Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

237 lines
9.9 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkGeneralTransform.h,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkGeneralTransform - allows operations on any transforms
// .SECTION Description
// vtkGeneralTransform is like vtkTransform and vtkPerspectiveTransform,
// but it will work with any vtkAbstractTransform as input. It is
// not as efficient as the other two, however, because arbitrary
// transformations cannot be concatenated by matrix multiplication.
// Transform concatenation is simulated by passing each input point
// through each transform in turn.
// .SECTION see also
// vtkTransform vtkPerspectiveTransform
#ifndef __vtkGeneralTransform_h
#define __vtkGeneralTransform_h
#include "vtkAbstractTransform.h"
#include "vtkMatrix4x4.h" // Needed for inline methods
class VTK_COMMON_EXPORT vtkGeneralTransform : public vtkAbstractTransform
{
public:
static vtkGeneralTransform *New();
vtkTypeRevisionMacro(vtkGeneralTransform,vtkAbstractTransform);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Set this transformation to the identity transformation. If
// the transform has an Input, then the transformation will be
// reset so that it is the same as the Input.
void Identity() { this->Concatenation->Identity(); this->Modified(); };
// Description:
// Invert the transformation. This will also set a flag so that
// the transformation will use the inverse of its Input, if an Input
// has been set.
void Inverse() { this->Concatenation->Inverse(); this->Modified(); };
// Description:
// Create a translation matrix and concatenate it with the current
// transformation according to PreMultiply or PostMultiply semantics.
void Translate(double x, double y, double z) {
this->Concatenation->Translate(x,y,z); };
void Translate(const double x[3]) { this->Translate(x[0], x[1], x[2]); };
void Translate(const float x[3]) { this->Translate(x[0], x[1], x[2]); };
// Description:
// Create a rotation matrix and concatenate it with the current
// transformation according to PreMultiply or PostMultiply semantics.
// The angle is in degrees, and (x,y,z) specifies the axis that the
// rotation will be performed around.
void RotateWXYZ(double angle, double x, double y, double z) {
this->Concatenation->Rotate(angle,x,y,z); };
void RotateWXYZ(double angle, const double axis[3]) {
this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); };
void RotateWXYZ(double angle, const float axis[3]) {
this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); };
// Description:
// Create a rotation matrix about the X, Y, or Z axis and concatenate
// it with the current transformation according to PreMultiply or
// PostMultiply semantics. The angle is expressed in degrees.
void RotateX(double angle) { this->RotateWXYZ(angle, 1, 0, 0); };
void RotateY(double angle) { this->RotateWXYZ(angle, 0, 1, 0); };
void RotateZ(double angle) { this->RotateWXYZ(angle, 0, 0, 1); };
// Description:
// Create a scale matrix (i.e. set the diagonal elements to x, y, z)
// and concatenate it with the current transformation according to
// PreMultiply or PostMultiply semantics.
void Scale(double x, double y, double z) {
this->Concatenation->Scale(x,y,z); };
void Scale(const double s[3]) { this->Scale(s[0], s[1], s[2]); };
void Scale(const float s[3]) { this->Scale(s[0], s[1], s[2]); };
// Description:
// Concatenates the matrix with the current transformation according
// to PreMultiply or PostMultiply semantics.
void Concatenate(vtkMatrix4x4 *matrix) {
this->Concatenate(*matrix->Element); };
void Concatenate(const double elements[16]) {
this->Concatenation->Concatenate(elements); };
// Description:
// Concatenate the specified transform with the current transformation
// according to PreMultiply or PostMultiply semantics.
// The concatenation is pipelined, meaning that if any of the
// transformations are changed, even after Concatenate() is called,
// those changes will be reflected when you call TransformPoint().
void Concatenate(vtkAbstractTransform *transform);
// Description:
// Sets the internal state of the transform to PreMultiply. All subsequent
// operations will occur before those already represented in the
// current transformation. In homogeneous matrix notation, M = M*A where
// M is the current transformation matrix and A is the applied matrix.
// The default is PreMultiply.
void PreMultiply() {
if (this->Concatenation->GetPreMultiplyFlag()) { return; }
this->Concatenation->SetPreMultiplyFlag(1); this->Modified(); };
// Description:
// Sets the internal state of the transform to PostMultiply. All subsequent
// operations will occur after those already represented in the
// current transformation. In homogeneous matrix notation, M = A*M where
// M is the current transformation matrix and A is the applied matrix.
// The default is PreMultiply.
void PostMultiply() {
if (!this->Concatenation->GetPreMultiplyFlag()) { return; }
this->Concatenation->SetPreMultiplyFlag(0); this->Modified(); };
// Description:
// Get the total number of transformations that are linked into this
// one via Concatenate() operations or via SetInput().
int GetNumberOfConcatenatedTransforms() {
return this->Concatenation->GetNumberOfTransforms() +
(this->Input == NULL ? 0 : 1); };
// Description
// Get one of the concatenated transformations as a vtkAbstractTransform.
// These transformations are applied, in series, every time the
// transformation of a coordinate occurs. This method is provided
// to make it possible to decompose a transformation into its
// constituents, for example to save a transformation to a file.
vtkAbstractTransform *GetConcatenatedTransform(int i) {
if (this->Input == NULL) {
return this->Concatenation->GetTransform(i); }
else if (i < this->Concatenation->GetNumberOfPreTransforms()) {
return this->Concatenation->GetTransform(i); }
else if (i > this->Concatenation->GetNumberOfPreTransforms()) {
return this->Concatenation->GetTransform(i-1); }
else if (this->GetInverseFlag()) {
return this->Input->GetInverse(); }
else {
return this->Input; } };
// Description:
// Set the input for this transformation. This will be used as the
// base transformation if it is set. This method allows you to build
// a transform pipeline: if the input is modified, then this transformation
// will automatically update accordingly. Note that the InverseFlag,
// controlled via Inverse(), determines whether this transformation
// will use the Input or the inverse of the Input.
void SetInput(vtkAbstractTransform *input);
vtkAbstractTransform *GetInput() { return this->Input; };
// Description:
// Get the inverse flag of the transformation. This controls
// whether it is the Input or the inverse of the Input that
// is used as the base transformation. The InverseFlag is
// flipped every time Inverse() is called. The InverseFlag
// is off when a transform is first created.
int GetInverseFlag() {
return this->Concatenation->GetInverseFlag(); };
// Description:
// Pushes the current transformation onto the transformation stack.
void Push() { if (this->Stack == NULL) {
this->Stack = vtkTransformConcatenationStack::New(); }
this->Stack->Push(&this->Concatenation);
this->Modified(); };
// Description:
// Deletes the transformation on the top of the stack and sets the top
// to the next transformation on the stack.
void Pop() { if (this->Stack == NULL) { return; }
this->Stack->Pop(&this->Concatenation);
this->Modified(); };
// Description:
// This will calculate the transformation without calling Update.
// Meant for use only within other VTK classes.
void InternalTransformPoint(const float in[3], float out[3]);
void InternalTransformPoint(const double in[3], double out[3]);
// Description:
// This will calculate the transformation as well as its derivative
// without calling Update. Meant for use only within other VTK
// classes.
void InternalTransformDerivative(const float in[3], float out[3],
float derivative[3][3]);
void InternalTransformDerivative(const double in[3], double out[3],
double derivative[3][3]);
// Description:
// Check for self-reference. Will return true if concatenating
// with the specified transform, setting it to be our inverse,
// or setting it to be our input will create a circular reference.
// CircuitCheck is automatically called by SetInput(), SetInverse(),
// and Concatenate(vtkXTransform *). Avoid using this function,
// it is experimental.
int CircuitCheck(vtkAbstractTransform *transform);
// Description:
// Make another transform of the same type.
vtkAbstractTransform *MakeTransform();
// Description:
// Override GetMTime to account for input and concatenation.
unsigned long GetMTime();
protected:
vtkGeneralTransform();
~vtkGeneralTransform();
void InternalDeepCopy(vtkAbstractTransform *t);
void InternalUpdate();
vtkAbstractTransform *Input;
vtkTransformConcatenation *Concatenation;
vtkTransformConcatenationStack *Stack;
private:
vtkGeneralTransform(const vtkGeneralTransform&); // Not implemented.
void operator=(const vtkGeneralTransform&); // Not implemented.
};
#endif