Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

105 lines
3.7 KiB

//
// This example demonstrates how to use multiple renderers within a
// render window. It is a variation of the Cone.py example. Please
// refer to that example for additional documentation.
//
import java.lang.Thread;
// we import the vtk wrapped classes forst
import vtk.*;
// then we define our class
public class Cone3 {
// in the static contructor we load in the native code
// The libraries must be in your path to work
static {
System.loadLibrary("vtkCommonJava");
System.loadLibrary("vtkFilteringJava");
System.loadLibrary("vtkIOJava");
System.loadLibrary("vtkImagingJava");
System.loadLibrary("vtkGraphicsJava");
System.loadLibrary("vtkRenderingJava");
}
// now the main program
public static void main (String []args) throws Exception {
//
// Next we create an instance of vtkConeSource and set some of its
// properties. The instance of vtkConeSource "cone" is part of a
// visualization pipeline (it is a source process object); it produces
// data (output type is vtkPolyData) which other filters may process.
//
vtkConeSource cone = new vtkConeSource();
cone.SetHeight( 3.0 );
cone.SetRadius( 1.0 );
cone.SetResolution( 10 );
//
// In this example we terminate the pipeline with a mapper process object.
// (Intermediate filters such as vtkShrinkPolyData could be inserted in
// between the source and the mapper.) We create an instance of
// vtkPolyDataMapper to map the polygonal data into graphics primitives. We
// connect the output of the cone souece to the input of this mapper.
//
vtkPolyDataMapper coneMapper = new vtkPolyDataMapper();
coneMapper.SetInputConnection(cone.GetOutputPort());
//
// Create an actor to represent the cone. The actor orchestrates rendering of
// the mapper's graphics primitives. An actor also refers to properties via a
// vtkProperty instance, and includes an internal transformation matrix. We
// set this actor's mapper to be coneMapper which we created above.
//
vtkActor coneActor = new vtkActor();
coneActor.SetMapper(coneMapper);
//
// Create two renderers and assign actors to them. A renderer renders into a
// viewport within the vtkRenderWindow. It is part or all of a window on the
// screen and it is responsible for drawing the actors it has. We also set
// the background color here. In this example we are adding the same actor
// to two different renderers; it is okay to add different actors to
// different renderers as well.
//
vtkRenderer ren1 = new vtkRenderer();
ren1.AddActor(coneActor);
ren1.SetBackground(0.1, 0.2, 0.4);
ren1.SetViewport(0.0, 0.0, 0.5, 1.0);
vtkRenderer ren2 = new vtkRenderer();
ren2.AddActor(coneActor);
ren2.SetBackground(0.1, 0.2, 0.4);
ren2.SetViewport(0.5, 0.0, 1.0, 1.0);
//
// Finally we create the render window which will show up on the screen.
// We add our two renderers into the render window using AddRenderer. We also
// set the size to be 600 pixels by 300.
//
vtkRenderWindow renWin = new vtkRenderWindow();
renWin.AddRenderer( ren1 );
renWin.AddRenderer( ren2 );
renWin.SetSize(600, 300);
//
// Make one camera view 90 degrees from other.
//
ren1.ResetCamera();
ren1.GetActiveCamera().Azimuth(90);
//
// now we loop over 360 degreeees and render the cone each time
//
int i;
for (i = 0; i < 360; ++i)
{
Thread.sleep(10);
// render the image
renWin.Render();
// rotate the active camera by one degree
ren1.GetActiveCamera().Azimuth( 1 );
ren2.GetActiveCamera().Azimuth( 1 );
}
}
}