Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

126 lines
4.3 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkPlane.h,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkPlane - perform various plane computations
// .SECTION Description
// vtkPlane provides methods for various plane computations. These include
// projecting points onto a plane, evaluating the plane equation, and
// returning plane normal. vtkPlane is a concrete implementation of the
// abstract class vtkImplicitFunction.
#ifndef __vtkPlane_h
#define __vtkPlane_h
#include "vtkImplicitFunction.h"
class VTK_COMMON_EXPORT vtkPlane : public vtkImplicitFunction
{
public:
// Description
// Construct plane passing through origin and normal to z-axis.
static vtkPlane *New();
vtkTypeRevisionMacro(vtkPlane,vtkImplicitFunction);
void PrintSelf(ostream& os, vtkIndent indent);
// Description
// Evaluate plane equation for point x[3].
double EvaluateFunction(double x[3]);
double EvaluateFunction(double x, double y, double z)
{return this->vtkImplicitFunction::EvaluateFunction(x, y, z); } ;
// Description
// Evaluate function gradient at point x[3].
void EvaluateGradient(double x[3], double g[3]);
// Description:
// Set/get plane normal. Plane is defined by point and normal.
vtkSetVector3Macro(Normal,double);
vtkGetVectorMacro(Normal,double,3);
// Description:
// Set/get point through which plane passes. Plane is defined by point
// and normal.
vtkSetVector3Macro(Origin,double);
vtkGetVectorMacro(Origin,double,3);
// Description:
// Translate the plane in the direction of the normal by the
// distance specified. Negative values move the plane in the
// opposite direction.
void Push(double distance);
// Description
// Project a point x onto plane defined by origin and normal. The
// projected point is returned in xproj. NOTE : normal assumed to
// have magnitude 1.
static void ProjectPoint(double x[3], double origin[3], double normal[3],
double xproj[3]);
// Description
// Project a point x onto plane defined by origin and normal. The
// projected point is returned in xproj. NOTE : normal does NOT have to
// have magnitude 1.
static void GeneralizedProjectPoint(double x[3], double origin[3],
double normal[3], double xproj[3]);
// Description:
// Quick evaluation of plane equation n(x-origin)=0.
static double Evaluate(double normal[3], double origin[3], double x[3]);
// Description:
// Return the distance of a point x to a plane defined by n(x-p0) = 0. The
// normal n[3] must be magnitude=1.
static double DistanceToPlane(double x[3], double n[3], double p0[3]);
// Description:
// Given a line defined by the two points p1,p2; and a plane defined by the
// normal n and point p0, compute an intersection. The parametric
// coordinate along the line is returned in t, and the coordinates of
// intersection are returned in x. A zero is returned if the plane and line
// do not intersect between (0<=t<=1). If the plane and line are parallel,
// zero is returned and t is set to VTK_LARGE_DOUBLE.
static int IntersectWithLine(double p1[3], double p2[3], double n[3],
double p0[3], double& t, double x[3]);
protected:
vtkPlane();
~vtkPlane() {};
double Normal[3];
double Origin[3];
private:
vtkPlane(const vtkPlane&); // Not implemented.
void operator=(const vtkPlane&); // Not implemented.
};
inline double vtkPlane::Evaluate(double normal[3],
double origin[3], double x[3])
{
return normal[0]*(x[0]-origin[0]) + normal[1]*(x[1]-origin[1]) +
normal[2]*(x[2]-origin[2]);
}
inline double vtkPlane::DistanceToPlane(double x[3], double n[3], double p0[3])
{
#define vtkPlaneAbs(x) ((x)<0?-(x):(x))
return (vtkPlaneAbs(n[0]*(x[0]-p0[0]) + n[1]*(x[1]-p0[1]) +
n[2]*(x[2]-p0[2])));
}
#endif