/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkRectilinearSynchronizedTemplates.cxx,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkRectilinearSynchronizedTemplates.h" #include "vtkCellArray.h" #include "vtkCellData.h" #include "vtkCharArray.h" #include "vtkDoubleArray.h" #include "vtkExtentTranslator.h" #include "vtkFloatArray.h" #include "vtkInformation.h" #include "vtkInformationVector.h" #include "vtkIntArray.h" #include "vtkLongArray.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPointData.h" #include "vtkPolyData.h" #include "vtkRectilinearGrid.h" #include "vtkShortArray.h" #include "vtkStreamingDemandDrivenPipeline.h" #include "vtkStructuredPoints.h" #include "vtkSynchronizedTemplates3D.h" #include "vtkUnsignedCharArray.h" #include "vtkUnsignedIntArray.h" #include "vtkUnsignedLongArray.h" #include "vtkUnsignedShortArray.h" #include vtkCxxRevisionMacro(vtkRectilinearSynchronizedTemplates, "$Revision: 1.4 $"); vtkStandardNewMacro(vtkRectilinearSynchronizedTemplates); //---------------------------------------------------------------------------- // Description: // Construct object with initial scalar range (0,1) and single contour value // of 0.0. The ImageRange are set to extract the first k-plane. vtkRectilinearSynchronizedTemplates::vtkRectilinearSynchronizedTemplates() { this->ContourValues = vtkContourValues::New(); this->ComputeNormals = 1; this->ComputeGradients = 0; this->ComputeScalars = 1; this->ExecuteExtent[0] = this->ExecuteExtent[1] = this->ExecuteExtent[2] = this->ExecuteExtent[3] = this->ExecuteExtent[4] = this->ExecuteExtent[5] = 0; this->ArrayComponent = 0; // by default process active point scalars this->SetInputArrayToProcess(0,0,0,vtkDataObject::FIELD_ASSOCIATION_POINTS, vtkDataSetAttributes::SCALARS); } //---------------------------------------------------------------------------- vtkRectilinearSynchronizedTemplates::~vtkRectilinearSynchronizedTemplates() { this->ContourValues->Delete(); } //---------------------------------------------------------------------------- // Overload standard modified time function. If contour values are modified, // then this object is modified as well. unsigned long vtkRectilinearSynchronizedTemplates::GetMTime() { unsigned long mTime=this->Superclass::GetMTime(); unsigned long mTime2=this->ContourValues->GetMTime(); mTime = ( mTime2 > mTime ? mTime2 : mTime ); return mTime; } //---------------------------------------------------------------------------- void vtkRectilinearSynchronizedTemplatesInitializeOutput( int *ext, vtkRectilinearGrid *input, vtkPolyData *o, vtkFloatArray *scalars, vtkFloatArray *normals, vtkFloatArray *gradients, vtkDataArray *inScalars) { vtkPoints *newPts; vtkCellArray *newPolys; long estimatedSize; estimatedSize = (int) pow ((double) ((ext[1]-ext[0]+1)*(ext[3]-ext[2]+1)*(ext[5]-ext[4]+1)), .75); if (estimatedSize < 1024) { estimatedSize = 1024; } newPts = vtkPoints::New(); newPts->Allocate(estimatedSize,estimatedSize); newPolys = vtkCellArray::New(); newPolys->Allocate(newPolys->EstimateSize(estimatedSize,3)); o->GetPointData()->CopyAllOn(); // It is more efficient to just create the scalar array // rather than redundantly interpolate the scalars. if (input->GetPointData()->GetScalars() == inScalars) { o->GetPointData()->CopyScalarsOff(); } else { o->GetPointData()->CopyFieldOff(inScalars->GetName()); } if (normals) { normals->SetNumberOfComponents(3); normals->Allocate(3*estimatedSize,3*estimatedSize/2); normals->SetName("Normals"); } if (gradients) { gradients->SetNumberOfComponents(3); gradients->Allocate(3*estimatedSize,3*estimatedSize/2); gradients->SetName("Gradients"); } if (scalars) { // A temporary name. scalars->SetName("Scalars"); } o->GetPointData()->InterpolateAllocate(input->GetPointData(), estimatedSize,estimatedSize/2); o->GetCellData()->CopyAllocate(input->GetCellData(), estimatedSize,estimatedSize/2); o->SetPoints(newPts); newPts->Delete(); o->SetPolys(newPolys); newPolys->Delete(); } //---------------------------------------------------------------------------- // Calculate the gradient using central difference. template void vtkRSTComputePointGradient(int i, int j, int k, T *s, int *wholeExt, int xInc, int yInc, int zInc, double *spacing, double n[3]) { double sp, sm; // x-direction if ( i == wholeExt[0] ) { sp = *(s+xInc); sm = *s; n[0] = (sp - sm) / spacing[1]; } else if ( i == wholeExt[1] ) { sp = *s; sm = *(s-xInc); n[0] = (sp - sm) / spacing[0]; } else { sp = *(s+xInc); sm = *(s-xInc); n[0] = (sp - sm) / (spacing[0]+spacing[1]); } // y-direction if ( j == wholeExt[2] ) { sp = *(s+yInc); sm = *s; n[1] = (sp - sm) / spacing[3]; } else if ( j == wholeExt[3] ) { sp = *s; sm = *(s-yInc); n[1] = (sp - sm) / spacing[2]; } else { sp = *(s+yInc); sm = *(s-yInc); n[1] = (sp - sm) / (spacing[2]+spacing[3]); } // z-direction if ( k == wholeExt[4] ) { sp = *(s+zInc); sm = *s; n[2] = (sp - sm) / spacing[5]; } else if ( k == wholeExt[5] ) { sp = *s; sm = *(s-zInc); n[2] = (sp - sm) / spacing[4]; } else { sp = *(s+zInc); sm = *(s-zInc); n[2] = (sp - sm) / (spacing[4]+spacing[5]); } } //---------------------------------------------------------------------------- #define VTK_RECT_CSP3PA(i2,j2,k2,s) \ if (NeedGradients) \ { \ if (!g0) \ { \ self->ComputeSpacing(data, i, j, k, exExt, spacing); \ vtkRSTComputePointGradient(i, j, k, s0, exExt, xInc, yInc, zInc, spacing, n0); \ g0 = 1; \ } \ self->ComputeSpacing(data, i2, j2, k2, exExt, spacing); \ vtkRSTComputePointGradient(i2, j2, k2, s, exExt, xInc, yInc, zInc, spacing, n1); \ for (jj=0; jj<3; jj++) \ { \ n[jj] = n0[jj] + t * (n1[jj] - n0[jj]); \ } \ if (ComputeGradients) \ { \ newGradients->InsertNextTuple(n); \ } \ if (ComputeNormals) \ { \ vtkMath::Normalize(n); \ n[0] = -n[0]; n[1] = -n[1]; n[2] = -n[2]; \ newNormals->InsertNextTuple(n); \ } \ } \ if (ComputeScalars) \ { \ newScalars->InsertNextTuple(&value); \ } //---------------------------------------------------------------------------- // // Contouring filter specialized for images // template void ContourRectilinearGrid(vtkRectilinearSynchronizedTemplates *self, int *exExt, vtkRectilinearGrid *data, vtkPolyData *output, T *ptr, vtkDataArray *inScalars) { int *inExt = data->GetExtent(); int xdim = exExt[1] - exExt[0] + 1; int ydim = exExt[3] - exExt[2] + 1; double *values = self->GetValues(); int numContours = self->GetNumberOfContours(); T *inPtrX, *inPtrY, *inPtrZ; T *s0, *s1, *s2, *s3; int xMin, xMax, yMin, yMax, zMin, zMax; int xInc, yInc, zInc; int *isect1Ptr, *isect2Ptr; double y, z, t; int i, j, k; int zstep, yisectstep; int offsets[12]; int ComputeNormals = self->GetComputeNormals(); int ComputeGradients = self->GetComputeGradients(); int ComputeScalars = self->GetComputeScalars(); int NeedGradients = ComputeGradients || ComputeNormals; double n[3], n0[3], n1[3]; int jj, g0; int *tablePtr; int idx, vidx; double x[3], xz[3]; int v0, v1, v2, v3; vtkIdType ptIds[3]; double value; // We need to know the edgePointId's for interpolating attributes. int edgePtId, inCellId, outCellId; vtkPointData *inPD = data->GetPointData(); vtkCellData *inCD = data->GetCellData(); vtkPointData *outPD = output->GetPointData(); vtkCellData *outCD = output->GetCellData(); // Use to be arguments vtkFloatArray *newScalars = NULL; vtkFloatArray *newNormals = NULL; vtkFloatArray *newGradients = NULL; vtkPoints *newPts; vtkCellArray *newPolys; ptr += self->GetArrayComponent(); vtkDataArray *xCoords = data->GetXCoordinates(); vtkDataArray *yCoords = data->GetYCoordinates(); vtkDataArray *zCoords = data->GetZCoordinates(); double x1, x2, y2, z2; double spacing[6]; if (ComputeScalars) { newScalars = vtkFloatArray::New(); } if (ComputeNormals) { newNormals = vtkFloatArray::New(); } if (ComputeGradients) { newGradients = vtkFloatArray::New(); } vtkRectilinearSynchronizedTemplatesInitializeOutput(exExt, data, output, newScalars, newNormals, newGradients, inScalars); newPts = output->GetPoints(); newPolys = output->GetPolys(); // this is an exploded execute extent. xMin = exExt[0]; xMax = exExt[1]; yMin = exExt[2]; yMax = exExt[3]; zMin = exExt[4]; zMax = exExt[5]; // increments to move through scalars Compute these ourself because // we may be contouring an array other than scalars. xInc = inScalars->GetNumberOfComponents(); yInc = xInc*(inExt[1]-inExt[0]+1); zInc = yInc*(inExt[3]-inExt[2]+1); // Kens increments, probably to do with edge array zstep = xdim*ydim; yisectstep = xdim*3; // compute offsets probably how to get to the edges in the edge array. offsets[0] = -xdim*3; offsets[1] = -xdim*3 + 1; offsets[2] = -xdim*3 + 2; offsets[3] = -xdim*3 + 4; offsets[4] = -xdim*3 + 5; offsets[5] = 0; offsets[6] = 2; offsets[7] = 5; offsets[8] = (zstep - xdim)*3; offsets[9] = (zstep - xdim)*3 + 1; offsets[10] = (zstep - xdim)*3 + 4; offsets[11] = zstep*3; // allocate storage array int *isect1 = new int [xdim*ydim*3*2]; // set impossible edges to -1 for (i = 0; i < ydim; i++) { isect1[(i+1)*xdim*3-3] = -1; isect1[(i+1)*xdim*3*2-3] = -1; } for (i = 0; i < xdim; i++) { isect1[((ydim-1)*xdim + i)*3 + 1] = -1; isect1[((ydim-1)*xdim + i)*3*2 + 1] = -1; } // for each contour for (vidx = 0; vidx < numContours; vidx++) { value = values[vidx]; inPtrZ = ptr; s2 = inPtrZ; v2 = (*s2 < value ? 0 : 1); //================================================================== for (k = zMin; k <= zMax; k++) { self->UpdateProgress((double)vidx/numContours + (k-zMin)/((zMax - zMin+1.0)*numContours)); z = zCoords->GetComponent(k-inExt[4], 0); x[2] = z; // swap the buffers if (k%2) { offsets[8] = (zstep - xdim)*3; offsets[9] = (zstep - xdim)*3 + 1; offsets[10] = (zstep - xdim)*3 + 4; offsets[11] = zstep*3; isect1Ptr = isect1; isect2Ptr = isect1 + xdim*ydim*3; } else { offsets[8] = (-zstep - xdim)*3; offsets[9] = (-zstep - xdim)*3 + 1; offsets[10] = (-zstep - xdim)*3 + 4; offsets[11] = -zstep*3; isect1Ptr = isect1 + xdim*ydim*3; isect2Ptr = isect1; } inPtrY = inPtrZ; for (j = yMin; j <= yMax; j++) { // Should not impact perfomance here/ edgePtId = (j-inExt[2])*yInc + (k-inExt[4])*zInc; // Increments are different for cells. // Since the cells are not contoured until the second row of templates, // subtract 1 from i,j,and k. Note: first cube is formed when i=0, j=1, and k=1. inCellId = (xMin-inExt[0]) + (inExt[1]-inExt[0])*( (j-inExt[2]-1) + (k-inExt[4]-1)*(inExt[3]-inExt[2]) ); y = yCoords->GetComponent(j-inExt[2], 0); xz[1] = y; s1 = inPtrY; v1 = (*s1 < value ? 0 : 1); inPtrX = inPtrY; for (i = xMin; i <= xMax; i++) { s0 = s1; v0 = v1; // this flag keeps up from computing gradient for grid point 0 twice. g0 = 0; *isect2Ptr = -1; *(isect2Ptr + 1) = -1; *(isect2Ptr + 2) = -1; if (i < xMax) { s1 = (inPtrX + xInc); v1 = (*s1 < value ? 0 : 1); if (v0 ^ v1) { // watch for degenerate points if (*s0 == value) { if (i > xMin && *(isect2Ptr-3) > -1) { *isect2Ptr = *(isect2Ptr-3); } else if (j > yMin && *(isect2Ptr - yisectstep + 1) > -1) { *isect2Ptr = *(isect2Ptr - yisectstep + 1); } else if (k > zMin && *(isect1Ptr+2) > -1) { *isect2Ptr = *(isect1Ptr+2); } } else if (*s1 == value) { if (j > yMin && *(isect2Ptr - yisectstep +4) > -1) { *isect2Ptr = *(isect2Ptr - yisectstep + 4); } else if (k > zMin && i < xMax && *(isect1Ptr + 5) > -1) { *isect2Ptr = *(isect1Ptr + 5); } } // if the edge has not been set yet then it is a new point if (*isect2Ptr == -1) { t = (value - (double)(*s0)) / ((double)(*s1) - (double)(*s0)); x1 = xCoords->GetComponent(i-inExt[0], 0); x2 = xCoords->GetComponent(i-inExt[0]+1, 0); x[0] = x1 + t*(x2-x1); x[1] = y; *isect2Ptr = newPts->InsertNextPoint(x); VTK_RECT_CSP3PA(i+1,j,k,s1); outPD->InterpolateEdge(inPD, *isect2Ptr, edgePtId, edgePtId+1, t); } } } if (j < yMax) { s2 = (inPtrX + yInc); v2 = (*s2 < value ? 0 : 1); if (v0 ^ v2) { // watch for degen points if (*s0 == value) { if (*isect2Ptr > -1) { *(isect2Ptr + 1) = *isect2Ptr; } else if (i > xMin && *(isect2Ptr-3) > -1) { *(isect2Ptr + 1) = *(isect2Ptr-3); } else if (j > yMin && *(isect2Ptr - yisectstep + 1) > -1) { *(isect2Ptr + 1) = *(isect2Ptr - yisectstep + 1); } else if (k > zMin && *(isect1Ptr+2) > -1) { *(isect2Ptr + 1) = *(isect1Ptr+2); } } else if (*s2 == value && k > zMin && *(isect1Ptr + yisectstep + 2) > -1) { *(isect2Ptr+1) = *(isect1Ptr + yisectstep + 2); } // if the edge has not been set yet then it is a new point if (*(isect2Ptr + 1) == -1) { t = (value - (double)(*s0)) / ((double)(*s2) - (double)(*s0)); x[0] = xCoords->GetComponent(i-inExt[0], 0); y2 = yCoords->GetComponent(j-inExt[2]+1, 0); x[1] = y + t*(y2-y); *(isect2Ptr + 1) = newPts->InsertNextPoint(x); VTK_RECT_CSP3PA(i,j+1,k,s2); outPD->InterpolateEdge(inPD, *(isect2Ptr+1), edgePtId, edgePtId+yInc, t); } } } if (k < zMax) { s3 = (inPtrX + zInc); v3 = (*s3 < value ? 0 : 1); if (v0 ^ v3) { // watch for degen points if (*s0 == value) { if (*isect2Ptr > -1) { *(isect2Ptr + 2) = *isect2Ptr; } else if (*(isect2Ptr+1) > -1) { *(isect2Ptr + 2) = *(isect2Ptr+1); } else if (i > xMin && *(isect2Ptr-3) > -1) { *(isect2Ptr + 2) = *(isect2Ptr-3); } else if (j > yMin && *(isect2Ptr - yisectstep + 1) > -1) { *(isect2Ptr + 2) = *(isect2Ptr - yisectstep + 1); } else if (k > zMin && *(isect1Ptr+2) > -1) { *(isect2Ptr + 2) = *(isect1Ptr+2); } } if (*(isect2Ptr + 2) == -1) { t = (value - (double)(*s0)) / ((double)(*s3) - (double)(*s0)); xz[0] = xCoords->GetComponent(i-inExt[0], 0); z2 = zCoords->GetComponent(k-inExt[4]+1, 0); xz[2] = z + t*(z2-z); *(isect2Ptr + 2) = newPts->InsertNextPoint(xz); VTK_RECT_CSP3PA(i,j,k+1,s3); outPD->InterpolateEdge(inPD, *(isect2Ptr+2), edgePtId, edgePtId+zInc, t); } } } // To keep track of ids for interpolating attributes. ++edgePtId; // now add any polys that need to be added // basically look at the isect values, // form an index and lookup the polys if (j > yMin && i < xMax && k > zMin) { idx = (v0 ? 4096 : 0); idx = idx + (*(isect1Ptr - yisectstep) > -1 ? 2048 : 0); idx = idx + (*(isect1Ptr -yisectstep +1) > -1 ? 1024 : 0); idx = idx + (*(isect1Ptr -yisectstep +2) > -1 ? 512 : 0); idx = idx + (*(isect1Ptr -yisectstep +4) > -1 ? 256 : 0); idx = idx + (*(isect1Ptr -yisectstep +5) > -1 ? 128 : 0); idx = idx + (*(isect1Ptr) > -1 ? 64 : 0); idx = idx + (*(isect1Ptr + 2) > -1 ? 32 : 0); idx = idx + (*(isect1Ptr + 5) > -1 ? 16 : 0); idx = idx + (*(isect2Ptr -yisectstep) > -1 ? 8 : 0); idx = idx + (*(isect2Ptr -yisectstep +1) > -1 ? 4 : 0); idx = idx + (*(isect2Ptr -yisectstep +4) > -1 ? 2 : 0); idx = idx + (*(isect2Ptr) > -1 ? 1 : 0); tablePtr = VTK_SYNCHRONIZED_TEMPLATES_3D_TABLE_2 + VTK_SYNCHRONIZED_TEMPLATES_3D_TABLE_1[idx]; while (*tablePtr != -1) { ptIds[0] = *(isect1Ptr + offsets[*tablePtr]); tablePtr++; ptIds[1] = *(isect1Ptr + offsets[*tablePtr]); tablePtr++; ptIds[2] = *(isect1Ptr + offsets[*tablePtr]); tablePtr++; if (ptIds[0] != ptIds[1] && ptIds[0] != ptIds[2] && ptIds[1] != ptIds[2]) { outCellId = newPolys->InsertNextCell(3,ptIds); outCD->CopyData(inCD, inCellId, outCellId); } } } inPtrX += xInc; isect2Ptr += 3; isect1Ptr += 3; // To keep track of ids for copying cell attributes.. ++inCellId; } inPtrY += yInc; } inPtrZ += zInc; } } delete [] isect1; if (newScalars) { // Lets set the name of the scalars here. if (inScalars) { newScalars->SetName(inScalars->GetName()); } idx = output->GetPointData()->AddArray(newScalars); output->GetPointData()->SetActiveAttribute(idx, vtkDataSetAttributes::SCALARS); newScalars->Delete(); newScalars = NULL; } if (newGradients) { output->GetPointData()->SetVectors(newGradients); newGradients->Delete(); newGradients = NULL; } if (newNormals) { output->GetPointData()->SetNormals(newNormals); newNormals->Delete(); newNormals = NULL; } } //---------------------------------------------------------------------------- // // Contouring filter specialized for images (or slices from images) // int vtkRectilinearSynchronizedTemplates::RequestData( vtkInformation *vtkNotUsed(request), vtkInformationVector **inputVector, vtkInformationVector *outputVector) { // get the info objects vtkInformation *inInfo = inputVector[0]->GetInformationObject(0); vtkInformation *outInfo = outputVector->GetInformationObject(0); // get the input and ouptut vtkRectilinearGrid *data = vtkRectilinearGrid::SafeDownCast( inInfo->Get(vtkDataObject::DATA_OBJECT())); vtkPolyData *output = vtkPolyData::SafeDownCast( outInfo->Get(vtkDataObject::DATA_OBJECT())); void *ptr; vtkDataArray *inScalars; vtkDebugMacro(<< "Executing 3D structured contour"); if ( this->ExecuteExtent[0] >= this->ExecuteExtent[1] || this->ExecuteExtent[2] >= this->ExecuteExtent[3] || this->ExecuteExtent[4] >= this->ExecuteExtent[5] ) { vtkDebugMacro(<<"3D structured contours requires 3D data"); return 1; } // // Check data type and execute appropriate function // inScalars = this->GetInputArrayToProcess(0,inputVector); if (inScalars == NULL) { vtkErrorMacro("No scalars for contouring."); } int numComps = inScalars->GetNumberOfComponents(); if (this->ArrayComponent >= numComps) { vtkErrorMacro("Scalars have " << numComps << " components. " "ArrayComponent must be smaller than " << numComps); return 1; } ptr = this->GetScalarsForExtent(inScalars, this->ExecuteExtent, data); switch (inScalars->GetDataType()) { vtkTemplateMacro( ContourRectilinearGrid(this, this->ExecuteExtent, data, output, (VTK_TT *)ptr, inScalars)); } return 1; } //---------------------------------------------------------------------------- int vtkRectilinearSynchronizedTemplates::RequestUpdateExtent( vtkInformation *vtkNotUsed(request), vtkInformationVector **inputVector, vtkInformationVector *outputVector) { // get the info objects vtkInformation *inInfo = inputVector[0]->GetInformationObject(0); vtkInformation *outInfo = outputVector->GetInformationObject(0); int piece, numPieces; int *wholeExt; int ext[6]; vtkExtentTranslator *translator; translator = vtkExtentTranslator::SafeDownCast( inInfo->Get(vtkStreamingDemandDrivenPipeline::EXTENT_TRANSLATOR())); wholeExt = inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT()); memcpy(ext, wholeExt, 6*sizeof(int)); // Get request from output piece = outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_PIECE_NUMBER()); numPieces = outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_NUMBER_OF_PIECES()); // get the extent associated with the piece. if (translator == NULL) { // Default behavior if (piece != 0) { ext[0] = ext[2] = ext[4] = 0; ext[1] = ext[3] = ext[5] = -1; } } else { translator->PieceToExtentThreadSafe(piece, numPieces, 0, wholeExt, ext, translator->GetSplitMode(),0); } // As a side product of this call, ExecuteExtent is set. // This is the region that we are really updating, although // we may require a larger input region in order to generate // it if normals / gradients are being computed this->ExecuteExtent[0] = ext[0]; this->ExecuteExtent[1] = ext[1]; this->ExecuteExtent[2] = ext[2]; this->ExecuteExtent[3] = ext[3]; this->ExecuteExtent[4] = ext[4]; this->ExecuteExtent[5] = ext[5]; // expand if we need to compute gradients if (this->ComputeGradients || this->ComputeNormals) { ext[0] -= 1; if (ext[0] < wholeExt[0]) { ext[0] = wholeExt[0]; } ext[1] += 1; if (ext[1] > wholeExt[1]) { ext[1] = wholeExt[1]; } ext[2] -= 1; if (ext[2] < wholeExt[2]) { ext[2] = wholeExt[2]; } ext[3] += 1; if (ext[3] > wholeExt[3]) { ext[3] = wholeExt[3]; } ext[4] -= 1; if (ext[4] < wholeExt[4]) { ext[4] = wholeExt[4]; } ext[5] += 1; if (ext[5] > wholeExt[5]) { ext[5] = wholeExt[5]; } } // Set the update extent of the input. inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), ext, 6); return 1; } //---------------------------------------------------------------------------- void* vtkRectilinearSynchronizedTemplates::GetScalarsForExtent( vtkDataArray *array, int extent[6], vtkRectilinearGrid *input) { if ( ! array ) { return NULL; } int increments[3], iExt[6], idx; input->GetExtent(iExt); for (idx = 0; idx < 3; idx++) { if (extent[idx*2] < iExt[idx*2] || extent[idx*2] > iExt[idx*2+1]) { vtkErrorMacro("requested extent not in input's extent"); return NULL; } } increments[0] = array->GetNumberOfComponents(); increments[1] = increments[0] * (iExt[1]-iExt[0]+1); increments[2] = increments[1] * (iExt[3]-iExt[2]+1); idx = (extent[0] - iExt[0]) * increments[0] + (extent[2] - iExt[2]) * increments[1] + (extent[4] - iExt[4]) * increments[2]; if (idx < 0 || idx > array->GetMaxId()) { vtkErrorMacro("computed coordinate outside of array bounds"); return NULL; } return array->GetVoidPointer(idx); } //---------------------------------------------------------------------------- void vtkRectilinearSynchronizedTemplates::ComputeSpacing( vtkRectilinearGrid *data, int i, int j, int k, int extent[6], double spacing[6]) { vtkDataArray *xCoords = data->GetXCoordinates(); vtkDataArray *yCoords = data->GetYCoordinates(); vtkDataArray *zCoords = data->GetZCoordinates(); spacing[0] = 0; spacing[1] = 0; spacing[2] = 0; spacing[3] = 0; spacing[4] = 0; spacing[5] = 0; if (i > extent[0]) { spacing[0] = xCoords->GetComponent(i-extent[0], 0) - xCoords->GetComponent(i-extent[0]-1, 0); } if (i < extent[1]) { spacing[1] = xCoords->GetComponent(i-extent[0]+1, 0) - xCoords->GetComponent(i-extent[0], 0); } if (j > extent[2]) { spacing[2] = yCoords->GetComponent(j-extent[2], 0) - yCoords->GetComponent(j-extent[2]-1, 0); } if (j < extent[3]) { spacing[3] = yCoords->GetComponent(j-extent[2]+1, 0) - yCoords->GetComponent(j-extent[2], 0); } if (k > extent[4]) { spacing[4] = zCoords->GetComponent(k-extent[4], 0) - zCoords->GetComponent(k-extent[4]-1, 0); } if (k < extent[5]) { spacing[5] = zCoords->GetComponent(k-extent[4]+1, 0) - zCoords->GetComponent(k-extent[4], 0); } } //---------------------------------------------------------------------------- int vtkRectilinearSynchronizedTemplates::FillInputPortInformation( int, vtkInformation *info) { info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkRectilinearGrid"); return 1; } //---------------------------------------------------------------------------- void vtkRectilinearSynchronizedTemplates::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); this->ContourValues->PrintSelf(os,indent.GetNextIndent()); os << indent << "Compute Normals: " << (this->ComputeNormals ? "On\n" : "Off\n"); os << indent << "Compute Gradients: " << (this->ComputeGradients ? "On\n" : "Off\n"); os << indent << "Compute Scalars: " << (this->ComputeScalars ? "On\n" : "Off\n"); os << indent << "ArrayComponent: " << this->ArrayComponent << endl; }