Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

211 lines
7.0 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkFastNumericConversion.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkFastNumericConversion - Enables fast conversion of floating point to fixed point
// .SECTION Description
// vtkFastNumericConversion uses a portable (assuming IEEE format) method for converting single and
// double precision floating point values to a fixed point representation. This allows fast
// integer flooring on platforms, such as Intel X86, in which CPU floating point flooring
// algorithms are very slow. It is based on the techniques described in Chris Hecker's article,
// "Let's Get to the (Floating) Point", in Game Developer Magazine, Feb/Mar 1996, and the
// techniques described in Michael Herf's website, http://www.stereopsis.com/FPU.html.
// The Hecker article can be found at http://www.d6.com/users/checker/pdfs/gdmfp.pdf.
// Unfortunately, each of these techniques is incomplete, and doesn't floor properly,
// in a way that depends on how many bits are reserved for fixed point fractional use, due to
// failing to properly account for the default round-towards-even rounding mode of the X86. Thus,
// my implementation incorporates some rounding correction that undoes the rounding that the
// FPU performs during denormalization of the floating point value. Note that
// the rounding affect I'm talking about here is not the effect on the fistp instruction,
// but rather the effect that occurs during the denormalization of a value that occurs when
// adding it to a much larger value. The bits must be shifted to the right, and when a "1" bit
// falls off the edge, the rounding mode determines what happens next, in order
// to avoid completely "losing" the 1-bit. Furthermore, my implementation works on Linux, where the
// default precision mode is 64-bit extended precision.
// This class is contributed to VTK by Chris Volpe of Applied Research Associates, Inc.
// (My employer requires me to say that -- CRV)
#include "vtkFastNumericConversion.h"
#include "vtkObjectFactory.h"
#include "vtkTimerLog.h"
vtkCxxRevisionMacro(vtkFastNumericConversion, "$Revision: 1.2 $");
vtkStandardNewMacro(vtkFastNumericConversion);
int vtkFastNumericConversion::TestQuickFloor(double val)
{
return vtkFastNumericConversion::QuickFloor(val);
}
int vtkFastNumericConversion::TestSafeFloor(double val)
{
return vtkFastNumericConversion::SafeFloor(val);
}
int vtkFastNumericConversion::TestRound(double val)
{
return vtkFastNumericConversion::Round(val);
}
int vtkFastNumericConversion::TestConvertFixedPointIntPart(double val)
{
int frac;
return this->ConvertFixedPoint(val, frac);
}
int vtkFastNumericConversion::TestConvertFixedPointFracPart(double val)
{
int frac;
this->ConvertFixedPoint(val, frac);
return frac;
}
void vtkFastNumericConversion::InternalRebuild()
{
int i;
this->fixRound=.5;
for (i=this->internalReservedFracBits; i; i--)
{
this->fixRound *= .5;
}
this->fracMask = (1<<this->internalReservedFracBits)-1;
this->fpDenormalizer = (((unsigned long)1) << (52-30-this->internalReservedFracBits)) *
this->two30() * this->BorrowBit();
this->epTempDenormalizer = this->fpDenormalizer * (((unsigned long)1) << (63-52));
}
void vtkFastNumericConversion::PrintSelf(ostream &os, vtkIndent indent)
{
os << indent << "ReservedFracBits: " << this->internalReservedFracBits << endl;
os << indent << "Bare time from last PerformanceTest() call: " << this->bare_time << endl;
os << indent << "Cast time from last PerformanceTest() call: " << this->cast_time << endl;
os << indent << "ConvertFixedPoint time from last PerformanceTest() call: " << this->convert_time << endl;
os << indent << "QuickFloor time from last PerformanceTest() call: " << this->quickfloor_time << endl;
os << indent << "SafeFloor time from last PerformanceTest() call: " << this->safefloor_time << endl;
os << indent << "Round time from last PerformanceTest() call: " << this->round_time << endl;
if (this->bare_time != 0.0)
{
// Don't do this if we haven't run the tests yet.
os << indent << "Speedup ratio from cast to quickfloor is: " <<
(this->cast_time-this->bare_time)/(this->quickfloor_time-this->bare_time) << endl;
os << indent << "Speedup ratio from cast to safefloor is: " <<
(this->cast_time-this->bare_time)/(this->safefloor_time-this->bare_time) << endl;
os << indent << "Speedup ratio from cast to round is: " <<
(this->cast_time-this->bare_time)/(this->round_time-this->bare_time) << endl;
}
}
void vtkFastNumericConversion::PerformanceTests(void)
{
const int inner_count = 10000;
const int outer_count = 10000;
double *dval = new double[inner_count];
int *ival = new int[inner_count];
int *frac = new int[inner_count];
int i,o;
vtkTimerLog *timer = vtkTimerLog::New();
for (i=0; i<inner_count; i++)
{
dval[i] = i;
ival[i] = 0;
}
timer->StartTimer();
for (o=0; o<outer_count; o++)
{
for (i=0; i<inner_count; i++)
{
// Pure bit copy
ival[i] = *((int *)(&dval[i]));
}
}
timer->StopTimer();
this->bare_time = timer->GetElapsedTime();
// Compute cast time
timer->StartTimer();
for (o=0; o<outer_count; o++)
{
for (i=0; i<inner_count; i++)
{
ival[i] = (int) dval[i];
}
}
timer->StopTimer();
this->cast_time = timer->GetElapsedTime();
// Compute convert time
timer->StartTimer();
for (o=0; o<outer_count; o++)
{
for (i=0; i<inner_count; i++)
{
ival[i] = this->ConvertFixedPoint(dval[i], frac[i]);
}
}
timer->StopTimer();
this->convert_time = timer->GetElapsedTime();
// Compute quickfloor time
timer->StartTimer();
for (o=0; o<outer_count; o++)
{
for (i=0; i<inner_count; i++)
{
ival[i] = vtkFastNumericConversion::QuickFloor(dval[i]);
}
}
timer->StopTimer();
this->quickfloor_time = timer->GetElapsedTime();
// Compute safefloor time
timer->StartTimer();
for (o=0; o<outer_count; o++)
{
for (i=0; i<inner_count; i++)
{
ival[i] = vtkFastNumericConversion::SafeFloor(dval[i]);
}
}
timer->StopTimer();
this->safefloor_time = timer->GetElapsedTime();
// Compute round time
timer->StartTimer();
for (o=0; o<outer_count; o++)
{
for (i=0; i<inner_count; i++)
{
ival[i] = vtkFastNumericConversion::Round(dval[i]);
}
}
timer->StopTimer();
this->round_time = timer->GetElapsedTime();
delete [] dval;
delete [] ival;
delete [] frac;
timer->Delete();
}