/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkMapper.cxx,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkMapper.h" #include "vtkDataSet.h" #include "vtkExecutive.h" #include "vtkLookupTable.h" #include "vtkFloatArray.h" #include "vtkImageData.h" #include "vtkPointData.h" #include "vtkMath.h" vtkCxxRevisionMacro(vtkMapper, "$Revision: 1.120 $"); // Initialize static member that controls global immediate mode rendering static int vtkMapperGlobalImmediateModeRendering = 0; // Initialize static member that controls global coincidence resolution static int vtkMapperGlobalResolveCoincidentTopology = VTK_RESOLVE_OFF; static double vtkMapperGlobalResolveCoincidentTopologyZShift = 0.01; static double vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetFactor = 1.0; static double vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetUnits = 1.0; // Construct with initial range (0,1). vtkMapper::vtkMapper() { this->Colors = 0; this->Static = 0; this->LookupTable = 0; this->ScalarVisibility = 1; this->ScalarRange[0] = 0.0; this->ScalarRange[1] = 1.0; this->UseLookupTableScalarRange = 0; this->ImmediateModeRendering = 0; this->ColorMode = VTK_COLOR_MODE_DEFAULT; this->ScalarMode = VTK_SCALAR_MODE_DEFAULT; this->ScalarMaterialMode = VTK_MATERIALMODE_DEFAULT; vtkMath::UninitializeBounds(this->Bounds); this->Center[0] = this->Center[1] = this->Center[2] = 0.0; this->RenderTime = 0.0; strcpy(this->ArrayName, ""); this->ArrayId = -1; this->ArrayComponent = 0; this->ArrayAccessMode = VTK_GET_ARRAY_BY_ID; this->InterpolateScalarsBeforeMapping = 0; this->ColorCoordinates = 0; this->ColorTextureMap = 0; } vtkMapper::~vtkMapper() { if (this->LookupTable) { this->LookupTable->UnRegister(this); } if ( this->Colors != 0 ) { this->Colors->UnRegister(this); } if ( this->ColorCoordinates != 0 ) { this->ColorCoordinates->UnRegister(this); } if ( this->ColorTextureMap != 0 ) { this->ColorTextureMap->UnRegister(this); } } // Get the bounds for the input of this mapper as // (Xmin,Xmax,Ymin,Ymax,Zmin,Zmax). double *vtkMapper::GetBounds() { static double bounds[] = {-1.0,1.0, -1.0,1.0, -1.0,1.0}; vtkDataSet *input = this->GetInput(); if ( ! input ) { return bounds; } else { if (!this->Static) { this->Update(); } input->GetBounds(this->Bounds); return this->Bounds; } } vtkDataSet *vtkMapper::GetInput() { if (this->GetNumberOfInputConnections(0) < 1) { return 0; } return vtkDataSet::SafeDownCast( this->GetExecutive()->GetInputData(0, 0)); } void vtkMapper::SetGlobalImmediateModeRendering(int val) { if (val == vtkMapperGlobalImmediateModeRendering) { return; } vtkMapperGlobalImmediateModeRendering = val; } int vtkMapper::GetGlobalImmediateModeRendering() { return vtkMapperGlobalImmediateModeRendering; } void vtkMapper::SetResolveCoincidentTopology(int val) { if (val == vtkMapperGlobalResolveCoincidentTopology) { return; } vtkMapperGlobalResolveCoincidentTopology = val; } int vtkMapper::GetResolveCoincidentTopology() { return vtkMapperGlobalResolveCoincidentTopology; } void vtkMapper::SetResolveCoincidentTopologyToDefault() { vtkMapperGlobalResolveCoincidentTopology = VTK_RESOLVE_OFF; } void vtkMapper::SetResolveCoincidentTopologyZShift(double val) { if (val == vtkMapperGlobalResolveCoincidentTopologyZShift) { return; } vtkMapperGlobalResolveCoincidentTopologyZShift = val; } double vtkMapper::GetResolveCoincidentTopologyZShift() { return vtkMapperGlobalResolveCoincidentTopologyZShift; } void vtkMapper::SetResolveCoincidentTopologyPolygonOffsetParameters( double factor, double units) { if (factor == vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetFactor && units == vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetUnits ) { return; } vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetFactor = factor; vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetUnits = units; } void vtkMapper::GetResolveCoincidentTopologyPolygonOffsetParameters( double& factor, double& units) { factor = vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetFactor; units = vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetUnits; } // Overload standard modified time function. If lookup table is modified, // then this object is modified as well. unsigned long vtkMapper::GetMTime() { //unsigned long mTime=this->MTime.GetMTime(); unsigned long mTime=vtkAbstractMapper::GetMTime(); unsigned long lutMTime; if ( this->LookupTable != NULL ) { lutMTime = this->LookupTable->GetMTime(); mTime = ( lutMTime > mTime ? lutMTime : mTime ); } return mTime; } void vtkMapper::ShallowCopy(vtkAbstractMapper *mapper) { vtkMapper *m = vtkMapper::SafeDownCast(mapper); if ( m != NULL ) { this->SetLookupTable(m->GetLookupTable()); this->SetScalarVisibility(m->GetScalarVisibility()); this->SetScalarRange(m->GetScalarRange()); this->SetColorMode(m->GetColorMode()); this->SetScalarMode(m->GetScalarMode()); this->SetScalarMaterialMode(m->GetScalarMaterialMode()); this->SetImmediateModeRendering(m->GetImmediateModeRendering()); this->SetUseLookupTableScalarRange(m->GetUseLookupTableScalarRange()); if ( m->GetArrayAccessMode() == VTK_GET_ARRAY_BY_ID ) { this->ColorByArrayComponent(m->GetArrayId(),m->GetArrayComponent()); } else { this->ColorByArrayComponent(m->GetArrayName(),m->GetArrayComponent()); } } // Now do superclass this->vtkAbstractMapper3D::ShallowCopy(mapper); } // a side effect of this is that this->Colors is also set // to the return value vtkUnsignedCharArray *vtkMapper::MapScalars(double alpha) { int cellFlag = 0; vtkDataArray *scalars = vtkAbstractMapper:: GetScalars(this->GetInput(), this->ScalarMode, this->ArrayAccessMode, this->ArrayId, this->ArrayName, cellFlag); // This is for a legacy feature: selection of the array component to color by // from the mapper. It is now in the lookuptable. When this feature // is removed, we can remove this condition. if (scalars == 0 || scalars->GetNumberOfComponents() <= this->ArrayComponent) { this->ArrayComponent = 0; } if ( !this->ScalarVisibility || scalars==0 || this->GetInput()==0) { // No scalar colors. if ( this->ColorCoordinates ) { this->ColorCoordinates->UnRegister(this); this->ColorCoordinates = 0; } if ( this->ColorTextureMap ) { this->ColorTextureMap->UnRegister(this); this->ColorTextureMap = 0; } if ( this->Colors ) { this->Colors->UnRegister(this); this->Colors = 0; } return 0; } // Get the lookup table. if ( scalars->GetLookupTable() ) { this->SetLookupTable(scalars->GetLookupTable()); } else { // make sure we have a lookup table if ( this->LookupTable == 0 ) { this->CreateDefaultLookupTable(); } this->LookupTable->Build(); } if ( !this->UseLookupTableScalarRange ) { this->LookupTable->SetRange(this->ScalarRange); } // Decide betweeen texture color or vertex color. // Cell data always uses vertext color. // Only point data can use both texture and vertext coloring. if (this->InterpolateScalarsBeforeMapping && ! cellFlag) { // Only use texture color if we are mapping scalars. // Directly coloring with RGB unsigned chars should not use texture. if ( this->ColorMode != VTK_COLOR_MODE_DEFAULT || (vtkUnsignedCharArray::SafeDownCast(scalars)) == 0 ) { // Texture color option. this->MapScalarsToTexture(scalars, alpha); return 0; } } // Vertex colors are being used. // Get rid of texure Color arrays. Only texture or vertex coloring // can be active at one time. The existence of the array is the // signal to use that technique. if ( this->ColorCoordinates ) { this->ColorCoordinates->UnRegister(this); this->ColorCoordinates = 0; } if ( this->ColorTextureMap ) { this->ColorTextureMap->UnRegister(this); this->ColorTextureMap = 0; } // Lets try to resuse the old colors. if (this->Colors) { if (this->LookupTable && this->LookupTable->GetAlpha() == alpha) { if (this->GetMTime() < this->Colors->GetMTime() && this->GetInput()->GetMTime() < this->Colors->GetMTime() && this->LookupTable->GetMTime() < this->Colors->GetMTime()) { return this->Colors; } } } // Get rid of old colors if ( this->Colors ) { this->Colors->UnRegister(this); this->Colors = 0; } // map scalars this->LookupTable->SetAlpha(alpha); this->Colors = this->LookupTable-> MapScalars(scalars, this->ColorMode, this->ArrayComponent); // Consistent register and unregisters this->Colors->Register(this); this->Colors->Delete(); return this->Colors; } void vtkMapper::SelectColorArray(int arrayNum) { this->ColorByArrayComponent(arrayNum, -1); } void vtkMapper::SelectColorArray(const char* arrayName) { this->ColorByArrayComponent(arrayName, -1); } void vtkMapper::ColorByArrayComponent(int arrayNum, int component) { if (this->ArrayId == arrayNum && component == this->ArrayComponent && this->ArrayAccessMode == VTK_GET_ARRAY_BY_ID) { return; } this->Modified(); this->ArrayId = arrayNum; this->ArrayComponent = component; this->ArrayAccessMode = VTK_GET_ARRAY_BY_ID; } void vtkMapper::ColorByArrayComponent(const char* arrayName, int component) { if (!arrayName || ( strcmp(this->ArrayName, arrayName) == 0 && component == this->ArrayComponent && this->ArrayAccessMode == VTK_GET_ARRAY_BY_NAME )) { return; } this->Modified(); strcpy(this->ArrayName, arrayName); this->ArrayComponent = component; this->ArrayAccessMode = VTK_GET_ARRAY_BY_NAME; } // Specify a lookup table for the mapper to use. void vtkMapper::SetLookupTable(vtkScalarsToColors *lut) { if ( this->LookupTable != lut ) { if ( this->LookupTable) { this->LookupTable->UnRegister(this); } this->LookupTable = lut; if (lut) { lut->Register(this); } this->Modified(); } } vtkScalarsToColors *vtkMapper::GetLookupTable() { if ( this->LookupTable == 0 ) { this->CreateDefaultLookupTable(); } return this->LookupTable; } void vtkMapper::CreateDefaultLookupTable() { if ( this->LookupTable) { this->LookupTable->UnRegister(this); } this->LookupTable = vtkLookupTable::New(); // Consistent Register/UnRegisters. this->LookupTable->Register(this); this->LookupTable->Delete(); } // Return the method of coloring scalar data. const char *vtkMapper::GetColorModeAsString(void) { if ( this->ColorMode == VTK_COLOR_MODE_MAP_SCALARS ) { return "MapScalars"; } else { return "Default"; } } // Return the method for obtaining scalar data. const char *vtkMapper::GetScalarModeAsString(void) { if ( this->ScalarMode == VTK_SCALAR_MODE_USE_CELL_DATA ) { return "UseCellData"; } else if ( this->ScalarMode == VTK_SCALAR_MODE_USE_POINT_DATA ) { return "UsePointData"; } else if ( this->ScalarMode == VTK_SCALAR_MODE_USE_POINT_FIELD_DATA ) { return "UsePointFieldData"; } else if ( this->ScalarMode == VTK_SCALAR_MODE_USE_CELL_FIELD_DATA ) { return "UseCellFieldData"; } else { return "Default"; } } const char *vtkMapper::GetScalarMaterialModeAsString(void) { if ( this->ScalarMaterialMode == VTK_MATERIALMODE_AMBIENT ) { return "Ambient"; } else if ( this->ScalarMaterialMode == VTK_MATERIALMODE_DIFFUSE ) { return "Diffuse"; } else if ( this->ScalarMaterialMode == VTK_MATERIALMODE_AMBIENT_AND_DIFFUSE ) { return "Ambient and Diffuse"; } else { return "Default"; } } template void vtkMapperCreateColorTextureCoordinates(T* input, float* output, vtkIdType num, int numComps, int component, double* range) { double tmp, sum; double k = 1.0 / (range[1]-range[0]); vtkIdType i; int j; if (component < 0 || component >= numComps) { for (i = 0; i < num; ++i) { sum = 0; for (j = 0; j < numComps; ++j) { tmp = (double)(*input); sum += (tmp * tmp); ++input; } output[i] = k * (sqrt(sum) - range[0]); if (output[i] > 1.0) { output[i] = 1.0; } if (output[i] < 0.0) { output[i] = 0.0; } } } else { input += component; for (i = 0; i < num; ++i) { output[i] = k * ((float)(*input) - range[0]); if (output[i] > 1.0) { output[i] = 1.0; } if (output[i] < 0.0) { output[i] = 0.0; } input = input + numComps; } } } #define ColorTextureMapSize 256 // a side effect of this is that this->ColorCoordinates and // this->ColorTexture are set. void vtkMapper::MapScalarsToTexture(vtkDataArray* scalars, double alpha) { double* range = this->LookupTable->GetRange(); // Get rid of vertex color array. Only texture or vertex coloring // can be active at one time. The existence of the array is the // signal to use that technique. if ( this->Colors ) { this->Colors->UnRegister(this); this->Colors = 0; } // If the lookup table has changed, the recreate the color texture map. // Set a new lookup table changes this->MTime. if (this->ColorTextureMap == 0 || this->GetMTime() > this->ColorTextureMap->GetMTime() || this->LookupTable->GetMTime() > this->ColorTextureMap->GetMTime() || this->LookupTable->GetAlpha() != alpha) { this->LookupTable->SetAlpha(alpha); if ( this->ColorTextureMap ) { this->ColorTextureMap->UnRegister(this); this->ColorTextureMap = 0; } // Get the texture map from the lookup table. // Create a dummy ramp of scalars. // In the future, we could extend vtkScalarsToColors. double k = (range[1]-range[0]) / (double)(ColorTextureMapSize-1); vtkFloatArray* tmp = vtkFloatArray::New(); tmp->SetNumberOfTuples(ColorTextureMapSize); float* ptr = tmp->GetPointer(0); for (int i = 0; i < ColorTextureMapSize; ++i) { *ptr = range[0] + ((float)(i)) * k; ++ptr; } this->ColorTextureMap = vtkImageData::New(); this->ColorTextureMap->SetExtent(0,ColorTextureMapSize-1, 0,0, 0,0); this->ColorTextureMap->SetNumberOfScalarComponents(4); this->ColorTextureMap->SetScalarTypeToUnsignedChar(); this->ColorTextureMap->GetPointData()->SetScalars( this->LookupTable->MapScalars(tmp, this->ColorMode, 0)); // Do we need to delete the scalars? this->ColorTextureMap->GetPointData()->GetScalars()->Delete(); // Consistent register and unregisters this->ColorTextureMap->Register(this); this->ColorTextureMap->Delete(); tmp->Delete(); } // Create new coordinates if necessary. // Need to compare lookup table incase the range has changed. if (this->ColorCoordinates == 0 || this->GetMTime() > this->ColorCoordinates->GetMTime() || this->GetInput()->GetMTime() > this->ColorCoordinates->GetMTime() || this->LookupTable->GetMTime() > this->ColorCoordinates->GetMTime()) { // Get rid of old colors if ( this->ColorCoordinates ) { this->ColorCoordinates->UnRegister(this); this->ColorCoordinates = 0; } // Now create the color texture coordinates. int numComps = scalars->GetNumberOfComponents(); void* input = scalars->GetVoidPointer(0); vtkIdType num = scalars->GetNumberOfTuples(); this->ColorCoordinates = vtkFloatArray::New(); this->ColorCoordinates->SetNumberOfTuples(num); float* output = this->ColorCoordinates->GetPointer(0); int scalarComponent; // Although I like the feature of applying magnitude to single component // scalars, it is not how the old MapScalars for vertex coloring works. if (this->LookupTable->GetVectorMode() == vtkScalarsToColors::MAGNITUDE && scalars->GetNumberOfComponents() > 1) { scalarComponent = -1; } else { scalarComponent = this->LookupTable->GetVectorComponent(); } switch (scalars->GetDataType()) { vtkTemplateMacro( vtkMapperCreateColorTextureCoordinates(static_cast(input), output, num, numComps, scalarComponent, range) ); case VTK_BIT: vtkErrorMacro("Cannot color by bit array."); break; default: vtkErrorMacro(<< "Unknown input ScalarType"); return; } } } void vtkMapper::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); if ( this->LookupTable ) { os << indent << "Lookup Table:\n"; this->LookupTable->PrintSelf(os,indent.GetNextIndent()); } else { os << indent << "Lookup Table: (none)\n"; } os << indent << "Immediate Mode Rendering: " << (this->ImmediateModeRendering ? "On\n" : "Off\n"); os << indent << "Global Immediate Mode Rendering: " << (vtkMapperGlobalImmediateModeRendering ? "On\n" : "Off\n"); os << indent << "Scalar Visibility: " << (this->ScalarVisibility ? "On\n" : "Off\n"); os << indent << "Static: " << (this->Static ? "On\n" : "Off\n"); double *range = this->GetScalarRange(); os << indent << "Scalar Range: (" << range[0] << ", " << range[1] << ")\n"; os << indent << "UseLookupTableScalarRange: " << this->UseLookupTableScalarRange << "\n"; os << indent << "Color Mode: " << this->GetColorModeAsString() << endl; os << indent << "InterpolateScalarsBeforeMapping: " << (this->InterpolateScalarsBeforeMapping ? "On\n" : "Off\n"); os << indent << "Scalar Mode: " << this->GetScalarModeAsString() << endl; os << indent << "LM Color Mode: " << this->GetScalarMaterialModeAsString() << endl; os << indent << "RenderTime: " << this->RenderTime << endl; os << indent << "Resolve Coincident Topology: "; if ( vtkMapperGlobalResolveCoincidentTopology == VTK_RESOLVE_OFF ) { os << "Off" << endl; } else if ( vtkMapperGlobalResolveCoincidentTopology == VTK_RESOLVE_POLYGON_OFFSET ) { os << "Polygon Offset" << endl; } else { os << "Shift Z-Buffer" << endl; } }