Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

745 lines
22 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkHexagonalPrism.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// Thanks to Philippe Guerville who developed this class.
// Thanks to Charles Pignerol (CEA-DAM, France) who ported this class under
// VTK 4.
// Thanks to Jean Favre (CSCS, Switzerland) who contributed to integrate this
// class in VTK.
// Please address all comments to Jean Favre (jfavre at cscs.ch).
#include "vtkHexagonalPrism.h"
#include "vtkObjectFactory.h"
#include "vtkLine.h"
#include "vtkQuad.h"
#include "vtkPolygon.h"
#include "vtkMath.h"
#include "vtkPoints.h"
vtkCxxRevisionMacro(vtkHexagonalPrism, "$Revision: 1.4 $");
vtkStandardNewMacro(vtkHexagonalPrism);
static const double VTK_DIVERGED = 1.e6;
// You can recompute the value by doing:
// const double a = sqrt(3.0)/4.0 + 0.5;
#define EXPRA 0.933012701892219298
// You can recompute the value by doing:
// const double b = 0.5 - sqrt(3.0)/4.0;
// Thus EXPRA + EXPRB = 1.0
#define EXPRB 0.066987298107780702
//----------------------------------------------------------------------------
// Construct the prism with twelve points.
vtkHexagonalPrism::vtkHexagonalPrism()
{
int i;
this->Points->SetNumberOfPoints(12);
this->PointIds->SetNumberOfIds(12);
for (i = 0; i < 12; i++)
{
this->Points->SetPoint(i, 0.0, 0.0, 0.0);
this->PointIds->SetId(i,0);
}
this->Line = vtkLine::New();
this->Quad = vtkQuad::New();
this->Polygon = vtkPolygon::New();
this->Polygon->PointIds->SetNumberOfIds(6);
this->Polygon->Points->SetNumberOfPoints(6);
for (i = 0; i < 6; i++)
{
this->Polygon->Points->SetPoint(i, 0.0, 0.0, 0.0);
this->Polygon->PointIds->SetId(i,0);
}
}
//----------------------------------------------------------------------------
vtkHexagonalPrism::~vtkHexagonalPrism()
{
this->Line->Delete();
this->Quad->Delete();
this->Polygon->Delete();
}
// Method to calculate parametric coordinates in an eight noded
// linear hexahedron element from global coordinates.
//
static const int VTK_HEX_MAX_ITERATION=10;
static const double VTK_HEX_CONVERGED=1.e-03;
//----------------------------------------------------------------------------
int vtkHexagonalPrism::EvaluatePosition(double x[3], double* closestPoint,
int& subId, double pcoords[3],
double& dist2, double *weights)
{
int iteration, converged;
double params[3];
double fcol[3], rcol[3], scol[3], tcol[3];
int i, j;
double d, pt[3];
double derivs[36];
// set initial position for Newton's method
subId = 0;
pcoords[0] = pcoords[1] = pcoords[2] = params[0] = params[1] = params[2]=0.5;
// enter iteration loop
for (iteration=converged=0;
!converged && (iteration < VTK_HEX_MAX_ITERATION); iteration++)
{
// calculate element interpolation functions and derivatives
this->InterpolationFunctions(pcoords, weights);
this->InterpolationDerivs(pcoords, derivs);
// calculate newton functions
for (i=0; i<3; i++)
{
fcol[i] = rcol[i] = scol[i] = tcol[i] = 0.0;
}
for (i=0; i<12; i++)
{
this->Points->GetPoint(i, pt);
for (j=0; j<3; j++)
{
fcol[j] += pt[j] * weights[i];
rcol[j] += pt[j] * derivs[i];
scol[j] += pt[j] * derivs[i+12];
tcol[j] += pt[j] * derivs[i+24];
}
}
for (i=0; i<3; i++)
{
fcol[i] -= x[i];
}
// compute determinants and generate improvements
d=vtkMath::Determinant3x3(rcol,scol,tcol);
if ( fabs(d) < 1.e-20)
{
return -1;
}
pcoords[0] = params[0] - vtkMath::Determinant3x3 (fcol,scol,tcol) / d;
pcoords[1] = params[1] - vtkMath::Determinant3x3 (rcol,fcol,tcol) / d;
pcoords[2] = params[2] - vtkMath::Determinant3x3 (rcol,scol,fcol) / d;
// check for convergence
if ( ((fabs(pcoords[0]-params[0])) < VTK_HEX_CONVERGED) &&
((fabs(pcoords[1]-params[1])) < VTK_HEX_CONVERGED) &&
((fabs(pcoords[2]-params[2])) < VTK_HEX_CONVERGED) )
{
converged = 1;
}
// Test for bad divergence (S.Hirschberg 11.12.2001)
else if ((fabs(pcoords[0]) > VTK_DIVERGED) ||
(fabs(pcoords[1]) > VTK_DIVERGED) ||
(fabs(pcoords[2]) > VTK_DIVERGED))
{
return -1;
}
// if not converged, repeat
else
{
params[0] = pcoords[0];
params[1] = pcoords[1];
params[2] = pcoords[2];
}
}
// if not converged, set the parametric coordinates to arbitrary values
// outside of element
if ( !converged )
{
return -1;
}
this->InterpolationFunctions(pcoords, weights);
if ( pcoords[0] >= -0.001 && pcoords[0] <= 1.001 &&
pcoords[1] >= -0.001 && pcoords[1] <= 1.001 &&
pcoords[2] >= -0.001 && pcoords[2] <= 1.001 )
{
if (closestPoint)
{
closestPoint[0] = x[0]; closestPoint[1] = x[1]; closestPoint[2] = x[2];
dist2 = 0.0; //inside hexahedron
}
return 1;
}
else
{
double pc[3], w[12];
if (closestPoint)
{
for (i=0; i<3; i++) //only approximate, not really true for warped hexa
{
if (pcoords[i] < 0.0)
{
pc[i] = 0.0;
}
else if (pcoords[i] > 1.0)
{
pc[i] = 1.0;
}
else
{
pc[i] = pcoords[i];
}
}
this->EvaluateLocation(subId, pc, closestPoint, (double *)w);
dist2 = vtkMath::Distance2BetweenPoints(closestPoint,x);
}
return 0;
}
}
//----------------------------------------------------------------------------
//
// Compute iso-parametric interpolation functions
//
void vtkHexagonalPrism::InterpolationFunctions(double pcoords[3], double sf[12])
{
double r, s, t;
r = pcoords[0];
s = pcoords[1];
t = pcoords[2];
const double a = EXPRA;
const double b = EXPRB;
//First hexagon
sf[0] = -16./3.*(r - a )*(r - b)*(s - 1.0 )*(t - 1.0);
sf[1] = 16./3.*(r - 0.5)*(r - b)*(s - 0.75)*(t - 1.0);
sf[2] = -16./3.*(r - 0.5)*(r - b)*(s - 0.25)*(t - 1.0);
sf[3] = 16./3.*(r - a )*(r - b)*(s - 0.0 )*(t - 1.0);
sf[4] = -16./3.*(r - 0.5)*(r - a)*(s - 0.25)*(t - 1.0);
sf[5] = 16./3.*(r - 0.5)*(r - a)*(s - 0.75)*(t - 1.0);
//Second hexagon
sf[6] = 16./3.*(r - a )*(r - b)*(s - 1.0 )*(t - 0.0);
sf[7] = -16./3.*(r - 0.5)*(r - b)*(s - 0.75)*(t - 0.0);
sf[8] = 16./3.*(r - 0.5)*(r - b)*(s - 0.25)*(t - 0.0);
sf[9] = -16./3.*(r - a )*(r - b)*(s - 0.0 )*(t - 0.0);
sf[10] = 16./3.*(r - 0.5)*(r - a)*(s - 0.25)*(t - 0.0);
sf[11] = -16./3.*(r - 0.5)*(r - a)*(s - 0.75)*(t - 0.0);
}
//----------------------------------------------------------------------------
void vtkHexagonalPrism::InterpolationDerivs(double pcoords[3], double derivs[36])
{
double r, s, t;
r = pcoords[0];
s = pcoords[1];
t = pcoords[2];
const double a = EXPRA;
const double b = EXPRB;
//note: a+b=1.0
// r-derivatives
//First hexagon
derivs[0] = -16./3.*( 2*r - 1.0) *(s - 1.0 )*(t - 1.0);
derivs[1] = 16./3.*( 2*r - b - 0.5)*(s - 0.75)*(t - 1.0);
derivs[2] = -16./3.*( 2*r - b - 0.5)*(s - 0.25)*(t - 1.0);
derivs[3] = 16./3.*( 2*r - 1.0) *(s - 0.0 )*(t - 1.0);
derivs[4] = -16./3.*( 2*r - a - 0.5)*(s - 0.25)*(t - 1.0);
derivs[5] = 16./3.*( 2*r - a - 0.5)*(s - 0.75)*(t - 1.0);
//Second hexagon
derivs[6] = 16./3.*( 2*r - 1.0) *(s - 1.0 )*(t - 0.0);
derivs[7] = -16./3.*( 2*r - b - 0.5)*(s - 0.75)*(t - 0.0);
derivs[8] = 16./3.*( 2*r - b - 0.5)*(s - 0.25)*(t - 0.0);
derivs[9] = -16./3.*( 2*r - 1.0) *(s - 0.0 )*(t - 0.0);
derivs[10] = 16./3.*( 2*r - a - 0.5)*(s - 0.25)*(t - 0.0);
derivs[11] = -16./3.*( 2*r - a - 0.5)*(s - 0.75)*(t - 0.0);
// s-derivatives
//First hexagon
derivs[12] = -16./3.*(r - a )*(r - b)*(t - 1.0);
derivs[13] = 16./3.*(r - 0.5)*(r - b)*(t - 1.0);
derivs[14] = -16./3.*(r - 0.5)*(r - b)*(t - 1.0);
derivs[15] = 16./3.*(r - a )*(r - b)*(t - 1.0);
derivs[16] = -16./3.*(r - 0.5)*(r - a)*(t - 1.0);
derivs[17] = 16./3.*(r - 0.5)*(r - a)*(t - 1.0);
//Second hexagon
derivs[18] = 16./3.*(r - a )*(r - b)*(t - 0.0);
derivs[19] = -16./3.*(r - 0.5)*(r - b)*(t - 0.0);
derivs[20] = 16./3.*(r - 0.5)*(r - b)*(t - 0.0);
derivs[21] = -16./3.*(r - a )*(r - b)*(t - 0.0);
derivs[22] = 16./3.*(r - 0.5)*(r - a)*(t - 0.0);
derivs[23] = -16./3.*(r - 0.5)*(r - a)*(t - 0.0);
// t-derivatives
//First hexagon
derivs[24] = -16./3.*(r - a )*(r - b)*(s - 1.0 );
derivs[25] = 16./3.*(r - 0.5)*(r - b)*(s - 0.75);
derivs[26] = -16./3.*(r - 0.5)*(r - b)*(s - 0.25);
derivs[27] = 16./3.*(r - a )*(r - b)*(s - 0.0 );
derivs[28] = -16./3.*(r - 0.5)*(r - a)*(s - 0.25);
derivs[29] = 16./3.*(r - 0.5)*(r - a)*(s - 0.75);
//Second hexagon
derivs[30] = 16./3.*(r - a )*(r - b)*(s - 1.0 );
derivs[31] = -16./3.*(r - 0.5)*(r - b)*(s - 0.75);
derivs[32] = 16./3.*(r - 0.5)*(r - b)*(s - 0.25);
derivs[33] = -16./3.*(r - a )*(r - b)*(s - 0.0 );
derivs[34] = 16./3.*(r - 0.5)*(r - a)*(s - 0.25);
derivs[35] = -16./3.*(r - 0.5)*(r - a)*(s - 0.75);
}
//----------------------------------------------------------------------------
void vtkHexagonalPrism::EvaluateLocation(int& vtkNotUsed(subId),
double pcoords[3], double x[3],
double *weights)
{
int i, j;
double pt[3];
this->InterpolationFunctions(pcoords, weights);
x[0] = x[1] = x[2] = 0.0;
for (i = 0; i < 12; i++)
{
this->Points->GetPoint (i, pt);
for (j = 0; j < 3; j++)
{
x[j] += pt [j] * weights [i];
}
}
}
//----------------------------------------------------------------------------
static int edges[18][2] = { {0,1}, {1, 2}, {2, 3},
{3,4}, {4, 5}, {5, 0},
{6,7}, {7, 8}, {8, 9},
{9,10}, {10,11}, {11, 6},
{0,6}, {1, 7}, {2, 8},
{3,9}, {4, 10}, {5, 11} };
static int faces[8][6] = { {0,5,4,3,2,1}, {6,7,8,9,10,11},
{0,1,7,6,-1,-1}, {1,2,8,7,-1,-1},
{2,3,9,8,-1,-1}, {3,4,10,9,-1,-1},
{4,5,11,10,-1,-1}, {5,0,6,11,-1,-1} };
#define VTK_MAX(a,b) (((a)>(b))?(a):(b))
#define VTK_MIN(a,b) (((a)<(b))?(a):(b))
//----------------------------------------------------------------------------
// Returns the closest face to the point specified. Closeness is measured
// parametrically.
int vtkHexagonalPrism::CellBoundary(int subId, double pcoords[3],
vtkIdList *pts)
{
// load coordinates
double *points = this->GetParametricCoords();
for(int i=0;i<6;i++)
{
this->Polygon->PointIds->SetId(i, i);
this->Polygon->Points->SetPoint(i, &points[3*i]);
}
this->Polygon->CellBoundary( subId, pcoords, pts);
int min = VTK_MIN(pts->GetId( 0 ), pts->GetId( 1 ));
int max = VTK_MAX(pts->GetId( 0 ), pts->GetId( 1 ));
//Base on the edge find the quad that correspond:
int index;
if( (index = (max - min)) > 1)
{
index = 7;
}
else
{
index += min + 1;
}
double a[3], b[3], u[3], v[3];
this->Polygon->Points->GetPoint(pts->GetId( 0 ), a);
this->Polygon->Points->GetPoint(pts->GetId( 1 ), b);
u[0] = b[0] - a[0];
u[1] = b[1] - a[1];
v[0] = pcoords[0] - a[0];
v[1] = pcoords[1] - a[1];
double dot = vtkMath::Dot2D(v, u);
double uNorm = vtkMath::Norm2D( u );
if (uNorm)
{
dot /= uNorm;
}
dot = (v[0]*v[0] + v[1]*v[1]) - dot*dot;
// mathematically dot must be >= zero but, suprise suprise, it can actually
// be negative
if (dot > 0)
{
dot = sqrt( dot );
}
else
{
dot = 0;
}
int *verts;
if(pcoords[2] < 0.5)
{
//could be closer to face 1
//compare that distance to the distance to the quad.
if(dot < pcoords[2])
{
//We are closer to the quad face
verts = faces[index];
for(int i=0; i<4; i++)
{
pts->InsertId(i, verts[i]);
}
}
else
{
//we are closer to the hexa face 1
for(int i=0; i<6; i++)
{
pts->InsertId(i, faces[0][i]);
}
}
}
else
{
//could be closer to face 2
//compare that distance to the distance to the quad.
if(dot < (1. - pcoords[2]) )
{
//We are closer to the quad face
verts = faces[index];
for(int i=0; i<4; i++)
{
pts->InsertId(i, verts[i]);
}
}
else
{
//we are closer to the hexa face 2
for(int i=0; i<6; i++)
{
pts->InsertId(i, faces[1][i]);
}
}
}
// determine whether point is inside of hexagon
if ( pcoords[0] < 0.0 || pcoords[0] > 1.0 ||
pcoords[1] < 0.0 || pcoords[1] > 1.0 ||
pcoords[2] < 0.0 || pcoords[2] > 1.0 )
{
return 0;
}
else
{
return 1;
}
}
//----------------------------------------------------------------------------
int *vtkHexagonalPrism::GetEdgeArray(int edgeId)
{
return edges[edgeId];
}
//----------------------------------------------------------------------------
vtkCell *vtkHexagonalPrism::GetEdge(int edgeId)
{
int *verts;
verts = edges[edgeId];
// load point id's
this->Line->PointIds->SetId(0,this->PointIds->GetId(verts[0]));
this->Line->PointIds->SetId(1,this->PointIds->GetId(verts[1]));
// load coordinates
this->Line->Points->SetPoint(0,this->Points->GetPoint(verts[0]));
this->Line->Points->SetPoint(1,this->Points->GetPoint(verts[1]));
return this->Line;
}
//----------------------------------------------------------------------------
int *vtkHexagonalPrism::GetFaceArray(int faceId)
{
return faces[faceId];
}
//----------------------------------------------------------------------------
vtkCell *vtkHexagonalPrism::GetFace(int faceId)
{
int *verts;
verts = faces[faceId];
if ( verts[4] != -1 ) // polys cell
{
// load point id's
this->Polygon->PointIds->SetId(0,this->PointIds->GetId(verts[0]));
this->Polygon->PointIds->SetId(1,this->PointIds->GetId(verts[1]));
this->Polygon->PointIds->SetId(2,this->PointIds->GetId(verts[2]));
this->Polygon->PointIds->SetId(3,this->PointIds->GetId(verts[3]));
this->Polygon->PointIds->SetId(4,this->PointIds->GetId(verts[4]));
this->Polygon->PointIds->SetId(5,this->PointIds->GetId(verts[5]));
// load coordinates
this->Polygon->Points->SetPoint(0,this->Points->GetPoint(verts[0]));
this->Polygon->Points->SetPoint(1,this->Points->GetPoint(verts[1]));
this->Polygon->Points->SetPoint(2,this->Points->GetPoint(verts[2]));
this->Polygon->Points->SetPoint(3,this->Points->GetPoint(verts[3]));
this->Polygon->Points->SetPoint(4,this->Points->GetPoint(verts[4]));
this->Polygon->Points->SetPoint(5,this->Points->GetPoint(verts[5]));
return this->Polygon;
}
else
{
// load point id's
this->Quad->PointIds->SetId(0,this->PointIds->GetId(verts[0]));
this->Quad->PointIds->SetId(1,this->PointIds->GetId(verts[1]));
this->Quad->PointIds->SetId(2,this->PointIds->GetId(verts[2]));
this->Quad->PointIds->SetId(3,this->PointIds->GetId(verts[3]));
// load coordinates
this->Quad->Points->SetPoint(0,this->Points->GetPoint(verts[0]));
this->Quad->Points->SetPoint(1,this->Points->GetPoint(verts[1]));
this->Quad->Points->SetPoint(2,this->Points->GetPoint(verts[2]));
this->Quad->Points->SetPoint(3,this->Points->GetPoint(verts[3]));
return this->Quad;
}
}
//----------------------------------------------------------------------------
//
// Intersect prism faces against line. Each prism face is a quadrilateral.
//
int vtkHexagonalPrism::IntersectWithLine(double p1[3], double p2[3], double tol,
double &t, double x[3], double pcoords[3],
int& subId)
{
int intersection=0;
double pt1[3], pt2[3], pt3[3], pt4[3], pt5[3], pt6[3];
double tTemp;
double pc[3], xTemp[3], dist2, weights[12];
int faceNum;
t = VTK_DOUBLE_MAX;
//first intersect the penta faces
for (faceNum=0; faceNum<2; faceNum++)
{
this->Points->GetPoint(faces[faceNum][0], pt1);
this->Points->GetPoint(faces[faceNum][1], pt2);
this->Points->GetPoint(faces[faceNum][2], pt3);
this->Points->GetPoint(faces[faceNum][3], pt4);
this->Points->GetPoint(faces[faceNum][4], pt5);
this->Points->GetPoint(faces[faceNum][5], pt6);
this->Polygon->Points->SetPoint(0,pt1);
this->Polygon->Points->SetPoint(1,pt2);
this->Polygon->Points->SetPoint(2,pt3);
this->Polygon->Points->SetPoint(3,pt4);
this->Polygon->Points->SetPoint(4,pt5);
this->Polygon->Points->SetPoint(5,pt6);
if ( this->Polygon->IntersectWithLine(p1, p2, tol, tTemp, xTemp,
pc, subId) )
{
intersection = 1;
if ( tTemp < t )
{
t = tTemp;
x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2];
switch (faceNum)
{
case 0:
pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 0.0;
break;
case 1:
pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 1.0;
break;
}
}
}
}
//now intersect the quad faces
for (faceNum=2; faceNum<8; faceNum++)
{
this->Points->GetPoint(faces[faceNum][0], pt1);
this->Points->GetPoint(faces[faceNum][1], pt2);
this->Points->GetPoint(faces[faceNum][2], pt3);
this->Points->GetPoint(faces[faceNum][3], pt4);
this->Quad->Points->SetPoint(0,pt1);
this->Quad->Points->SetPoint(1,pt2);
this->Quad->Points->SetPoint(2,pt3);
this->Quad->Points->SetPoint(3,pt4);
if ( this->Quad->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId) )
{
intersection = 1;
if ( tTemp < t )
{
t = tTemp;
x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2];
this->EvaluatePosition(x, xTemp, subId, pcoords, dist2, weights);
}
}
}
return intersection;
}
//----------------------------------------------------------------------------
int vtkHexagonalPrism::Triangulate(int vtkNotUsed(index), vtkIdList *ptIds, vtkPoints *pts)
{
ptIds->Reset();
pts->Reset();
for ( int i=0; i < 4; i++ )
{
ptIds->InsertId(i,this->PointIds->GetId(i));
pts->InsertPoint(i,this->Points->GetPoint(i));
}
return 1;
}
//----------------------------------------------------------------------------
//
// Compute derivatives in x-y-z directions. Use chain rule in combination
// with interpolation function derivatives.
//
void vtkHexagonalPrism::Derivatives(int vtkNotUsed(subId), double pcoords[3],
double *values, int dim, double *derivs)
{
double *jI[3], j0[3], j1[3], j2[3];
double functionDerivs[36], sum[3], value;
int i, j, k;
// compute inverse Jacobian and interpolation function derivatives
jI[0] = j0; jI[1] = j1; jI[2] = j2;
this->JacobianInverse(pcoords, jI, functionDerivs);
// now compute derivates of values provided
for (k=0; k < dim; k++) //loop over values per vertex
{
sum[0] = sum[1] = sum[2] = 0.0;
for ( i=0; i < 12; i++) //loop over interp. function derivatives
{
value = values[dim*i + k];
sum[0] += functionDerivs[i] * value;
sum[1] += functionDerivs[12 + i] * value;
sum[2] += functionDerivs[24 + i] * value;
}
for (j=0; j < 3; j++) //loop over derivative directions
{
derivs[3*k + j] = sum[0]*jI[j][0] + sum[1]*jI[j][1] + sum[2]*jI[j][2];
}
}
}
//----------------------------------------------------------------------------
// Given parametric coordinates compute inverse Jacobian transformation
// matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
// function derivatives.
void vtkHexagonalPrism::JacobianInverse(double pcoords[3], double **inverse,
double derivs[36])
{
int i, j;
double *m[3], m0[3], m1[3], m2[3];
double x[3];
// compute interpolation function derivatives
this->InterpolationDerivs(pcoords, derivs);
// create Jacobian matrix
m[0] = m0; m[1] = m1; m[2] = m2;
for (i=0; i < 3; i++) //initialize matrix
{
m0[i] = m1[i] = m2[i] = 0.0;
}
for ( j=0; j < 12; j++ )
{
this->Points->GetPoint(j, x);
for ( i=0; i < 3; i++ )
{
m0[i] += x[i] * derivs[j];
m1[i] += x[i] * derivs[12 + j];
m2[i] += x[i] * derivs[24 + j];
}
}
// now find the inverse
if ( vtkMath::InvertMatrix(m,inverse,3) == 0 )
{
vtkErrorMacro(<<"Jacobian inverse not found");
return;
}
}
//----------------------------------------------------------------------------
void vtkHexagonalPrism::GetEdgePoints(int edgeId, int* &pts)
{
pts = this->GetEdgeArray(edgeId);
}
//----------------------------------------------------------------------------
void vtkHexagonalPrism::GetFacePoints(int faceId, int* &pts)
{
pts = this->GetFaceArray(faceId);
}
static double vtkHexagonalPrismCellPCoords[36] = {
0.5, 0.0 , 0.0,
EXPRA, 0.25, 0.0,
EXPRA, 0.75, 0.0,
0.5, 1.0 , 0.0,
EXPRB, 0.75, 0.0,
EXPRB, 0.25, 0.0,
0.5, 0.0 , 1.0,
EXPRA, 0.25, 1.0,
EXPRA, 0.75, 1.0,
0.5, 1.0 , 1.0,
EXPRB, 0.75, 1.0,
EXPRB, 0.25, 1.0,
};
//----------------------------------------------------------------------------
double *vtkHexagonalPrism::GetParametricCoords()
{
return vtkHexagonalPrismCellPCoords;
}
//----------------------------------------------------------------------------
void vtkHexagonalPrism::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Line:\n";
this->Line->PrintSelf(os,indent.GetNextIndent());
os << indent << "Quad:\n";
this->Quad->PrintSelf(os,indent.GetNextIndent());
os << indent << "Polygon:\n";
this->Polygon->PrintSelf(os,indent.GetNextIndent());
}