Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

96 lines
3.1 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkParametricRoman.h,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkParametricRoman - Generate Steiner's Roman Surface.
// .SECTION Description
// vtkParametricRoman generates Steiner's Roman Surface.
//
// For further information about this surface, please consult the
// technical description "Parametric surfaces" in http://www.vtk.org/documents.php
// in the "VTK Technical Documents" section in the VTk.org web pages.
//
// .SECTION Thanks
// Andrew Maclean a.maclean@cas.edu.au for
// creating and contributing the class.
//
#ifndef __vtkParametricRoman_h
#define __vtkParametricRoman_h
#include "vtkParametricFunction.h"
class VTK_COMMON_EXPORT vtkParametricRoman : public vtkParametricFunction
{
public:
vtkTypeRevisionMacro(vtkParametricRoman,vtkParametricFunction);
void PrintSelf(ostream& os, vtkIndent indent);
// Description
// Return the parametric dimension of the class.
virtual int GetDimension() {return 2;}
// Description:
// Construct Steiner's Roman Surface with the following parameters:
// MinimumU = 0, MaximumU = Pi,
// MinimumV = 0, MaximumV = Pi,
// JoinU = 1, JoinV = 1,
// TwistU = 1, TwistV = 0;
// ClockwiseOrdering = 1,
// DerivativesAvailable = 1,
// Radius = 1
static vtkParametricRoman *New();
// Description:
// Set/Get the radius.
vtkSetMacro(Radius,double);
vtkGetMacro(Radius,double);
// Description:
// Steiner's Roman Surface
//
// This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
// as Pt. It also returns the partial derivatives Du and Dv.
// \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
// Then the normal is \f$N = Du X Dv\f$ .
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
// Description:
// Calculate a user defined scalar using one or all of uvw, Pt, Duvw.
//
// uvw are the parameters with Pt being the the Cartesian point,
// Duvw are the derivatives of this point with respect to u, v and w.
// Pt, Duvw are obtained from Evaluate().
//
// This function is only called if the ScalarMode has the value
// vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED
//
// If the user does not need to calculate a scalar, then the
// instantiated function should return zero.
//
virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
protected:
vtkParametricRoman();
~vtkParametricRoman();
// Variables
double Radius;
private:
vtkParametricRoman(const vtkParametricRoman&); // Not implemented.
void operator=(const vtkParametricRoman&); // Not implemented.
};
#endif