/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkImageGradient.cxx,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkImageGradient.h" #include "vtkDataArray.h" #include "vtkImageData.h" #include "vtkInformation.h" #include "vtkInformationVector.h" #include "vtkObjectFactory.h" #include "vtkPointData.h" #include "vtkStreamingDemandDrivenPipeline.h" #include vtkCxxRevisionMacro(vtkImageGradient, "$Revision: 1.54.4.1 $"); vtkStandardNewMacro(vtkImageGradient); //---------------------------------------------------------------------------- // Construct an instance of vtkImageGradient fitler. vtkImageGradient::vtkImageGradient() { this->HandleBoundaries = 1; this->Dimensionality = 2; } //---------------------------------------------------------------------------- void vtkImageGradient::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os, indent); os << indent << "HandleBoundaries: " << this->HandleBoundaries << "\n"; os << indent << "Dimensionality: " << this->Dimensionality << "\n"; } //---------------------------------------------------------------------------- int vtkImageGradient::RequestInformation(vtkInformation*, vtkInformationVector** inputVector, vtkInformationVector* outputVector) { // Get input and output pipeline information. vtkInformation* outInfo = outputVector->GetInformationObject(0); vtkInformation* inInfo = inputVector[0]->GetInformationObject(0); // Get the input whole extent. int extent[6]; inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), extent); // Shrink output image extent by one pixel if not handling boundaries. if(!this->HandleBoundaries) { for(int idx = 0; idx < this->Dimensionality; ++idx) { extent[idx*2] += 1; extent[idx*2 + 1] -= 1; } } // Store the new whole extent for the output. outInfo->Set(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), extent, 6); // Set the number of point data componets to the number of // components in the gradient vector. vtkDataObject::SetPointDataActiveScalarInfo(outInfo, VTK_DOUBLE, this->Dimensionality); return 1; } //---------------------------------------------------------------------------- // This method computes the input extent necessary to generate the output. int vtkImageGradient::RequestUpdateExtent(vtkInformation*, vtkInformationVector** inputVector, vtkInformationVector* outputVector) { // Get input and output pipeline information. vtkInformation* outInfo = outputVector->GetInformationObject(0); vtkInformation* inInfo = inputVector[0]->GetInformationObject(0); // Get the input whole extent. int wholeExtent[6]; inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), wholeExtent); // Get the requested update extent from the output. int inUExt[6]; outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inUExt); // In order to do central differencing we need one more layer of // input pixels than we are producing output pixels. for(int idx = 0; idx < this->Dimensionality; ++idx) { inUExt[idx*2] -= 1; inUExt[idx*2+1] += 1; // If handling boundaries instead of shrinking the image then we // must clip the needed extent within the whole extent of the // input. if (this->HandleBoundaries) { if (inUExt[idx*2] < wholeExtent[idx*2]) { inUExt[idx*2] = wholeExtent[idx*2]; } if (inUExt[idx*2 + 1] > wholeExtent[idx*2 + 1]) { inUExt[idx*2 + 1] = wholeExtent[idx*2 + 1]; } } } // Store the update extent needed from the intput. inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inUExt, 6); return 1; } //---------------------------------------------------------------------------- // This execute method handles boundaries. // it handles boundaries. Pixels are just replicated to get values // out of extent. template void vtkImageGradientExecute(vtkImageGradient *self, vtkImageData *inData, T *inPtr, vtkImageData *outData, double *outPtr, int outExt[6], int id) { int idxX, idxY, idxZ; int maxX, maxY, maxZ; vtkIdType inIncX, inIncY, inIncZ; vtkIdType outIncX, outIncY, outIncZ; unsigned long count = 0; unsigned long target; int axesNum; int *inExt = inData->GetExtent(); int *wholeExtent; vtkIdType *inIncs; double r[3], d; int useZMin, useZMax, useYMin, useYMax, useXMin, useXMax; // find the region to loop over maxX = outExt[1] - outExt[0]; maxY = outExt[3] - outExt[2]; maxZ = outExt[5] - outExt[4]; target = (unsigned long)((maxZ+1)*(maxY+1)/50.0); target++; // Get the dimensionality of the gradient. axesNum = self->GetDimensionality(); // Get increments to march through data inData->GetContinuousIncrements(outExt, inIncX, inIncY, inIncZ); outData->GetContinuousIncrements(outExt, outIncX, outIncY, outIncZ); // The data spacing is important for computing the gradient. // central differences (2 * ratio). // Negative because below we have (min - max) for dx ... inData->GetSpacing(r); r[0] = -0.5 / r[0]; r[1] = -0.5 / r[1]; r[2] = -0.5 / r[2]; // get some other info we need inIncs = inData->GetIncrements(); wholeExtent = inData->GetExtent(); // Move the pointer to the correct starting position. inPtr += (outExt[0]-inExt[0])*inIncs[0] + (outExt[2]-inExt[2])*inIncs[1] + (outExt[4]-inExt[4])*inIncs[2]; // Loop through ouput pixels for (idxZ = 0; idxZ <= maxZ; idxZ++) { useZMin = ((idxZ + outExt[4]) <= wholeExtent[4]) ? 0 : -inIncs[2]; useZMax = ((idxZ + outExt[4]) >= wholeExtent[5]) ? 0 : inIncs[2]; for (idxY = 0; !self->AbortExecute && idxY <= maxY; idxY++) { if (!id) { if (!(count%target)) { self->UpdateProgress(count/(50.0*target)); } count++; } useYMin = ((idxY + outExt[2]) <= wholeExtent[2]) ? 0 : -inIncs[1]; useYMax = ((idxY + outExt[2]) >= wholeExtent[3]) ? 0 : inIncs[1]; for (idxX = 0; idxX <= maxX; idxX++) { useXMin = ((idxX + outExt[0]) <= wholeExtent[0]) ? 0 : -inIncs[0]; useXMax = ((idxX + outExt[0]) >= wholeExtent[1]) ? 0 : inIncs[0]; // do X axis d = (double)(inPtr[useXMin]); d -= (double)(inPtr[useXMax]); d *= r[0]; // multiply by the data spacing *outPtr = d; outPtr++; // do y axis d = (double)(inPtr[useYMin]); d -= (double)(inPtr[useYMax]); d *= r[1]; // multiply by the data spacing *outPtr = d; outPtr++; if (axesNum == 3) { // do z axis d = (double)(inPtr[useZMin]); d -= (double)(inPtr[useZMax]); d *= r[2]; // multiply by the data spacing *outPtr = d; outPtr++; } inPtr++; } outPtr += outIncY; inPtr += inIncY; } outPtr += outIncZ; inPtr += inIncZ; } } //---------------------------------------------------------------------------- // This method contains a switch statement that calls the correct // templated function for the input data type. This method does handle // boundary conditions. void vtkImageGradient::ThreadedRequestData(vtkInformation*, vtkInformationVector**, vtkInformationVector*, vtkImageData*** inData, vtkImageData** outData, int outExt[6], int threadId) { // Get the input and output data objects. vtkImageData* input = inData[0][0]; vtkImageData* output = outData[0]; // The ouptut scalar type must be double to store proper gradients. if(output->GetScalarType() != VTK_DOUBLE) { vtkErrorMacro("Execute: output ScalarType is " << output->GetScalarType() << "but must be double."); return; } // Gradient makes sense only with one input component. This is not // a Jacobian filter. if(input->GetNumberOfScalarComponents() != 1) { vtkErrorMacro( "Execute: input has more than one component. " "The input to gradient should be a single component image. " "Think about it. If you insist on using a color image then " "run it though RGBToHSV then ExtractComponents to get the V " "components. That's probably what you want anyhow."); return; } // Dispatch computation for the input scalar type. void* inPtr = input->GetScalarPointer(); double* outPtr = (double*)(output->GetScalarPointerForExtent(outExt)); switch(input->GetScalarType()) { vtkTemplateMacro( vtkImageGradientExecute(this, input, static_cast(inPtr), output, outPtr, outExt, threadId) ); default: vtkErrorMacro("Execute: Unknown ScalarType " << input->GetScalarType()); return; } }