/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkPerspectiveTransform.h,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ // .NAME vtkPerspectiveTransform - describes a 4x4 matrix transformation // .SECTION Description // A vtkPerspectiveTransform can be used to describe the full range of // homogeneous transformations. It was designed in particular // to describe a camera-view of a scene. //
The order in which you set up the display coordinates (via // AdjustZBuffer() and AdjustViewport()), the projection (via Perspective(), // Frustum(), or Ortho()) and the camera view (via SetupCamera()) are // important. If the transform is in PreMultiply mode, which is the // default, set the Viewport and ZBuffer first, then the projection, and // finally the camera view. Once the view is set up, the Translate // and Rotate methods can be used to move the camera around in world // coordinates. If the Oblique() or Stereo() methods are used, they // should be called just before SetupCamera(). //
In PostMultiply mode, you must perform all transformations // in the opposite order. This is necessary, for example, if you // already have a perspective transformation set up but must adjust // the viewport. Another example is if you have a view transformation, // and wish to perform translations and rotations in the camera's // coordinate system rather than in world coordinates. //
The SetInput and Concatenate methods can be used to create // a transformation pipeline with vtkPerspectiveTransform. See vtkTransform // for more information on the transformation pipeline. // .SECTION See Also // vtkGeneralTransform vtkTransform vtkMatrix4x4 vtkCamera #ifndef __vtkPerspectiveTransform_h #define __vtkPerspectiveTransform_h #include "vtkHomogeneousTransform.h" #include "vtkMatrix4x4.h" // Needed for inline methods class VTK_COMMON_EXPORT vtkPerspectiveTransform : public vtkHomogeneousTransform { public: static vtkPerspectiveTransform *New(); vtkTypeRevisionMacro(vtkPerspectiveTransform,vtkHomogeneousTransform); void PrintSelf(ostream& os, vtkIndent indent); // Description: // Set this transformation to the identity transformation. If // the transform has an Input, then the transformation will be // reset so that it is the same as the Input. void Identity() { this->Concatenation->Identity(); this->Modified(); }; // Description: // Invert the transformation. This will also set a flag so that // the transformation will use the inverse of its Input, if an Input // has been set. void Inverse() { this->Concatenation->Inverse(); this->Modified(); }; // Description: // Perform an adjustment to the viewport coordinates. By default Ortho, // Frustum, and Perspective provide a window of ([-1,+1],[-1,+1]). // In PreMultiply mode, you call this method before calling Ortho, Frustum, // or Perspective. In PostMultiply mode you can call it after. Note // that if you must apply both AdjustZBuffer and AdjustViewport, it // makes no difference which order you apply them in. void AdjustViewport(double oldXMin, double oldXMax, double oldYMin, double oldYMax, double newXMin, double newXMax, double newYMin, double newYMax); // Description: // Perform an adjustment to the Z-Buffer range that the near and far // clipping planes map to. By default Ortho, Frustum, and Perspective // map the near clipping plane to -1 and the far clipping plane to +1. // In PreMultiply mode, you call this method before calling Ortho, Frustum, // or Perspective. In PostMultiply mode you can call it after. void AdjustZBuffer(double oldNearZ, double oldFarZ, double newNearZ, double newFarZ); // Description: // Create an orthogonal projection matrix and concatenate it by the // current transformation. The matrix maps [xmin,xmax], [ymin,ymax], // [-znear,-zfar] to [-1,+1], [-1,+1], [+1,-1]. void Ortho(double xmin, double xmax, double ymin, double ymax, double znear, double zfar); // Description: // Create an perspective projection matrix and concatenate it by the // current transformation. The matrix maps a frustum with a back // plane at -zfar and a front plane at -znear with extent // [xmin,xmax],[ymin,ymax] to [-1,+1], [-1,+1], [+1,-1]. void Frustum(double xmin, double xmax, double ymin, double ymax, double znear, double zfar); // Description: // Create a perspective projection matrix by specifying the view angle // (this angle is in the y direction), the aspect ratio, and the near // and far clipping range. The projection matrix is concatenated // with the current transformation. This method works via Frustum. void Perspective(double angle, double aspect, double znear, double zfar); // Description: // Create a shear transformation about a plane at distance z from // the camera. The values dxdz (i.e. dx/dz) and dydz specify the // amount of shear in the x and y directions. The 'zplane' specifies // the distance from the camera to the plane at which the shear // causes zero displacement. Generally you want this plane to be the // focal plane. // This transformation can be used in combination with Ortho to create // an oblique projection. It can also be used in combination with // Perspective to provide correct stereo views when the eye is at // arbitrary but known positions relative to the center of a flat // viewing screen. void Shear(double dxdz, double dydz, double zplane); // Description: // Create a stereo shear matrix and concatenate it with the // current transformation. This can be applied in conjunction with either a // perspective transformation (via Frustum or Projection) or an // orthographic projection. You must specify the distance from // the camera plane to the focal plane, and the angle between // the distance vector and the eye. The angle should be negative // for the left eye, and positive for the right. This method // works via Oblique. void Stereo(double angle, double focaldistance); // Description: // Set a view transformation matrix for the camera (this matrix does // not contain any perspective) and concatenate it with the current // transformation. void SetupCamera(const double position[3], const double focalpoint[3], const double viewup[3]); void SetupCamera(double p0, double p1, double p2, double fp0, double fp1, double fp2, double vup0, double vup1, double vup2); // Description: // Create a translation matrix and concatenate it with the current // transformation according to PreMultiply or PostMultiply semantics. void Translate(double x, double y, double z) { this->Concatenation->Translate(x,y,z); }; void Translate(const double x[3]) { this->Translate(x[0], x[1], x[2]); }; void Translate(const float x[3]) { this->Translate(x[0], x[1], x[2]); }; // Description: // Create a rotation matrix and concatenate it with the current // transformation according to PreMultiply or PostMultiply semantics. // The angle is in degrees, and (x,y,z) specifies the axis that the // rotation will be performed around. void RotateWXYZ(double angle, double x, double y, double z) { this->Concatenation->Rotate(angle,x,y,z); }; void RotateWXYZ(double angle, const double axis[3]) { this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); }; void RotateWXYZ(double angle, const float axis[3]) { this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); }; // Description: // Create a rotation matrix about the X, Y, or Z axis and concatenate // it with the current transformation according to PreMultiply or // PostMultiply semantics. The angle is expressed in degrees. void RotateX(double angle) { this->RotateWXYZ(angle, 1, 0, 0); }; void RotateY(double angle) { this->RotateWXYZ(angle, 0, 1, 0); }; void RotateZ(double angle) { this->RotateWXYZ(angle, 0, 0, 1); }; // Description: // Create a scale matrix (i.e. set the diagonal elements to x, y, z) // and concatenate it with the current transformation according to // PreMultiply or PostMultiply semantics. void Scale(double x, double y, double z) { this->Concatenation->Scale(x,y,z); }; void Scale(const double s[3]) { this->Scale(s[0], s[1], s[2]); }; void Scale(const float s[3]) { this->Scale(s[0], s[1], s[2]); }; // Description: // Set the current matrix directly. This actually calls Identity(), // followed by Concatenate(matrix). void SetMatrix(vtkMatrix4x4 *matrix) { this->SetMatrix(*matrix->Element); }; void SetMatrix(const double elements[16]) { this->Identity(); this->Concatenate(elements); }; // Description: // Concatenates the matrix with the current transformation according // to PreMultiply or PostMultiply semantics. void Concatenate(vtkMatrix4x4 *matrix) { this->Concatenate(*matrix->Element); }; void Concatenate(const double elements[16]) { this->Concatenation->Concatenate(elements); }; // Description: // Concatenate the specified transform with the current transformation // according to PreMultiply or PostMultiply semantics. // The concatenation is pipelined, meaning that if any of the // transformations are changed, even after Concatenate() is called, // those changes will be reflected when you call TransformPoint(). void Concatenate(vtkHomogeneousTransform *transform); // Description: // Sets the internal state of the transform to PreMultiply. All subsequent // operations will occur before those already represented in the // current transformation. In homogeneous matrix notation, M = M*A where // M is the current transformation matrix and A is the applied matrix. // The default is PreMultiply. void PreMultiply() { if (this->Concatenation->GetPreMultiplyFlag()) { return; } this->Concatenation->SetPreMultiplyFlag(1); this->Modified(); }; // Description: // Sets the internal state of the transform to PostMultiply. All subsequent // operations will occur after those already represented in the // current transformation. In homogeneous matrix notation, M = A*M where // M is the current transformation matrix and A is the applied matrix. // The default is PreMultiply. void PostMultiply() { if (!this->Concatenation->GetPreMultiplyFlag()) { return; } this->Concatenation->SetPreMultiplyFlag(0); this->Modified(); }; // Description: // Get the total number of transformations that are linked into this // one via Concatenate() operations or via SetInput(). int GetNumberOfConcatenatedTransforms() { return this->Concatenation->GetNumberOfTransforms() + (this->Input == NULL ? 0 : 1); }; // Description // Get one of the concatenated transformations as a vtkAbstractTransform. // These transformations are applied, in series, every time the // transformation of a coordinate occurs. This method is provided // to make it possible to decompose a transformation into its // constituents, for example to save a transformation to a file. vtkHomogeneousTransform *GetConcatenatedTransform(int i) { if (this->Input == NULL) { return (vtkHomogeneousTransform *)this->Concatenation->GetTransform(i); } else if (i < this->Concatenation->GetNumberOfPreTransforms()) { return (vtkHomogeneousTransform *)this->Concatenation->GetTransform(i); } else if (i > this->Concatenation->GetNumberOfPreTransforms()) { return (vtkHomogeneousTransform*)this->Concatenation->GetTransform(i-1);} else if (this->GetInverseFlag()) { return (vtkHomogeneousTransform *)this->Input->GetInverse(); } else { return (vtkHomogeneousTransform *)this->Input; } }; // Description: // Set the input for this transformation. This will be used as the // base transformation if it is set. This method allows you to build // a transform pipeline: if the input is modified, then this transformation // will automatically update accordingly. Note that the InverseFlag, // controlled via Inverse(), determines whether this transformation // will use the Input or the inverse of the Input. void SetInput(vtkHomogeneousTransform *input); vtkHomogeneousTransform *GetInput() { return this->Input; }; // Description: // Get the inverse flag of the transformation. This controls // whether it is the Input or the inverse of the Input that // is used as the base transformation. The InverseFlag is // flipped every time Inverse() is called. The InverseFlag // is off when a transform is first created. int GetInverseFlag() { return this->Concatenation->GetInverseFlag(); }; // Description: // Pushes the current transformation onto the transformation stack. void Push() { if (this->Stack == NULL) { this->Stack = vtkTransformConcatenationStack::New(); } this->Stack->Push(&this->Concatenation); this->Modified(); }; // Description: // Deletes the transformation on the top of the stack and sets the top // to the next transformation on the stack. void Pop() { if (this->Stack == NULL) { return; } this->Stack->Pop(&this->Concatenation); this->Modified(); }; // Description: // Make a new transform of the same type -- you are responsible for // deleting the transform when you are done with it. vtkAbstractTransform *MakeTransform(); // Description: // Check for self-reference. Will return true if concatenating // with the specified transform, setting it to be our inverse, // or setting it to be our input will create a circular reference. // CircuitCheck is automatically called by SetInput(), SetInverse(), // and Concatenate(vtkXTransform *). Avoid using this function, // it is experimental. int CircuitCheck(vtkAbstractTransform *transform); // Description: // Override GetMTime to account for input and concatenation. unsigned long GetMTime(); protected: vtkPerspectiveTransform(); ~vtkPerspectiveTransform(); void InternalDeepCopy(vtkAbstractTransform *t); void InternalUpdate(); vtkHomogeneousTransform *Input; vtkTransformConcatenation *Concatenation; vtkTransformConcatenationStack *Stack; private: vtkPerspectiveTransform(const vtkPerspectiveTransform&); // Not implemented void operator=(const vtkPerspectiveTransform&); // Not implemented }; #endif