Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

190 lines
4.6 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkPlane.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkPlane.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
vtkCxxRevisionMacro(vtkPlane, "$Revision: 1.41 $");
vtkStandardNewMacro(vtkPlane);
// Construct plane passing through origin and normal to z-axis.
vtkPlane::vtkPlane()
{
this->Normal[0] = 0.0;
this->Normal[1] = 0.0;
this->Normal[2] = 1.0;
this->Origin[0] = 0.0;
this->Origin[1] = 0.0;
this->Origin[2] = 0.0;
}
void vtkPlane::ProjectPoint(double x[3], double origin[3],
double normal[3], double xproj[3])
{
double t, xo[3];
xo[0] = x[0] - origin[0];
xo[1] = x[1] - origin[1];
xo[2] = x[2] - origin[2];
t = vtkMath::Dot(normal,xo);
xproj[0] = x[0] - t * normal[0];
xproj[1] = x[1] - t * normal[1];
xproj[2] = x[2] - t * normal[2];
}
void vtkPlane::Push(double distance)
{
int i;
if ( distance == 0.0 )
{
return;
}
for (i=0; i < 3; i++ )
{
this->Origin[i] += distance * this->Normal[i];
}
this->Modified();
}
// Project a point x onto plane defined by origin and normal. The
// projected point is returned in xproj. NOTE : normal NOT required to
// have magnitude 1.
void vtkPlane::GeneralizedProjectPoint(double x[3], double origin[3],
double normal[3], double xproj[3])
{
double t, xo[3], n2;
xo[0] = x[0] - origin[0];
xo[1] = x[1] - origin[1];
xo[2] = x[2] - origin[2];
t = vtkMath::Dot(normal,xo);
n2 = vtkMath::Dot(normal, normal);
if (n2 != 0)
{
xproj[0] = x[0] - t * normal[0]/n2;
xproj[1] = x[1] - t * normal[1]/n2;
xproj[2] = x[2] - t * normal[2]/n2;
}
else
{
xproj[0] = x[0];
xproj[1] = x[1];
xproj[2] = x[2];
}
}
// Evaluate plane equation for point x[3].
double vtkPlane::EvaluateFunction(double x[3])
{
return ( this->Normal[0]*(x[0]-this->Origin[0]) +
this->Normal[1]*(x[1]-this->Origin[1]) +
this->Normal[2]*(x[2]-this->Origin[2]) );
}
// Evaluate function gradient at point x[3].
void vtkPlane::EvaluateGradient(double vtkNotUsed(x)[3], double n[3])
{
for (int i=0; i<3; i++)
{
n[i] = this->Normal[i];
}
}
#define VTK_PLANE_TOL 1.0e-06
// Given a line defined by the two points p1,p2; and a plane defined by the
// normal n and point p0, compute an intersection. The parametric
// coordinate along the line is returned in t, and the coordinates of
// intersection are returned in x. A zero is returned if the plane and line
// do not intersect between (0<=t<=1). If the plane and line are parallel,
// zero is returned and t is set to VTK_LARGE_DOUBLE.
int vtkPlane::IntersectWithLine(double p1[3], double p2[3], double n[3],
double p0[3], double& t, double x[3])
{
double num, den, p21[3];
double fabsden, fabstolerance;
// Compute line vector
//
p21[0] = p2[0] - p1[0];
p21[1] = p2[1] - p1[1];
p21[2] = p2[2] - p1[2];
// Compute denominator. If ~0, line and plane are parallel.
//
num = vtkMath::Dot(n,p0) - ( n[0]*p1[0] + n[1]*p1[1] + n[2]*p1[2] ) ;
den = n[0]*p21[0] + n[1]*p21[1] + n[2]*p21[2];
//
// If denominator with respect to numerator is "zero", then the line and
// plane are considered parallel.
//
// trying to avoid an expensive call to fabs()
if (den < 0.0)
{
fabsden = -den;
}
else
{
fabsden = den;
}
if (num < 0.0)
{
fabstolerance = -num*VTK_PLANE_TOL;
}
else
{
fabstolerance = num*VTK_PLANE_TOL;
}
if ( fabsden <= fabstolerance )
{
t = VTK_DOUBLE_MAX;
return 0;
}
// valid intersection
t = num / den;
x[0] = p1[0] + t*p21[0];
x[1] = p1[1] + t*p21[1];
x[2] = p1[2] + t*p21[2];
if ( t >= 0.0 && t <= 1.0 )
{
return 1;
}
else
{
return 0;
}
}
void vtkPlane::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Normal: (" << this->Normal[0] << ", "
<< this->Normal[1] << ", " << this->Normal[2] << ")\n";
os << indent << "Origin: (" << this->Origin[0] << ", "
<< this->Origin[1] << ", " << this->Origin[2] << ")\n";
}