Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

321 lines
15 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkPerspectiveTransform.h,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkPerspectiveTransform - describes a 4x4 matrix transformation
// .SECTION Description
// A vtkPerspectiveTransform can be used to describe the full range of
// homogeneous transformations. It was designed in particular
// to describe a camera-view of a scene.
// <P>The order in which you set up the display coordinates (via
// AdjustZBuffer() and AdjustViewport()), the projection (via Perspective(),
// Frustum(), or Ortho()) and the camera view (via SetupCamera()) are
// important. If the transform is in PreMultiply mode, which is the
// default, set the Viewport and ZBuffer first, then the projection, and
// finally the camera view. Once the view is set up, the Translate
// and Rotate methods can be used to move the camera around in world
// coordinates. If the Oblique() or Stereo() methods are used, they
// should be called just before SetupCamera().
// <P>In PostMultiply mode, you must perform all transformations
// in the opposite order. This is necessary, for example, if you
// already have a perspective transformation set up but must adjust
// the viewport. Another example is if you have a view transformation,
// and wish to perform translations and rotations in the camera's
// coordinate system rather than in world coordinates.
// <P>The SetInput and Concatenate methods can be used to create
// a transformation pipeline with vtkPerspectiveTransform. See vtkTransform
// for more information on the transformation pipeline.
// .SECTION See Also
// vtkGeneralTransform vtkTransform vtkMatrix4x4 vtkCamera
#ifndef __vtkPerspectiveTransform_h
#define __vtkPerspectiveTransform_h
#include "vtkHomogeneousTransform.h"
#include "vtkMatrix4x4.h" // Needed for inline methods
class VTK_COMMON_EXPORT vtkPerspectiveTransform : public vtkHomogeneousTransform
{
public:
static vtkPerspectiveTransform *New();
vtkTypeRevisionMacro(vtkPerspectiveTransform,vtkHomogeneousTransform);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Set this transformation to the identity transformation. If
// the transform has an Input, then the transformation will be
// reset so that it is the same as the Input.
void Identity() { this->Concatenation->Identity(); this->Modified(); };
// Description:
// Invert the transformation. This will also set a flag so that
// the transformation will use the inverse of its Input, if an Input
// has been set.
void Inverse() { this->Concatenation->Inverse(); this->Modified(); };
// Description:
// Perform an adjustment to the viewport coordinates. By default Ortho,
// Frustum, and Perspective provide a window of ([-1,+1],[-1,+1]).
// In PreMultiply mode, you call this method before calling Ortho, Frustum,
// or Perspective. In PostMultiply mode you can call it after. Note
// that if you must apply both AdjustZBuffer and AdjustViewport, it
// makes no difference which order you apply them in.
void AdjustViewport(double oldXMin, double oldXMax,
double oldYMin, double oldYMax,
double newXMin, double newXMax,
double newYMin, double newYMax);
// Description:
// Perform an adjustment to the Z-Buffer range that the near and far
// clipping planes map to. By default Ortho, Frustum, and Perspective
// map the near clipping plane to -1 and the far clipping plane to +1.
// In PreMultiply mode, you call this method before calling Ortho, Frustum,
// or Perspective. In PostMultiply mode you can call it after.
void AdjustZBuffer(double oldNearZ, double oldFarZ,
double newNearZ, double newFarZ);
// Description:
// Create an orthogonal projection matrix and concatenate it by the
// current transformation. The matrix maps [xmin,xmax], [ymin,ymax],
// [-znear,-zfar] to [-1,+1], [-1,+1], [+1,-1].
void Ortho(double xmin, double xmax, double ymin, double ymax,
double znear, double zfar);
// Description:
// Create an perspective projection matrix and concatenate it by the
// current transformation. The matrix maps a frustum with a back
// plane at -zfar and a front plane at -znear with extent
// [xmin,xmax],[ymin,ymax] to [-1,+1], [-1,+1], [+1,-1].
void Frustum(double xmin, double xmax, double ymin, double ymax,
double znear, double zfar);
// Description:
// Create a perspective projection matrix by specifying the view angle
// (this angle is in the y direction), the aspect ratio, and the near
// and far clipping range. The projection matrix is concatenated
// with the current transformation. This method works via Frustum.
void Perspective(double angle, double aspect, double znear, double zfar);
// Description:
// Create a shear transformation about a plane at distance z from
// the camera. The values dxdz (i.e. dx/dz) and dydz specify the
// amount of shear in the x and y directions. The 'zplane' specifies
// the distance from the camera to the plane at which the shear
// causes zero displacement. Generally you want this plane to be the
// focal plane.
// This transformation can be used in combination with Ortho to create
// an oblique projection. It can also be used in combination with
// Perspective to provide correct stereo views when the eye is at
// arbitrary but known positions relative to the center of a flat
// viewing screen.
void Shear(double dxdz, double dydz, double zplane);
// Description:
// Create a stereo shear matrix and concatenate it with the
// current transformation. This can be applied in conjunction with either a
// perspective transformation (via Frustum or Projection) or an
// orthographic projection. You must specify the distance from
// the camera plane to the focal plane, and the angle between
// the distance vector and the eye. The angle should be negative
// for the left eye, and positive for the right. This method
// works via Oblique.
void Stereo(double angle, double focaldistance);
// Description:
// Set a view transformation matrix for the camera (this matrix does
// not contain any perspective) and concatenate it with the current
// transformation.
void SetupCamera(const double position[3], const double focalpoint[3],
const double viewup[3]);
void SetupCamera(double p0, double p1, double p2,
double fp0, double fp1, double fp2,
double vup0, double vup1, double vup2);
// Description:
// Create a translation matrix and concatenate it with the current
// transformation according to PreMultiply or PostMultiply semantics.
void Translate(double x, double y, double z) {
this->Concatenation->Translate(x,y,z); };
void Translate(const double x[3]) { this->Translate(x[0], x[1], x[2]); };
void Translate(const float x[3]) { this->Translate(x[0], x[1], x[2]); };
// Description:
// Create a rotation matrix and concatenate it with the current
// transformation according to PreMultiply or PostMultiply semantics.
// The angle is in degrees, and (x,y,z) specifies the axis that the
// rotation will be performed around.
void RotateWXYZ(double angle, double x, double y, double z) {
this->Concatenation->Rotate(angle,x,y,z); };
void RotateWXYZ(double angle, const double axis[3]) {
this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); };
void RotateWXYZ(double angle, const float axis[3]) {
this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); };
// Description:
// Create a rotation matrix about the X, Y, or Z axis and concatenate
// it with the current transformation according to PreMultiply or
// PostMultiply semantics. The angle is expressed in degrees.
void RotateX(double angle) { this->RotateWXYZ(angle, 1, 0, 0); };
void RotateY(double angle) { this->RotateWXYZ(angle, 0, 1, 0); };
void RotateZ(double angle) { this->RotateWXYZ(angle, 0, 0, 1); };
// Description:
// Create a scale matrix (i.e. set the diagonal elements to x, y, z)
// and concatenate it with the current transformation according to
// PreMultiply or PostMultiply semantics.
void Scale(double x, double y, double z) {
this->Concatenation->Scale(x,y,z); };
void Scale(const double s[3]) { this->Scale(s[0], s[1], s[2]); };
void Scale(const float s[3]) { this->Scale(s[0], s[1], s[2]); };
// Description:
// Set the current matrix directly. This actually calls Identity(),
// followed by Concatenate(matrix).
void SetMatrix(vtkMatrix4x4 *matrix) {
this->SetMatrix(*matrix->Element); };
void SetMatrix(const double elements[16]) {
this->Identity(); this->Concatenate(elements); };
// Description:
// Concatenates the matrix with the current transformation according
// to PreMultiply or PostMultiply semantics.
void Concatenate(vtkMatrix4x4 *matrix) {
this->Concatenate(*matrix->Element); };
void Concatenate(const double elements[16]) {
this->Concatenation->Concatenate(elements); };
// Description:
// Concatenate the specified transform with the current transformation
// according to PreMultiply or PostMultiply semantics.
// The concatenation is pipelined, meaning that if any of the
// transformations are changed, even after Concatenate() is called,
// those changes will be reflected when you call TransformPoint().
void Concatenate(vtkHomogeneousTransform *transform);
// Description:
// Sets the internal state of the transform to PreMultiply. All subsequent
// operations will occur before those already represented in the
// current transformation. In homogeneous matrix notation, M = M*A where
// M is the current transformation matrix and A is the applied matrix.
// The default is PreMultiply.
void PreMultiply() {
if (this->Concatenation->GetPreMultiplyFlag()) { return; }
this->Concatenation->SetPreMultiplyFlag(1); this->Modified(); };
// Description:
// Sets the internal state of the transform to PostMultiply. All subsequent
// operations will occur after those already represented in the
// current transformation. In homogeneous matrix notation, M = A*M where
// M is the current transformation matrix and A is the applied matrix.
// The default is PreMultiply.
void PostMultiply() {
if (!this->Concatenation->GetPreMultiplyFlag()) { return; }
this->Concatenation->SetPreMultiplyFlag(0); this->Modified(); };
// Description:
// Get the total number of transformations that are linked into this
// one via Concatenate() operations or via SetInput().
int GetNumberOfConcatenatedTransforms() {
return this->Concatenation->GetNumberOfTransforms() +
(this->Input == NULL ? 0 : 1); };
// Description
// Get one of the concatenated transformations as a vtkAbstractTransform.
// These transformations are applied, in series, every time the
// transformation of a coordinate occurs. This method is provided
// to make it possible to decompose a transformation into its
// constituents, for example to save a transformation to a file.
vtkHomogeneousTransform *GetConcatenatedTransform(int i) {
if (this->Input == NULL) {
return (vtkHomogeneousTransform *)this->Concatenation->GetTransform(i); }
else if (i < this->Concatenation->GetNumberOfPreTransforms()) {
return (vtkHomogeneousTransform *)this->Concatenation->GetTransform(i); }
else if (i > this->Concatenation->GetNumberOfPreTransforms()) {
return (vtkHomogeneousTransform*)this->Concatenation->GetTransform(i-1);}
else if (this->GetInverseFlag()) {
return (vtkHomogeneousTransform *)this->Input->GetInverse(); }
else {
return (vtkHomogeneousTransform *)this->Input; } };
// Description:
// Set the input for this transformation. This will be used as the
// base transformation if it is set. This method allows you to build
// a transform pipeline: if the input is modified, then this transformation
// will automatically update accordingly. Note that the InverseFlag,
// controlled via Inverse(), determines whether this transformation
// will use the Input or the inverse of the Input.
void SetInput(vtkHomogeneousTransform *input);
vtkHomogeneousTransform *GetInput() { return this->Input; };
// Description:
// Get the inverse flag of the transformation. This controls
// whether it is the Input or the inverse of the Input that
// is used as the base transformation. The InverseFlag is
// flipped every time Inverse() is called. The InverseFlag
// is off when a transform is first created.
int GetInverseFlag() {
return this->Concatenation->GetInverseFlag(); };
// Description:
// Pushes the current transformation onto the transformation stack.
void Push() { if (this->Stack == NULL) {
this->Stack = vtkTransformConcatenationStack::New(); }
this->Stack->Push(&this->Concatenation);
this->Modified(); };
// Description:
// Deletes the transformation on the top of the stack and sets the top
// to the next transformation on the stack.
void Pop() { if (this->Stack == NULL) { return; }
this->Stack->Pop(&this->Concatenation);
this->Modified(); };
// Description:
// Make a new transform of the same type -- you are responsible for
// deleting the transform when you are done with it.
vtkAbstractTransform *MakeTransform();
// Description:
// Check for self-reference. Will return true if concatenating
// with the specified transform, setting it to be our inverse,
// or setting it to be our input will create a circular reference.
// CircuitCheck is automatically called by SetInput(), SetInverse(),
// and Concatenate(vtkXTransform *). Avoid using this function,
// it is experimental.
int CircuitCheck(vtkAbstractTransform *transform);
// Description:
// Override GetMTime to account for input and concatenation.
unsigned long GetMTime();
protected:
vtkPerspectiveTransform();
~vtkPerspectiveTransform();
void InternalDeepCopy(vtkAbstractTransform *t);
void InternalUpdate();
vtkHomogeneousTransform *Input;
vtkTransformConcatenation *Concatenation;
vtkTransformConcatenationStack *Stack;
private:
vtkPerspectiveTransform(const vtkPerspectiveTransform&); // Not implemented
void operator=(const vtkPerspectiveTransform&); // Not implemented
};
#endif