1] = r * sm * tm; sf[2] = rm * s * tm; sf[3] = r * s * tm; sf[4] = rm * sm * t; sf[5] = r * sm * t; sf[6] = rm * s * t; sf[7] = r * s * t; } //---------------------------------------------------------------------------- void vtkVoxel::InterpolationDerivs(double pcoords[3], double derivs[24]) { double rm, sm, tm; rm = 1. - pcoords[0]; sm = 1. - pcoords[1]; tm = 1. - pcoords[2]; // r derivatives derivs[0] = -sm*tm; derivs[1] = sm*tm; derivs[2] = -pcoords[1]*tm; derivs[3] = pcoords[1]*tm; derivs[4] = -sm*pcoords[2]; derivs[5] = sm*pcoords[2]; derivs[6] = -pcoords[1]*pcoords[2]; derivs[7] = pcoords[1]*pcoords[2]; // s derivatives derivs[8] = -rm*tm; derivs[9] = -pcoords[0]*tm; derivs[10] = rm*tm; derivs[11] = pcoords[0]*tm; derivs[12] = -rm*pcoords[2]; derivs[13] = -pcoords[0]*pcoords[2]; derivs[14] = rm*pcoords[2]; derivs[15] = pcoords[0]*pcoords[2]; // t derivatives derivs[16] = -rm*sm; derivs[17] = -pcoords[0]*sm; derivs[18] = -rm*pcoords[1]; derivs[19] = -pcoords[0]*pcoords[1]; derivs[20] = rm*sm; derivs[21] = pcoords[0]*sm; derivs[22] = rm*pcoords[1]; derivs[23] = pcoords[0]*pcoords[1]; } //---------------------------------------------------------------------------- int vtkVoxel::CellBoundary(int vtkNotUsed(subId), double pcoords[3], vtkIdList *pts) { double t1=pcoords[0]-pcoords[1]; double t2=1.0-pcoords[0]-pcoords[1]; double t3=pcoords[1]-pcoords[2]; double t4=1.0-pcoords[1]-pcoords[2]; double t5=pcoords[2]-pcoords[0]; double t6=1.0-pcoords[2]-pcoords[0]; pts->SetNumberOfIds(4); // compare against six planes in parametric space that divide element // into six pieces. if ( t3 >= 0.0 && t4 >= 0.0 && t5 < 0.0 && t6 >= 0.0 ) { pts->SetId(0,this->PointIds->GetId(0)); pts->SetId(1,this->PointIds->GetId(1)); pts->SetId(2,this->PointIds->GetId(3)); pts->SetId(3,this->PointIds->GetId(2)); } else if ( t1 >= 0.0 && t2 < 0.0 && t5 < 0.0 && t6 < 0.0 ) { pts->SetId(0,this->PointIds->GetId(1)); pts->SetId(1,this->PointIds->GetId(3)); pts->SetId(2,this->PointIds->GetId(7)); pts->SetId(3,this->PointIds->GetId(5)); } else if ( t1 >= 0.0 && t2 >= 0.0 && t3 < 0.0 && t4 >= 0.0 ) { pts->SetId(0,this->PointIds->GetId(0)); pts->SetId(1,this->PointIds->GetId(1)); pts->SetId(2,this->PointIds->GetId(5)); pts->SetId(3,this->PointIds->GetId(4)); } else if ( t3 < 0.0 && t4 < 0.0 && t5 >= 0.0 && t6 < 0.0 ) { pts->SetId(0,this->PointIds->GetId(4)); pts->SetId(1,this->PointIds->GetId(5)); pts->SetId(2,this->PointIds->GetId(7)); pts->SetId(3,this->PointIds->GetId(6)); } else if ( t1 < 0.0 && t2 >= 0.0 && t5 >= 0.0 && t6 >= 0.0 ) { pts->SetId(0,this->PointIds->GetId(0)); pts->SetId(1,this->PointIds->GetId(4)); pts->SetId(2,this->PointIds->GetId(6)); pts->SetId(3,this->PointIds->GetId(2)); } else // if ( t1 < 0.0 && t2 < 0.0 && t3 >= 0.0 && t6 < 0.0 ) { pts->SetId(0,this->PointIds->GetId(3)); pts->SetId(1,this->PointIds->GetId(2)); pts->SetId(2,this->PointIds->GetId(6)); pts->SetId(3,this->PointIds->GetId(7)); } if ( pcoords[0] < 0.0 || pcoords[0] > 1.0 || pcoords[1] < 0.0 || pcoords[1] > 1.0 || pcoords[2] < 0.0 || pcoords[2] > 1.0 ) { return 0; } else { return 1; } } //---------------------------------------------------------------------------- static int edges[12][2] = { {0,1}, {1,3}, {2,3}, {0,2}, {4,5}, {5,7}, {6,7}, {4,6}, {0,4}, {1,5}, {2,6}, {3,7}}; // define in terms vtkPixel understands static int faces[6][4] = { {2,0,6,4}, {1,3,5,7}, {0,1,4,5}, {3,2,7,6}, {1,0,3,2}, {4,5,6,7} }; //---------------------------------------------------------------------------- // // Marching cubes case table // #include "vtkMarchingCubesCases.h" void vtkVoxel::Contour(double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) { static int CASE_MASK[8] = {1,2,4,8,16,32,64,128}; vtkMarchingCubesTriangleCases *triCase; EDGE_LIST *edge; int i, j, index, *vert; static int vertMap[8] = { 0, 1, 3, 2, 4, 5, 7, 6 }; int newCellId; vtkIdType pts[3]; double t, x1[3], x2[3], x[3]; vtkIdType offset = verts->GetNumberOfCells() + lines->GetNumberOfCells(); // Build the case table for ( i=0, index = 0; i < 8; i++) { if (cellScalars->GetComponent(vertMap[i],0) >= value) { index |= CASE_MASK[i]; } } triCase = vtkMarchingCubesTriangleCases::GetCases() + index; edge = triCase->edges; for ( ; edge[0] > -1; edge += 3 ) { for (i=0; i<3; i++) // insert triangle { vert = edges[edge[i]]; t = (value - cellScalars->GetComponent(vert[0],0)) / (cellScalars->GetComponent(vert[1],0) - cellScalars->GetComponent(vert[0],0)); this->Points->GetPoint(vert[0], x1); this->Points->GetPoint(vert[1], x2); for (j=0; j<3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if ( locator->InsertUniquePoint(x, pts[i]) ) { if ( outPd ) { int p1 = this->PointIds->GetId(vert[0]); int p2 = this->PointIds->GetId(vert[1]); outPd->InterpolateEdge(inPd,pts[i],p1,p2,t); } } } // check for degenerate triangle if ( pts[0] != pts[1] && pts[0] != pts[2] && pts[1] != pts[2] ) { newCellId = offset + polys->InsertNextCell(3,pts); outCd->CopyData(inCd,cellId,newCellId); } } } //---------------------------------------------------------------------------- int *vtkVoxel::GetEdgeArray(int edgeId) { return edges[edgeId]; } //---------------------------------------------------------------------------- vtkCell *vtkVoxel::GetEdge(int edgeId) { int *verts; verts = edges[edgeId]; // load point id's this->Line->PointIds->SetId(0,this->PointIds->GetId(verts[0])); this->Line->PointIds->SetId(1,this->PointIds->GetId(verts[1])); // load coordinates this->Line->Points->SetPoint(0,this->Points->GetPoint(verts[0])); this->Line->Points->SetPoint(1,this->Points->GetPoint(verts[1])); return this->Line; } //---------------------------------------------------------------------------- int *vtkVoxel::GetFaceArray(int faceId) { return faces[faceId]; } //---------------------------------------------------------------------------- vtkCell *vtkVoxel::GetFace(int faceId) { int *verts, i; verts = faces[faceId]; for (i=0; i<4; i++) { this->Pixel->PointIds->SetId(i,this->PointIds->GetId(verts[i])); this->Pixel->Points->SetPoint(i,this->Points->GetPoint(verts[i])); } return this->Pixel; } //---------------------------------------------------------------------------- // // Intersect voxel with line using "bounding box" intersection. // int vtkVoxel::IntersectWithLine(double p1[3], double p2[3], double vtkNotUsed(tol), double& t, double x[3], double pcoords[3], int& subId) { double minPt[3], maxPt[3]; double bounds[6]; double p21[3]; int i; subId = 0; this->Points->GetPoint(0, minPt); this->Points->GetPoint(7, maxPt); for (i=0; i<3; i++) { p21[i] = p2[i] - p1[i]; bounds[2*i] = minPt[i]; bounds[2*i+1] = maxPt[i]; } if ( ! vtkBox::IntersectBox(bounds, p1, p21, x, t) ) { return 0; } // // Evaluate intersection // for (i=0; i<3; i++) { pcoords[i] = (x[i] - minPt[i]) / (maxPt[i] - minPt[i]); } return 1; } //---------------------------------------------------------------------------- int vtkVoxel::Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) { int p[4], i; ptIds->Reset(); pts->Reset(); // // Create five tetrahedron. Triangulation varies depending upon index. This // is necessary to insure compatible voxel triangulations. // if ( (index % 2) ) { p[0] = 0; p[1] = 1; p[2] = 2; p[3] = 4; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 1; p[1] = 4; p[2] = 5; p[3] = 7; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 1; p[1] = 4; p[2] = 7; p[3] = 2; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 1; p[1] = 2; p[2] = 7; p[3] = 3; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 2; p[1] = 7; p[2] = 6; p[3] = 4; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } } else { p[0] = 3; p[1] = 1; p[2] = 5; p[3] = 0; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 0; p[1] = 3; p[2] = 2; p[3] = 6; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 3; p[1] = 5; p[2] = 7; p[3] = 6; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 0; p[1] = 6; p[2] = 4; p[3] = 5; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 0; p[1] = 3; p[2] = 6; p[3] = 5; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } } return 1; } //---------------------------------------------------------------------------- void vtkVoxel::Derivatives(int vtkNotUsed(subId), double pcoords[3], double *values, int dim, double *derivs) { double functionDerivs[24], sum; int i, j, k; double x0[3], x1[3], x2[3], x4[3], spacing[3]; this->Points->GetPoint(0, x0); this->Points->GetPoint(1, x1); spacing[0] = x1[0] - x0[0]; this->Points->GetPoint(2, x2); spacing[1] = x2[1] - x0[1]; this->Points->GetPoint(4, x4); spacing[2] = x4[2] - x0[2]; // get derivatives in r-s-t directions this->InterpolationDerivs(pcoords, functionDerivs); // since the x-y-z axes are aligned with r-s-t axes, only need to scale // the derivative values by the data spacing. for (k=0; k < dim; k++) //loop over values per vertex { for (j=0; j < 3; j++) //loop over derivative directions { for (sum=0.0, i=0; i < 8; i++) //loop over interp. function derivatives { sum += functionDerivs[8*j + i] * values[dim*i + k]; } derivs[3*k + j] = sum / spacing[j]; } } } //---------------------------------------------------------------------------- void vtkVoxel::GetEdgePoints(int edgeId, int* &pts) { pts = this->GetEdgeArray(edgeId); } //---------------------------------------------------------------------------- void vtkVoxel::GetFacePoints(int faceId, int* &pts) { pts = this->GetFaceArray(faceId); } static double vtkVoxelCellPCoords[24] = {0.0,0.0,0.0, 1.0,0.0,0.0, 0.0,1.0,0.0, 1.0,1.0,0.0, 0.0,0.0,1.0, 1.0,0.0,1.0, 0.0,1.0,1.0, 1.0,1.0,1.0}; //---------------------------------------------------------------------------- double *vtkVoxel::GetParametricCoords() { return vtkVoxelCellPCoords; } //---------------------------------------------------------------------------- void vtkVoxel::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); os << indent << "Line:\n"; this->Line->PrintSelf(os,indent.GetNextIndent()); os << indent << "Pixel:\n"; this->Pixel->PrintSelf(os,indent.GetNextIndent()); }