/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkParametricSuperToroid.h,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ // .NAME vtkParametricSuperToroid - Generate a supertoroid. // .SECTION Description // vtkParametricSuperToroid generates a supertoroid. Essentially a // supertoroid is a torus with the sine and cosine terms raised to a power. // A supertoroid is a versatile primitive that is controlled by four // parameters r0, r1, n1 and n2. r0, r1 determine the type of torus whilst // the value of n1 determines the shape of the torus ring and n2 determines // the shape of the cross section of the ring. It is the different values of // these powers which give rise to a family of 3D shapes that are all // basically toroidal in shape. // // For further information about this surface, please consult the // technical description "Parametric surfaces" in http://www.vtk.org/documents.php // in the "VTK Technical Documents" section in the VTk.org web pages. // // Also see: http://astronomy.swin.edu.au/~pbourke/surfaces/. // // .SECTION Caveats // Care needs to be taken specifying the bounds correctly. You may need to // carefully adjust MinimumU, MinimumV, MaximumU, MaximumV. // // .SECTION Thanks // Andrew Maclean a.maclean@cas.edu.au for creating and contributing the // class. // #ifndef __vtkParametricSuperToroid_h #define __vtkParametricSuperToroid_h #include "vtkParametricFunction.h" class VTK_COMMON_EXPORT vtkParametricSuperToroid : public vtkParametricFunction { public: vtkTypeRevisionMacro(vtkParametricSuperToroid,vtkParametricFunction); void PrintSelf(ostream& os, vtkIndent indent); // Description: // Construct a supertoroid with the following parameters: // MinimumU = 0, MaximumU = 2*Pi, // MinimumV = 0, MaximumV = 2*Pi, // JoinU = 1, JoinV = 1, // TwistU = 0, TwistV = 0, // ClockwiseOrdering = 1, // DerivativesAvailable = 0, // RingRadius = 1, CrossSectionRadius = 0.5, // N1 = 1, N2 = 1, XRadius = 1, // YRadius = 1, ZRadius = 1, a torus in this case. static vtkParametricSuperToroid *New(); // Description // Return the parametric dimension of the class. virtual int GetDimension() {return 2;} // Description: // Set/Get the radius from the center to the middle of the ring of the // supertoroid. Default = 1. vtkSetMacro(RingRadius,double); vtkGetMacro(RingRadius,double); // Description: // Set/Get the radius of the cross section of ring of the supertoroid. // Default = 0.5. vtkSetMacro(CrossSectionRadius,double); vtkGetMacro(CrossSectionRadius,double); // Description: // Set/Get the scaling factor for the x-axis. Default = 1. vtkSetMacro(XRadius,double); vtkGetMacro(XRadius,double); // Description: // Set/Get the scaling factor for the y-axis. Default = 1. vtkSetMacro(YRadius,double); vtkGetMacro(YRadius,double); // Description: // Set/Get the scaling factor for the z-axis. Default = 1. vtkSetMacro(ZRadius,double); vtkGetMacro(ZRadius,double); // Description: // Set/Get the shape of the torus ring. Default = 1. vtkSetMacro(N1,double); vtkGetMacro(N1,double); // Description: // Set/Get the shape of the cross section of the ring. Default = 1. vtkSetMacro(N2,double); vtkGetMacro(N2,double); // Description: // A supertoroid. // // This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it // as Pt. It also returns the partial derivatives Du and Dv. // \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ . // Then the normal is \f$N = Du X Dv\f$ . virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]); // Description: // Calculate a user defined scalar using one or all of uvw, Pt, Duvw. // // uvw are the parameters with Pt being the the cartesian point, // Duvw are the derivatives of this point with respect to u, v and w. // Pt, Duvw are obtained from Evaluate(). // // This function is only called if the ScalarMode has the value // vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED // // If the user does not need to calculate a scalar, then the // instantiated function should return zero. // virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]); protected: vtkParametricSuperToroid(); ~vtkParametricSuperToroid(); // Variables double RingRadius; double CrossSectionRadius; double XRadius; double YRadius; double ZRadius; double N1; double N2; private: vtkParametricSuperToroid(const vtkParametricSuperToroid&); // Not implemented. void operator=(const vtkParametricSuperToroid&); // Not implemented. // Description: // Calculate sign(x)*(abs(x)^n). double Power ( double x, double n ); }; #endif