You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
126 lines
4.3 KiB
126 lines
4.3 KiB
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: $RCSfile: vtkPlane.h,v $
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
// .NAME vtkPlane - perform various plane computations
|
|
// .SECTION Description
|
|
// vtkPlane provides methods for various plane computations. These include
|
|
// projecting points onto a plane, evaluating the plane equation, and
|
|
// returning plane normal. vtkPlane is a concrete implementation of the
|
|
// abstract class vtkImplicitFunction.
|
|
|
|
#ifndef __vtkPlane_h
|
|
#define __vtkPlane_h
|
|
|
|
#include "vtkImplicitFunction.h"
|
|
|
|
class VTK_COMMON_EXPORT vtkPlane : public vtkImplicitFunction
|
|
{
|
|
public:
|
|
// Description
|
|
// Construct plane passing through origin and normal to z-axis.
|
|
static vtkPlane *New();
|
|
|
|
vtkTypeRevisionMacro(vtkPlane,vtkImplicitFunction);
|
|
void PrintSelf(ostream& os, vtkIndent indent);
|
|
|
|
// Description
|
|
// Evaluate plane equation for point x[3].
|
|
double EvaluateFunction(double x[3]);
|
|
double EvaluateFunction(double x, double y, double z)
|
|
{return this->vtkImplicitFunction::EvaluateFunction(x, y, z); } ;
|
|
|
|
// Description
|
|
// Evaluate function gradient at point x[3].
|
|
void EvaluateGradient(double x[3], double g[3]);
|
|
|
|
// Description:
|
|
// Set/get plane normal. Plane is defined by point and normal.
|
|
vtkSetVector3Macro(Normal,double);
|
|
vtkGetVectorMacro(Normal,double,3);
|
|
|
|
// Description:
|
|
// Set/get point through which plane passes. Plane is defined by point
|
|
// and normal.
|
|
vtkSetVector3Macro(Origin,double);
|
|
vtkGetVectorMacro(Origin,double,3);
|
|
|
|
// Description:
|
|
// Translate the plane in the direction of the normal by the
|
|
// distance specified. Negative values move the plane in the
|
|
// opposite direction.
|
|
void Push(double distance);
|
|
|
|
// Description
|
|
// Project a point x onto plane defined by origin and normal. The
|
|
// projected point is returned in xproj. NOTE : normal assumed to
|
|
// have magnitude 1.
|
|
static void ProjectPoint(double x[3], double origin[3], double normal[3],
|
|
double xproj[3]);
|
|
|
|
// Description
|
|
// Project a point x onto plane defined by origin and normal. The
|
|
// projected point is returned in xproj. NOTE : normal does NOT have to
|
|
// have magnitude 1.
|
|
static void GeneralizedProjectPoint(double x[3], double origin[3],
|
|
double normal[3], double xproj[3]);
|
|
|
|
// Description:
|
|
// Quick evaluation of plane equation n(x-origin)=0.
|
|
static double Evaluate(double normal[3], double origin[3], double x[3]);
|
|
|
|
// Description:
|
|
// Return the distance of a point x to a plane defined by n(x-p0) = 0. The
|
|
// normal n[3] must be magnitude=1.
|
|
static double DistanceToPlane(double x[3], double n[3], double p0[3]);
|
|
|
|
// Description:
|
|
// Given a line defined by the two points p1,p2; and a plane defined by the
|
|
// normal n and point p0, compute an intersection. The parametric
|
|
// coordinate along the line is returned in t, and the coordinates of
|
|
// intersection are returned in x. A zero is returned if the plane and line
|
|
// do not intersect between (0<=t<=1). If the plane and line are parallel,
|
|
// zero is returned and t is set to VTK_LARGE_DOUBLE.
|
|
static int IntersectWithLine(double p1[3], double p2[3], double n[3],
|
|
double p0[3], double& t, double x[3]);
|
|
|
|
|
|
protected:
|
|
vtkPlane();
|
|
~vtkPlane() {};
|
|
|
|
double Normal[3];
|
|
double Origin[3];
|
|
|
|
private:
|
|
vtkPlane(const vtkPlane&); // Not implemented.
|
|
void operator=(const vtkPlane&); // Not implemented.
|
|
};
|
|
|
|
inline double vtkPlane::Evaluate(double normal[3],
|
|
double origin[3], double x[3])
|
|
{
|
|
return normal[0]*(x[0]-origin[0]) + normal[1]*(x[1]-origin[1]) +
|
|
normal[2]*(x[2]-origin[2]);
|
|
}
|
|
|
|
inline double vtkPlane::DistanceToPlane(double x[3], double n[3], double p0[3])
|
|
{
|
|
#define vtkPlaneAbs(x) ((x)<0?-(x):(x))
|
|
return (vtkPlaneAbs(n[0]*(x[0]-p0[0]) + n[1]*(x[1]-p0[1]) +
|
|
n[2]*(x[2]-p0[2])));
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|