Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

115 lines
3.8 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkParametricEllipsoid.h,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkParametricEllipsoid - Generate an ellipsoid.
// .SECTION Description
// vtkParametricEllipsoid generates an ellipsoid.
// If all the radii are the same, we have a sphere.
// An oblate spheroid occurs if RadiusX = RadiusY > RadiusZ.
// Here the Z-axis forms the symmetry axis. To a first
// approximation, this is the shape of the earth.
// A prolate spheroid occurs if RadiusX = RadiusY < RadiusZ.
//
// For further information about this surface, please consult the
// technical description "Parametric surfaces" in http://www.vtk.org/documents.php
// in the "VTK Technical Documents" section in the VTk.org web pages.
//
// .SECTION Thanks
// Andrew Maclean a.maclean@cas.edu.au for creating and contributing the
// class.
//
#ifndef __vtkParametricEllipsoid_h
#define __vtkParametricEllipsoid_h
#include "vtkParametricFunction.h"
class VTK_COMMON_EXPORT vtkParametricEllipsoid : public vtkParametricFunction
{
public:
vtkTypeRevisionMacro(vtkParametricEllipsoid,vtkParametricFunction);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Construct an ellipsoid with the following parameters:
// MinimumU = 0, MaximumU = 2*Pi,
// MinimumV = 0, MaximumV = Pi,
// JoinU = 1, JoinV = 0,
// TwistU = 0, TwistV = 0,
// ClockwiseOrdering = 1,
// DerivativesAvailable = 1,
// XRadius = 1, YRadius = 1,
// ZRadius = 1, a sphere in this case.
static vtkParametricEllipsoid *New();
// Description
// Return the parametric dimension of the class.
virtual int GetDimension() {return 2;}
// Description:
// Set/Get the scaling factor for the x-axis. Default = 1.
vtkSetMacro(XRadius,double);
vtkGetMacro(XRadius,double);
// Description:
// Set/Get the scaling factor for the y-axis. Default = 1.
vtkSetMacro(YRadius,double);
vtkGetMacro(YRadius,double);
// Description:
// Set/Get the scaling factor for the z-axis. Default = 1.
vtkSetMacro(ZRadius,double);
vtkGetMacro(ZRadius,double);
// Description:
// An ellipsoid.
//
// This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
// Then the normal is \f$N = Du X Dv\f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
// Calculate a user defined scalar using one or all of uvw, Pt, Duvw.
//
// uvw are the parameters with Pt being the the cartesian point,
// Duvw are the derivatives of this point with respect to u, v and w.
// Pt, Duvw are obtained from Evaluate().
//
// This function is only called if the ScalarMode has the value
// vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED
//
// If the user does not need to calculate a scalar, then the
// instantiated function should return zero.
//
virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
protected:
vtkParametricEllipsoid();
~vtkParametricEllipsoid();
// Variables
double XRadius;
double YRadius;
double ZRadius;
double N1;
double N2;
private:
vtkParametricEllipsoid(const vtkParametricEllipsoid&); // Not implemented.
void operator=(const vtkParametricEllipsoid&); // Not implemented.
};
#endif