Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

461 lines
13 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkCardinalSpline.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkCardinalSpline.h"
#include "vtkObjectFactory.h"
#include "vtkPiecewiseFunction.h"
vtkCxxRevisionMacro(vtkCardinalSpline, "$Revision: 1.30 $");
vtkStandardNewMacro(vtkCardinalSpline);
//----------------------------------------------------------------------------
// Construct a Cardinal Spline.
vtkCardinalSpline::vtkCardinalSpline ()
{
}
//----------------------------------------------------------------------------
// Evaluate a 1D Spline
double vtkCardinalSpline::Evaluate (double t)
{
int index;
double *intervals;
double *coefficients;
// check to see if we need to recompute the spline
if (this->ComputeTime < this->GetMTime ())
{
this->Compute ();
}
// make sure we have at least 2 points
int size = this->PiecewiseFunction->GetSize ();
if (size < 2)
{
return 0.0;
}
intervals = this->Intervals;
coefficients = this->Coefficients;
if ( this->Closed )
{
size = size + 1;
}
// clamp the function at both ends
if (t < intervals[0])
{
t = intervals[0];
}
if (t > intervals[size - 1])
{
t = intervals[size - 1];
}
// find pointer to cubic spline coefficient using bisection method
index = this->FindIndex(size,t);
// calculate offset within interval
t = (t - intervals[index]);
// evaluate intervals value y
return (t * (t * (t * *(coefficients + index * 4 + 3)
+ *(coefficients + index * 4 + 2))
+ *(coefficients + index * 4 + 1))
+ *(coefficients + index * 4));
}
//----------------------------------------------------------------------------
// Compute Cardinal Splines for each dependent variable
void vtkCardinalSpline::Compute ()
{
double *ts, *xs;
double *work;
double *coefficients;
double *dependent;
int size;
int i;
// Make sure the function is up to date.
this->PiecewiseFunction->Update();
// get the size of the independent variables
size = this->PiecewiseFunction->GetSize ();
if(size < 2)
{
vtkErrorMacro("Cannot compute a spline with less than 2 points. # of points is: " << size);
return;
}
// copy the independent variables. Note that if the spline
// is closed the first and last point are assumed repeated -
// so we add and extra point
if (this->Intervals)
{
delete [] this->Intervals;
}
if ( !this->Closed )
{
this->Intervals = new double[size];
ts = this->PiecewiseFunction->GetDataPointer ();
for (i = 0; i < size; i++)
{
this->Intervals[i] = *(ts + 2*i);
}
// allocate memory for work arrays
work = new double[size];
// allocate memory for coefficients
if (this->Coefficients)
{
delete [] this->Coefficients;
}
this->Coefficients = new double [4*size];
// allocate memory for dependent variables
dependent = new double [size];
// get start of coefficients for this dependent variable
coefficients = this->Coefficients;
// get the dependent variable values
xs = this->PiecewiseFunction->GetDataPointer () + 1;
for (int j = 0; j < size; j++)
{
*(dependent + j) = *(xs + 2*j);
}
this->Fit1D (size, this->Intervals, dependent,
work, (double (*)[4])coefficients,
this->LeftConstraint, this->LeftValue,
this->RightConstraint, this->RightValue);
}
else //add extra "fictitious" point to close loop
{
size = size + 1;
this->Intervals = new double[size];
ts = this->PiecewiseFunction->GetDataPointer ();
for (i = 0; i < size-1; i++)
{
this->Intervals[i] = *(ts + 2*i);
}
if ( this->ParametricRange[0] != this->ParametricRange[1] )
{
this->Intervals[size-1] = this->ParametricRange[1];
}
else
{
this->Intervals[size-1] = this->Intervals[size-2] + 1.0;
}
// allocate memory for work arrays
work = new double[size];
// allocate memory for coefficients
if (this->Coefficients)
{
delete [] this->Coefficients;
}
this->Coefficients = new double [4*size];
// allocate memory for dependent variables
dependent = new double [size];
// get start of coefficients for this dependent variable
coefficients = this->Coefficients;
// get the dependent variable values
xs = this->PiecewiseFunction->GetDataPointer () + 1;
for (int j = 0; j < size-1; j++)
{
*(dependent + j) = *(xs + 2*j);
}
dependent[size-1] = *xs;
this->FitClosed1D (size, this->Intervals, dependent,
work, (double (*)[4])coefficients);
}
// free the work array and dependent variable storage
delete [] work;
delete [] dependent;
// update compute time
this->ComputeTime = this->GetMTime();
}
//----------------------------------------------------------------------------
// Compute the coefficients for a 1D spline. The spline is open.
void vtkCardinalSpline::Fit1D (int size, double *x, double *y,
double *work, double coefficients[][4],
int leftConstraint, double leftValue,
int rightConstraint, double rightValue)
{
double b = 0.0;
double xlk;
double xlkp;
int k;
// develop constraint at leftmost point.
switch (leftConstraint)
{
case 0:
// desired slope at leftmost point is derivative from two points
coefficients[0][1] = 1.0;
coefficients[0][2] = 0.0;
work[0] = this->ComputeLeftDerivative();
break;
case 1:
// desired slope at leftmost point is leftValue.
coefficients[0][1] = 1.0;
coefficients[0][2] = 0.0;
work[0] = leftValue;
break;
case 2:
// desired second derivative at leftmost point is leftValue.
coefficients[0][1] = 2.0;
coefficients[0][2] = 1.0;
work[0]= 3.0 * ((y[1] - y[0]) / (x[1] - x[0])) -
0.5 * (x[1] - x[0]) * leftValue;
break;
case 3:
// desired second derivative at leftmost point is
// leftValue times second derivative at first interior point.
coefficients[0][1] = 2.0;
coefficients[0][2] = 4.0 * ((0.5 + leftValue) /
(2.0 + leftValue));
work[0]= 6.0 * ((1.0 + leftValue) / (2.0 + leftValue)) *
((y[1] - y[0]) / (x[1]-x[0]));
break;
}
// develop body of band matrix.
for (k = 1; k < size - 1; k++)
{
xlk = x[k] - x[k-1];
xlkp = x[k+1] - x[k];
coefficients[k][0] = xlkp;
coefficients[k][1] = 2.0 * (xlkp + xlk);
coefficients[k][2] = xlk;
work[k] = 3.0 * (((xlkp * (y[k] - y[k-1])) / xlk) +
((xlk * (y[k+1] - y[k])) / xlkp));
}
// develop constraint at rightmost point.
switch (rightConstraint)
{
case 0:
// desired slope at leftmost point is derivative from two points
coefficients[size - 1][0] = 0.0;
coefficients[size - 1][1] = 1.0;
work[size - 1] = this->ComputeRightDerivative();
break;
case 1:
// desired slope at rightmost point is rightValue
coefficients[size - 1][0] = 0.0;
coefficients[size - 1][1] = 1.0;
work[size - 1] = rightValue;
break;
case 2:
// desired second derivative at rightmost point is rightValue.
coefficients[size-1][0] = 1.0;
coefficients[size-1][1] = 2.0;
work[size-1] = 3.0 * ((y[size-1] - y[size-2]) /
(x[size-1] - x[size-2])) +
0.5 * (x[size-1]-x[size-2]) * rightValue;
break;
case 3:
// desired second derivative at rightmost point is
// rightValue times second derivative at last interior point.
coefficients[size-1][0] = 4.0 * ((0.5 + rightValue) /
(2.0 + rightValue));
coefficients[size-1][1] = 2.0;
work[size-1] = 6.0 * ((1.0 + rightValue) / (2.0 + rightValue)) *
((y[size-1] - y[size-2]) /
(x[size-1] - x[size-2]));
break;
}
// solve resulting set of equations.
coefficients[0][2] = coefficients[0][2] / coefficients[0][1];
work[0] = work[0] / coefficients[0][1];
coefficients[size-1][2] = 0.0;
for (k = 1; k < size; k++)
{
coefficients[k][1] = coefficients[k][1] - (coefficients[k][0] *
coefficients[k-1][2]);
coefficients[k][2] = coefficients[k][2] / coefficients[k][1];
work[k] = (work[k] - (coefficients[k][0] * work[k-1]))
/ coefficients[k][1];
}
for (k = size - 2; k >= 0; k--)
{
work[k] = work[k] - (coefficients[k][2] * work[k+1]);
}
// the column vector work now contains the first
// derivative of the spline function at each joint.
// compute the coefficients of the cubic between
// each pair of joints.
for (k = 0; k < size - 1; k++)
{
b = x[k+1] - x[k];
coefficients[k][0] = y[k];
coefficients[k][1] = work[k];
coefficients[k][2] = (3.0 * (y[k+1] - y[k])) / (b * b) -
(work[k+1] + 2.0 * work[k]) / b;
coefficients[k][3] = (2.0 * (y[k] - y[k+1])) / (b * b * b) +
(work[k+1] + work[k]) / (b * b);
}
// the coefficients of a fictitious nth cubic
// are evaluated. This may simplify
// algorithms which include both end points.
coefficients[size-1][0] = y[size-1];
coefficients[size-1][1] = work[size-1];
coefficients[size-1][2] = coefficients[size-2][2] +
3.0 * coefficients[size-2][3] * b;
coefficients[size-1][3] = coefficients[size-2][3];
}
//----------------------------------------------------------------------------
// Compute the coefficients for a 1D spline. The spline is closed
// (i.e., the first and last point are assumed the same) and the
// spline is continous in value and derivatives.
void vtkCardinalSpline::FitClosed1D (int size, double *x, double *y,
double *work, double coefficients[][4])
{
double b;
double xlk;
double xlkp;
int k;
double aN, bN, cN, dN;
int N;
N = size - 1;
// develop body of band matrix.
//
for (k = 1; k < N; k++)
{
xlk = x[k] - x[k-1];
xlkp = x[k+1] - x[k];
coefficients[k][0] = xlkp;
coefficients[k][1] = 2.0 * (xlkp + xlk);
coefficients[k][2] = xlk;
work[k] = 3.0 * (((xlkp * (y[k] - y[k-1])) / xlk) +
((xlk * (y[k+1] - y[k])) / xlkp));
}
xlk = x[N] - x[N-1];
xlkp = x[1] - x[0];
aN = coefficients[N][0] = xlkp;
bN = coefficients[N][1] = 2.0 * (xlkp + xlk);
cN = coefficients[N][2] = xlk;
dN = work[N] = 3.0 * (((xlkp * (y[N] - y[N-1])) / xlk) +
((xlk * (y[1] - y[0])) / xlkp));
// solve resulting set of equations.
//
coefficients[0][2] = 0.0;
work[0] = 0.0;
coefficients[0][3] = 1.0;
for (k = 1; k <= N; k++)
{
coefficients[k][1] = coefficients[k][1] -
(coefficients[k][0] * coefficients[k-1][2]);
coefficients[k][2] = coefficients[k][2] / coefficients[k][1];
work[k] = (work[k] - (coefficients[k][0] * work[k-1]))
/ coefficients[k][1];
coefficients[k][3] = (-1.0 * coefficients[k][0] *
coefficients[k-1][3]) / coefficients[k][1];
}
coefficients[N][0] = 1.0;
coefficients[N][1] = 0.0;
for (k = N - 1; k > 0; k--)
{
coefficients[k][0] = coefficients[k][3] -
coefficients[k][2] * coefficients[k+1][0];
coefficients[k][1] = work[k] - coefficients[k][2] * coefficients[k+1][1];
}
work[0] = work[N] = (dN - cN * coefficients[1][1] -
aN * coefficients[N-1][1]) / ( bN +
cN * coefficients[1][0] + aN * coefficients[N-1][0]);
for (k=1; k < N; k++)
{
work[k] = coefficients[k][0] * work[N] + coefficients[k][1];
}
// the column vector work now contains the first
// derivative of the spline function at each joint.
// compute the coefficients of the cubic between
// each pair of joints.
for (k = 0; k < N; k++)
{
b = x[k+1] - x[k];
coefficients[k][0] = y[k];
coefficients[k][1] = work[k];
coefficients[k][2] = (3.0 * (y[k+1] - y[k])) / (b * b) -
(work[k+1] + 2.0 * work[k]) / b;
coefficients[k][3] = (2.0 * (y[k] - y[k+1])) / (b * b * b) +
(work[k+1] + work[k]) / (b * b);
}
// the coefficients of a fictitious nth cubic
// are the same as the coefficients in the first interval
//
coefficients[N][0] = y[N];
coefficients[N][1] = work[N];
coefficients[N][2] = coefficients[0][2];
coefficients[N][3] = coefficients[0][3];
}
//----------------------------------------------------------------------------
void vtkCardinalSpline::DeepCopy(vtkSpline *s)
{
vtkCardinalSpline *spline = vtkCardinalSpline::SafeDownCast(s);
if ( spline != NULL )
{
//nothing to do
}
// Now do superclass
this->vtkSpline::DeepCopy(s);
}
//----------------------------------------------------------------------------
void vtkCardinalSpline::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
}