You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
154 lines
4.5 KiB
154 lines
4.5 KiB
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: $RCSfile: vtkImplicitFunction.cxx,v $
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
#include "vtkImplicitFunction.h"
|
|
|
|
#include "vtkMath.h"
|
|
#include "vtkAbstractTransform.h"
|
|
#include "vtkTransform.h"
|
|
|
|
vtkCxxRevisionMacro(vtkImplicitFunction, "$Revision: 1.37 $");
|
|
vtkCxxSetObjectMacro(vtkImplicitFunction,Transform,vtkAbstractTransform);
|
|
|
|
vtkImplicitFunction::vtkImplicitFunction()
|
|
{
|
|
this->Transform = NULL;
|
|
}
|
|
|
|
vtkImplicitFunction::~vtkImplicitFunction()
|
|
{
|
|
//static_cast needed since otherwise the
|
|
//call to SetTransform becomes ambiguous
|
|
this->SetTransform(static_cast<vtkAbstractTransform*>(NULL));
|
|
}
|
|
|
|
// Evaluate function at position x-y-z and return value. Point x[3] is
|
|
// transformed through transform (if provided).
|
|
double vtkImplicitFunction::FunctionValue(const double x[3])
|
|
{
|
|
if ( ! this->Transform )
|
|
{
|
|
return this->EvaluateFunction((double *)x);
|
|
}
|
|
else //pass point through transform
|
|
{
|
|
double pt[3];
|
|
this->Transform->TransformPoint(x,pt);
|
|
return this->EvaluateFunction(pt);
|
|
}
|
|
|
|
/* Return negative if determinant of Jacobian matrix is negative,
|
|
i.e. if the transformation has a flip. This is more 'correct'
|
|
than the above behaviour, because it turns the implicit surface
|
|
inside-out in the same way that polygonal surfaces are turned
|
|
inside-out by a flip. It takes up too many valuable CPU cycles
|
|
to check the determinant on every function evaluation, though.
|
|
{
|
|
double pt[3];
|
|
double A[3][3];
|
|
this->Transform->Update();
|
|
this->Transform->InternalTransformDerivative(x,pt,A);
|
|
double val = this->EvaluateFunction((double *)pt);
|
|
|
|
if (vtkMath::Determinant3x3(A) < 0)
|
|
{
|
|
return -val;
|
|
}
|
|
else
|
|
{
|
|
return +val;
|
|
}
|
|
}
|
|
*/
|
|
}
|
|
|
|
// Evaluate function gradient at position x-y-z and pass back vector. Point
|
|
// x[3] is transformed through transform (if provided).
|
|
void vtkImplicitFunction::FunctionGradient(const double x[3], double g[3])
|
|
{
|
|
if ( ! this->Transform )
|
|
{
|
|
this->EvaluateGradient((double *)x,g);
|
|
}
|
|
else //pass point through transform
|
|
{
|
|
double pt[3];
|
|
double A[3][3];
|
|
this->Transform->Update();
|
|
this->Transform->InternalTransformDerivative(x,pt,A);
|
|
this->EvaluateGradient((double *)pt,g);
|
|
|
|
// The gradient must be transformed using the same math as is
|
|
// use for a normal to a surface: it must be multiplied by the
|
|
// inverse of the transposed inverse of the Jacobian matrix of
|
|
// the transform, which is just the transpose of the Jacobian.
|
|
vtkMath::Transpose3x3(A,A);
|
|
vtkMath::Multiply3x3(A,g,g);
|
|
|
|
/* If the determinant of the Jacobian matrix is negative,
|
|
then the gradient points in the opposite direction. This
|
|
behaviour is actually incorrect, but is necessary to
|
|
balance the incorrect behaviour of FunctionValue. Otherwise,
|
|
if you feed certain VTK filters a transform with a flip
|
|
the gradient will point in the wrong direction and they
|
|
will never converge to a result */
|
|
|
|
if (vtkMath::Determinant3x3(A) < 0)
|
|
{
|
|
g[0] = -g[0];
|
|
g[1] = -g[1];
|
|
g[2] = -g[2];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Overload standard modified time function. If Transform is modified,
|
|
// then this object is modified as well.
|
|
unsigned long vtkImplicitFunction::GetMTime()
|
|
{
|
|
unsigned long mTime=this->vtkObject::GetMTime();
|
|
unsigned long TransformMTime;
|
|
|
|
if ( this->Transform != NULL )
|
|
{
|
|
TransformMTime = this->Transform->GetMTime();
|
|
mTime = ( TransformMTime > mTime ? TransformMTime : mTime );
|
|
}
|
|
|
|
return mTime;
|
|
}
|
|
|
|
void vtkImplicitFunction::PrintSelf(ostream& os, vtkIndent indent)
|
|
{
|
|
this->Superclass::PrintSelf(os,indent);
|
|
|
|
if ( this->Transform )
|
|
{
|
|
os << indent << "Transform:\n";
|
|
this->Transform->PrintSelf(os,indent.GetNextIndent());
|
|
}
|
|
else
|
|
{
|
|
os << indent << "Transform: (None)\n";
|
|
}
|
|
}
|
|
|
|
void vtkImplicitFunction::SetTransform(double elements[16])
|
|
{
|
|
vtkTransform* transform = vtkTransform::New();
|
|
transform->SetMatrix(elements);
|
|
this->SetTransform(transform);
|
|
transform->Delete();
|
|
}
|
|
|
|
|