Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

331 lines
14 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkTransform.h,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkTransform - describes linear transformations via a 4x4 matrix
// .SECTION Description
// A vtkTransform can be used to describe the full range of linear (also
// known as affine) coordinate transformations in three dimensions,
// which are internally represented as a 4x4 homogeneous transformation
// matrix. When you create a new vtkTransform, it is always initialized
// to the identity transformation.
// <P>The SetInput() method allows you to set another transform,
// instead of the identity transform, to be the base transformation.
// There is a pipeline mechanism to ensure that when the input is
// modified, the current transformation will be updated accordingly.
// This pipeline mechanism is also supported by the Concatenate() method.
// <P>Most of the methods for manipulating this transformation,
// e.g. Translate, Rotate, and Concatenate, can operate in either
// PreMultiply (the default) or PostMultiply mode. In PreMultiply
// mode, the translation, concatenation, etc. will occur before any
// transformations which are represented by the current matrix. In
// PostMultiply mode, the additional transformation will occur after
// any transformations represented by the current matrix.
// <P>This class performs all of its operations in a right handed
// coordinate system with right handed rotations. Some other graphics
// libraries use left handed coordinate systems and rotations.
// .SECTION See Also
// vtkPerspectiveTransform vtkGeneralTransform vtkMatrix4x4
// vtkTransformCollection vtkTransformFilter vtkTransformPolyDataFilter
// vtkImageReslice
#ifndef __vtkTransform_h
#define __vtkTransform_h
#include "vtkLinearTransform.h"
#include "vtkMatrix4x4.h" // Needed for inline methods
class VTK_COMMON_EXPORT vtkTransform : public vtkLinearTransform
{
public:
static vtkTransform *New();
vtkTypeRevisionMacro(vtkTransform,vtkLinearTransform);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Set the transformation to the identity transformation. If
// the transform has an Input, then the transformation will be
// reset so that it is the same as the Input.
void Identity();
// Description:
// Invert the transformation. This will also set a flag so that
// the transformation will use the inverse of its Input, if an Input
// has been set.
void Inverse();
// Description:
// Create a translation matrix and concatenate it with the current
// transformation according to PreMultiply or PostMultiply semantics.
void Translate(double x, double y, double z) {
this->Concatenation->Translate(x,y,z); };
void Translate(const double x[3]) { this->Translate(x[0], x[1], x[2]); };
void Translate(const float x[3]) { this->Translate(x[0], x[1], x[2]); };
// Description:
// Create a rotation matrix and concatenate it with the current
// transformation according to PreMultiply or PostMultiply semantics.
// The angle is in degrees, and (x,y,z) specifies the axis that the
// rotation will be performed around.
void RotateWXYZ(double angle, double x, double y, double z) {
this->Concatenation->Rotate(angle,x,y,z); };
void RotateWXYZ(double angle, const double axis[3]) {
this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); };
void RotateWXYZ(double angle, const float axis[3]) {
this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); };
// Description:
// Create a rotation matrix about the X, Y, or Z axis and concatenate
// it with the current transformation according to PreMultiply or
// PostMultiply semantics. The angle is expressed in degrees.
void RotateX(double angle) { this->RotateWXYZ(angle, 1, 0, 0); };
void RotateY(double angle) { this->RotateWXYZ(angle, 0, 1, 0); };
void RotateZ(double angle) { this->RotateWXYZ(angle, 0, 0, 1); };
// Description:
// Create a scale matrix (i.e. set the diagonal elements to x, y, z)
// and concatenate it with the current transformation according to
// PreMultiply or PostMultiply semantics.
void Scale(double x, double y, double z) {
this->Concatenation->Scale(x,y,z); };
void Scale(const double s[3]) { this->Scale(s[0], s[1], s[2]); };
void Scale(const float s[3]) { this->Scale(s[0], s[1], s[2]); };
// Description:
// Set the current matrix directly. This actually calls Identity(),
// followed by Concatenate(matrix).
void SetMatrix(vtkMatrix4x4 *matrix) {
this->SetMatrix(*matrix->Element); };
void SetMatrix(const double elements[16]) {
this->Identity(); this->Concatenate(elements); };
// Description:
// Concatenates the matrix with the current transformation according
// to PreMultiply or PostMultiply semantics.
void Concatenate(vtkMatrix4x4 *matrix) {
this->Concatenate(*matrix->Element); };
void Concatenate(const double elements[16]) {
this->Concatenation->Concatenate(elements); };
// Description:
// Concatenate the specified transform with the current transformation
// according to PreMultiply or PostMultiply semantics.
// The concatenation is pipelined, meaning that if any of the
// transformations are changed, even after Concatenate() is called,
// those changes will be reflected when you call TransformPoint().
void Concatenate(vtkLinearTransform *transform);
// Description:
// Sets the internal state of the transform to PreMultiply. All subsequent
// operations will occur before those already represented in the
// current transformation. In homogeneous matrix notation, M = M*A where
// M is the current transformation matrix and A is the applied matrix.
// The default is PreMultiply.
void PreMultiply() {
if (this->Concatenation->GetPreMultiplyFlag()) { return; }
this->Concatenation->SetPreMultiplyFlag(1); this->Modified(); };
// Description:
// Sets the internal state of the transform to PostMultiply. All subsequent
// operations will occur after those already represented in the
// current transformation. In homogeneous matrix notation, M = A*M where
// M is the current transformation matrix and A is the applied matrix.
// The default is PreMultiply.
void PostMultiply() {
if (!this->Concatenation->GetPreMultiplyFlag()) { return; }
this->Concatenation->SetPreMultiplyFlag(0); this->Modified(); };
// Description:
// Get the total number of transformations that are linked into this
// one via Concatenate() operations or via SetInput().
int GetNumberOfConcatenatedTransforms() {
return this->Concatenation->GetNumberOfTransforms() +
(this->Input == NULL ? 0 : 1); };
// Description
// Get one of the concatenated transformations as a vtkAbstractTransform.
// These transformations are applied, in series, every time the
// transformation of a coordinate occurs. This method is provided
// to make it possible to decompose a transformation into its
// constituents, for example to save a transformation to a file.
vtkLinearTransform *GetConcatenatedTransform(int i) {
if (this->Input == NULL) {
return (vtkLinearTransform *)this->Concatenation->GetTransform(i); }
else if (i < this->Concatenation->GetNumberOfPreTransforms()) {
return (vtkLinearTransform *)this->Concatenation->GetTransform(i); }
else if (i > this->Concatenation->GetNumberOfPreTransforms()) {
return (vtkLinearTransform *)this->Concatenation->GetTransform(i-1); }
else if (this->GetInverseFlag()) {
return (vtkLinearTransform *)this->Input->GetInverse(); }
else {
return (vtkLinearTransform *)this->Input; } };
// Description:
// Get the x, y, z orientation angles from the transformation matrix as an
// array of three floating point values.
void GetOrientation(double orient[3]);
void GetOrientation(float orient[3]) {
double temp[3]; this->GetOrientation(temp);
orient[0] = static_cast<float>(temp[0]);
orient[1] = static_cast<float>(temp[1]);
orient[2] = static_cast<float>(temp[2]); };
double *GetOrientation() {
this->GetOrientation(this->ReturnValue); return this->ReturnValue; };
// Description:
// Convenience function to get the x, y, z orientation angles from
// a transformation matrix as an array of three floating point values.
static void GetOrientation(double orient[3], vtkMatrix4x4 *matrix);
// Description:
// Return the wxyz angle+axis representing the current orientation.
// The angle is in degrees and the axis is a unit vector.
void GetOrientationWXYZ(double wxyz[4]);
void GetOrientationWXYZ(float wxyz[3]) {
double temp[4]; this->GetOrientationWXYZ(temp);
wxyz[0]=static_cast<float>(temp[0]);
wxyz[1]=static_cast<float>(temp[1]);
wxyz[2]=static_cast<float>(temp[2]);
wxyz[3]=static_cast<float>(temp[3]);};
double *GetOrientationWXYZ() {
this->GetOrientationWXYZ(this->ReturnValue); return this->ReturnValue; };
// Description:
// Return the position from the current transformation matrix as an array
// of three floating point numbers. This is simply returning the translation
// component of the 4x4 matrix.
void GetPosition(double pos[3]);
void GetPosition(float pos[3]) {
double temp[3]; this->GetPosition(temp);
pos[0] = static_cast<float>(temp[0]);
pos[1] = static_cast<float>(temp[1]);
pos[2] = static_cast<float>(temp[2]); };
double *GetPosition() {
this->GetPosition(this->ReturnValue); return this->ReturnValue; };
// Description:
// Return the scale factors of the current transformation matrix as
// an array of three float numbers. These scale factors are not necessarily
// about the x, y, and z axes unless unless the scale transformation was
// applied before any rotations.
void GetScale(double scale[3]);
void GetScale(float scale[3]) {
double temp[3]; this->GetScale(temp);
scale[0] = static_cast<float>(temp[0]);
scale[1] = static_cast<float>(temp[1]);
scale[2] = static_cast<float>(temp[2]); };
double *GetScale() {
this->GetScale(this->ReturnValue); return this->ReturnValue; };
// Description:
// Return a matrix which is the inverse of the current transformation
// matrix.
void GetInverse(vtkMatrix4x4 *inverse);
// Description:
// Return a matrix which is the transpose of the current transformation
// matrix. This is equivalent to the inverse if and only if the
// transformation is a pure rotation with no translation or scale.
void GetTranspose(vtkMatrix4x4 *transpose);
// Description:
// Set the input for this transformation. This will be used as the
// base transformation if it is set. This method allows you to build
// a transform pipeline: if the input is modified, then this transformation
// will automatically update accordingly. Note that the InverseFlag,
// controlled via Inverse(), determines whether this transformation
// will use the Input or the inverse of the Input.
void SetInput(vtkLinearTransform *input);
vtkLinearTransform *GetInput() { return this->Input; };
// Description:
// Get the inverse flag of the transformation. This controls
// whether it is the Input or the inverse of the Input that
// is used as the base transformation. The InverseFlag is
// flipped every time Inverse() is called. The InverseFlag
// is off when a transform is first created.
int GetInverseFlag() {
return this->Concatenation->GetInverseFlag(); };
// Description:
// Pushes the current transformation onto the transformation stack.
void Push() { if (this->Stack == NULL) {
this->Stack = vtkTransformConcatenationStack::New(); }
this->Stack->Push(&this->Concatenation);
this->Modified(); };
// Description:
// Deletes the transformation on the top of the stack and sets the top
// to the next transformation on the stack.
void Pop() { if (this->Stack == NULL) { return; }
this->Stack->Pop(&this->Concatenation);
this->Modified(); };
// Description:
// Check for self-reference. Will return true if concatenating
// with the specified transform, setting it to be our inverse,
// or setting it to be our input will create a circular reference.
// CircuitCheck is automatically called by SetInput(), SetInverse(),
// and Concatenate(vtkXTransform *). Avoid using this function,
// it is experimental.
int CircuitCheck(vtkAbstractTransform *transform);
// Return an inverse transform which will always update itself
// to match this transform.
vtkAbstractTransform *GetInverse() {
return vtkLinearTransform::GetInverse(); }
// Description:
// Make a new transform of the same type.
vtkAbstractTransform *MakeTransform();
// Description:
// Override GetMTime to account for input and concatenation.
unsigned long GetMTime();
// Description:
// Use this method only if you wish to compute the transformation in
// homogeneous (x,y,z,w) coordinates, otherwise use TransformPoint().
// This method calls this->GetMatrix()->MultiplyPoint().
void MultiplyPoint(const float in[4], float out[4]) {
this->GetMatrix()->MultiplyPoint(in,out);};
void MultiplyPoint(const double in[4], double out[4]) {
this->GetMatrix()->MultiplyPoint(in,out);};
protected:
vtkTransform ();
~vtkTransform ();
void InternalDeepCopy(vtkAbstractTransform *t);
void InternalUpdate();
vtkLinearTransform *Input;
vtkTransformConcatenation *Concatenation;
vtkTransformConcatenationStack *Stack;
// this allows us to check whether people have been fooling
// around with our matrix
unsigned long MatrixUpdateMTime;
float Point[4];
double DoublePoint[4];
double ReturnValue[4];
private:
vtkTransform (const vtkTransform&); // Not implemented
void operator=(const vtkTransform&); // Not implemented
};
#endif