/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkDiscreteMarchingCubes.cxx,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkDiscreteMarchingCubes.h" #include "vtkCellArray.h" #include "vtkCharArray.h" #include "vtkDoubleArray.h" #include "vtkFloatArray.h" #include "vtkInformation.h" #include "vtkInformationVector.h" #include "vtkIntArray.h" #include "vtkLongArray.h" #include "vtkMarchingCubesCases.h" #include "vtkMath.h" #include "vtkMergePoints.h" #include "vtkObjectFactory.h" #include "vtkPointData.h" #include "vtkPolyData.h" #include "vtkCellData.h" #include "vtkShortArray.h" #include "vtkStructuredPoints.h" #include "vtkUnsignedCharArray.h" #include "vtkUnsignedIntArray.h" #include "vtkUnsignedLongArray.h" #include "vtkUnsignedShortArray.h" #include "vtkStreamingDemandDrivenPipeline.h" #ifndef vtkFloatingPointType #define vtkFloatingPointType float #endif vtkCxxRevisionMacro(vtkDiscreteMarchingCubes, "$Revision: 1.1.6.1 $"); vtkStandardNewMacro(vtkDiscreteMarchingCubes); // Description: // Construct object with initial range (0,1) and single contour value // of 0.0. ComputeNormals is off, ComputeGradients is off and ComputeScalars is on. vtkDiscreteMarchingCubes::vtkDiscreteMarchingCubes() { this->ComputeNormals = 0; this->ComputeGradients = 0; this->ComputeScalars = 1; } vtkDiscreteMarchingCubes::~vtkDiscreteMarchingCubes() { } // // Contouring filter specialized for volumes and "short int" data values. // template void vtkDiscreteMarchingCubesComputeGradient( vtkDiscreteMarchingCubes *self,T *scalars, int dims[3], vtkFloatingPointType origin[3], vtkFloatingPointType Spacing[3], vtkPointLocator *locator, vtkDataArray *newCellScalars, vtkCellArray *newPolys, vtkFloatingPointType *values, int numValues) { vtkFloatingPointType s[8], value; int i, j, k, sliceSize; static int CASE_MASK[8] = {1,2,4,8,16,32,64,128}; vtkMarchingCubesTriangleCases *triCase, *triCases; EDGE_LIST *edge; int contNum, jOffset, kOffset, idx, ii, index, *vert; vtkIdType ptIds[3]; int extent[6]; int ComputeScalars = newCellScalars != NULL; vtkFloatingPointType t, *x1, *x2, x[3], min, max; vtkFloatingPointType pts[8][3], xp, yp, zp; static int edges[12][2] = { {0,1}, {1,2}, {3,2}, {0,3}, {4,5}, {5,6}, {7,6}, {4,7}, {0,4}, {1,5}, {3,7}, {2,6}}; vtkInformation *inInfo = self->GetExecutive()->GetInputInformation(0, 0); inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),extent); triCases = vtkMarchingCubesTriangleCases::GetCases(); // // Get min/max contour values // if ( numValues < 1 ) { return; } for ( min=max=values[0], i=1; i < numValues; i++) { if ( values[i] < min ) { min = values[i]; } if ( values[i] > max ) { max = values[i]; } } // // Traverse all voxel cells, generating triangles // using marching cubes algorithm. // sliceSize = dims[0] * dims[1]; for ( k=0; k < (dims[2]-1); k++) { self->UpdateProgress ((vtkFloatingPointType) k / ((vtkFloatingPointType) dims[2] - 1)); if (self->GetAbortExecute()) { break; } kOffset = k*sliceSize; pts[0][2] = origin[2] + (k+extent[4])*Spacing[2]; zp = pts[0][2] + Spacing[2]; for ( j=0; j < (dims[1]-1); j++) { jOffset = j*dims[0]; pts[0][1] = origin[1] + (j+extent[2])*Spacing[1]; yp = pts[0][1] + Spacing[1]; for ( i=0; i < (dims[0]-1); i++) { //get scalar values idx = i + jOffset + kOffset; s[0] = scalars[idx]; s[1] = scalars[idx+1]; s[2] = scalars[idx+1 + dims[0]]; s[3] = scalars[idx + dims[0]]; s[4] = scalars[idx + sliceSize]; s[5] = scalars[idx+1 + sliceSize]; s[6] = scalars[idx+1 + dims[0] + sliceSize]; s[7] = scalars[idx + dims[0] + sliceSize]; if ( (s[0] < min && s[1] < min && s[2] < min && s[3] < min && s[4] < min && s[5] < min && s[6] < min && s[7] < min) || (s[0] > max && s[1] > max && s[2] > max && s[3] > max && s[4] > max && s[5] > max && s[6] > max && s[7] > max) ) { continue; // no contours possible } //create voxel points pts[0][0] = origin[0] + (i+extent[0])*Spacing[0]; xp = pts[0][0] + Spacing[0]; pts[1][0] = xp; pts[1][1] = pts[0][1]; pts[1][2] = pts[0][2]; pts[2][0] = xp; pts[2][1] = yp; pts[2][2] = pts[0][2]; pts[3][0] = pts[0][0]; pts[3][1] = yp; pts[3][2] = pts[0][2]; pts[4][0] = pts[0][0]; pts[4][1] = pts[0][1]; pts[4][2] = zp; pts[5][0] = xp; pts[5][1] = pts[0][1]; pts[5][2] = zp; pts[6][0] = xp; pts[6][1] = yp; pts[6][2] = zp; pts[7][0] = pts[0][0]; pts[7][1] = yp; pts[7][2] = zp; for (contNum=0; contNum < numValues; contNum++) { value = values[contNum]; // Build the case table for ( ii=0, index = 0; ii < 8; ii++) { // for discrete marching cubes, we are looking for an // exact match of a scalar at a vertex to a value if ( s[ii] == value ) { index |= CASE_MASK[ii]; } } if ( index == 0 || index == 255 ) //no surface { continue; } triCase = triCases+ index; edge = triCase->edges; for ( ; edge[0] > -1; edge += 3 ) { for (ii=0; ii<3; ii++) //insert triangle { vert = edges[edge[ii]]; // for discrete marching cubes, the interpolation point // is always 0.5. t = 0.5; x1 = pts[vert[0]]; x2 = pts[vert[1]]; x[0] = x1[0] + t * (x2[0] - x1[0]); x[1] = x1[1] + t * (x2[1] - x1[1]); x[2] = x1[2] + t * (x2[2] - x1[2]); // add point locator->InsertUniquePoint(x, ptIds[ii]); } // check for degenerate triangle if ( ptIds[0] != ptIds[1] && ptIds[0] != ptIds[2] && ptIds[1] != ptIds[2] ) { newPolys->InsertNextCell(3,ptIds); // Note that DiscreteMarchingCubes stores the scalar // data in the cells. It does not use the point data // since cells from different labeled segments may use // the same point. if (ComputeScalars) { newCellScalars->InsertNextTuple(&value); } } }//for each triangle }//for all contours }//for i }//for j }//for k } // // Contouring filter specialized for volumes and "short int" data values. // int vtkDiscreteMarchingCubes::RequestData( vtkInformation *vtkNotUsed(request), vtkInformationVector **inputVector, vtkInformationVector *outputVector) { vtkInformation *inInfo = inputVector[0]->GetInformationObject(0); vtkInformation *outInfo = outputVector->GetInformationObject(0); vtkPoints *newPts; vtkCellArray *newPolys; vtkFloatArray *newCellScalars; vtkImageData *input = vtkImageData::SafeDownCast( inInfo->Get(vtkDataObject::DATA_OBJECT())); vtkPointData *pd; vtkDataArray *inScalars; int dims[3], extent[6]; int estimatedSize; vtkFloatingPointType Spacing[3], origin[3]; vtkFloatingPointType bounds[6]; vtkPolyData *output = vtkPolyData::SafeDownCast( outInfo->Get(vtkDataObject::DATA_OBJECT())); int numContours=this->ContourValues->GetNumberOfContours(); vtkFloatingPointType *values=this->ContourValues->GetValues(); vtkDebugMacro(<< "Executing marching cubes"); // // Initialize and check input // pd=input->GetPointData(); if (pd ==NULL) { vtkErrorMacro(<<"PointData is NULL"); return 1; } inScalars=pd->GetScalars(); if ( inScalars == NULL ) { vtkErrorMacro(<<"Scalars must be defined for contouring"); return 1; } if ( input->GetDataDimension() != 3 ) { vtkErrorMacro(<<"Cannot contour data of dimension != 3"); return 1; } input->GetDimensions(dims); input->GetOrigin(origin); input->GetSpacing(Spacing); inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), extent); // estimate the number of points from the volume dimensions estimatedSize = (int) pow ((vtkFloatingPointType) (dims[0] * dims[1] * dims[2]), .75); estimatedSize = estimatedSize / 1024 * 1024; //multiple of 1024 if (estimatedSize < 1024) { estimatedSize = 1024; } vtkDebugMacro(<< "Estimated allocation size is " << estimatedSize); newPts = vtkPoints::New(); newPts->Allocate(estimatedSize,estimatedSize/2); // compute bounds for merging points for ( int i=0; i<3; i++) { bounds[2*i] = origin[i] + extent[2*i] * Spacing[i]; bounds[2*i+1] = origin[i] + extent[2*i+1] * Spacing[i]; } if ( this->Locator == NULL ) { this->CreateDefaultLocator(); } this->Locator->InitPointInsertion (newPts, bounds, estimatedSize); newPolys = vtkCellArray::New(); newPolys->Allocate(newPolys->EstimateSize(estimatedSize,3)); if (this->ComputeScalars) { newCellScalars = vtkFloatArray::New(); newCellScalars->Allocate(estimatedSize,3); } else { newCellScalars = NULL; } if (inScalars->GetNumberOfComponents() == 1 ) { void* scalars = inScalars->GetVoidPointer(0); switch (inScalars->GetDataType()) { vtkTemplateMacro( vtkDiscreteMarchingCubesComputeGradient(this, static_cast(scalars), dims, origin, Spacing, this->Locator, newCellScalars, newPolys, values, numContours) ); } //switch } else //multiple components - have to convert { int dataSize = dims[0] * dims[1] * dims[2]; vtkDoubleArray *image=vtkDoubleArray::New(); image->SetNumberOfComponents(inScalars->GetNumberOfComponents()); image->SetNumberOfTuples(image->GetNumberOfComponents()*dataSize); inScalars->GetTuples(0,dataSize,image); double *scalars = image->GetPointer(0); vtkDiscreteMarchingCubesComputeGradient(this, scalars, dims, origin, Spacing, this->Locator, newCellScalars, newPolys, values, numContours); image->Delete(); } vtkDebugMacro(<<"Created: " << newPts->GetNumberOfPoints() << " points, " << newPolys->GetNumberOfCells() << " triangles"); // // Update ourselves. Because we don't know up front how many triangles // we've created, take care to reclaim memory. // output->SetPoints(newPts); newPts->Delete(); output->SetPolys(newPolys); newPolys->Delete(); if (newCellScalars) { output->GetCellData()->SetScalars(newCellScalars); newCellScalars->Delete(); } output->Squeeze(); if (this->Locator) { this->Locator->Initialize(); //free storage } return 1; }