You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
607 lines
15 KiB
607 lines
15 KiB
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: $RCSfile: vtkLine.cxx,v $
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
#include "vtkLine.h"
|
|
|
|
#include "vtkCellArray.h"
|
|
#include "vtkCellData.h"
|
|
#include "vtkMath.h"
|
|
#include "vtkObjectFactory.h"
|
|
#include "vtkPointData.h"
|
|
#include "vtkPointLocator.h"
|
|
#include "vtkPoints.h"
|
|
|
|
vtkCxxRevisionMacro(vtkLine, "$Revision: 1.1 $");
|
|
vtkStandardNewMacro(vtkLine);
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Construct the line with two points.
|
|
vtkLine::vtkLine()
|
|
{
|
|
this->Points->SetNumberOfPoints(2);
|
|
this->PointIds->SetNumberOfIds(2);
|
|
for (int i = 0; i < 2; i++)
|
|
{
|
|
this->Points->SetPoint(i, 0.0, 0.0, 0.0);
|
|
this->PointIds->SetId(i,0);
|
|
}
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
static const int VTK_NO_INTERSECTION=0;
|
|
static const int VTK_YES_INTERSECTION=2;
|
|
static const int VTK_ON_LINE=3;
|
|
|
|
int vtkLine::EvaluatePosition(double x[3], double* closestPoint,
|
|
int& subId, double pcoords[3],
|
|
double& dist2, double *weights)
|
|
{
|
|
double a1[3], a2[3];
|
|
|
|
subId = 0;
|
|
pcoords[1] = pcoords[2] = 0.0;
|
|
|
|
this->Points->GetPoint(0, a1);
|
|
this->Points->GetPoint(1, a2);
|
|
|
|
if (closestPoint)
|
|
{
|
|
// DistanceToLine sets pcoords[0] to a value t, 0 <= t <= 1
|
|
dist2 = this->DistanceToLine(x,a1,a2,pcoords[0],closestPoint);
|
|
}
|
|
|
|
// pcoords[0] == t, need weights to be 1-t and t
|
|
weights[0] = 1.0 - pcoords[0];
|
|
weights[1] = pcoords[0];
|
|
|
|
if ( pcoords[0] < 0.0 || pcoords[0] > 1.0 )
|
|
{
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
void vtkLine::EvaluateLocation(int& vtkNotUsed(subId), double pcoords[3],
|
|
double x[3], double *weights)
|
|
{
|
|
int i;
|
|
double a1[3], a2[3];
|
|
this->Points->GetPoint(0, a1);
|
|
this->Points->GetPoint(1, a2);
|
|
|
|
for (i=0; i<3; i++)
|
|
{
|
|
x[i] = a1[i] + pcoords[0]*(a2[i] - a1[i]);
|
|
}
|
|
|
|
weights[0] = 1.0 - pcoords[0];
|
|
weights[1] = pcoords[0];
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Performs intersection of two finite 3D lines. An intersection is found if
|
|
// the projection of the two lines onto the plane perpendicular to the cross
|
|
// product of the two lines intersect. The parameters (u,v) are the
|
|
// parametric coordinates of the lines at the position of closest approach.
|
|
int vtkLine::Intersection (double a1[3], double a2[3],
|
|
double b1[3], double b2[3],
|
|
double& u, double& v)
|
|
{
|
|
double a21[3], b21[3], b1a1[3];
|
|
double c[2];
|
|
double *A[2], row1[2], row2[2];
|
|
|
|
// Initialize
|
|
u = v = 0.0;
|
|
|
|
// Determine line vectors.
|
|
a21[0] = a2[0] - a1[0]; b21[0] = b2[0] - b1[0]; b1a1[0] = b1[0] - a1[0];
|
|
a21[1] = a2[1] - a1[1]; b21[1] = b2[1] - b1[1]; b1a1[1] = b1[1] - a1[1];
|
|
a21[2] = a2[2] - a1[2]; b21[2] = b2[2] - b1[2]; b1a1[2] = b1[2] - a1[2];
|
|
|
|
// Compute the system (least squares) matrix.
|
|
A[0] = row1;
|
|
A[1] = row2;
|
|
row1[0] = vtkMath::Dot ( a21, a21 );
|
|
row1[1] = -vtkMath::Dot ( a21, b21 );
|
|
row2[0] = row1[1];
|
|
row2[1] = vtkMath::Dot ( b21, b21 );
|
|
|
|
// Compute the least squares system constant term.
|
|
c[0] = vtkMath::Dot ( a21, b1a1 );
|
|
c[1] = -vtkMath::Dot ( b21, b1a1 );
|
|
|
|
|
|
// Solve the system of equations
|
|
if ( vtkMath::SolveLinearSystem(A,c,2) == 0 )
|
|
{
|
|
return VTK_ON_LINE;
|
|
}
|
|
else
|
|
{
|
|
u = c[0];
|
|
v = c[1];
|
|
}
|
|
|
|
// Check parametric coordinates for intersection.
|
|
if ( (0.0 <= u) && (u <= 1.0) && (0.0 <= v) && (v <= 1.0) )
|
|
{
|
|
return VTK_YES_INTERSECTION;
|
|
}
|
|
else
|
|
{
|
|
return VTK_NO_INTERSECTION;
|
|
}
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
int vtkLine::CellBoundary(int vtkNotUsed(subId), double pcoords[3],
|
|
vtkIdList *pts)
|
|
{
|
|
pts->SetNumberOfIds(1);
|
|
|
|
if ( pcoords[0] >= 0.5 )
|
|
{
|
|
pts->SetId(0,this->PointIds->GetId(1));
|
|
if ( pcoords[0] > 1.0 )
|
|
{
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
return 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
pts->SetId(0,this->PointIds->GetId(0));
|
|
if ( pcoords[0] < 0.0 )
|
|
{
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
//
|
|
// marching lines case table
|
|
//
|
|
typedef int VERT_LIST;
|
|
|
|
typedef struct {
|
|
VERT_LIST verts[2];
|
|
} VERT_CASES;
|
|
|
|
static VERT_CASES vertCases[4]= {
|
|
{{-1,-1}},
|
|
{{1,0}},
|
|
{{0,1}},
|
|
{{-1,-1}}};
|
|
|
|
//----------------------------------------------------------------------------
|
|
void vtkLine::Contour(double value, vtkDataArray *cellScalars,
|
|
vtkPointLocator *locator, vtkCellArray *verts,
|
|
vtkCellArray *vtkNotUsed(lines),
|
|
vtkCellArray *vtkNotUsed(polys),
|
|
vtkPointData *inPd, vtkPointData *outPd,
|
|
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd)
|
|
{
|
|
static int CASE_MASK[2] = {1,2};
|
|
int index, i, newCellId;
|
|
VERT_CASES *vertCase;
|
|
VERT_LIST *vert;
|
|
double t, x[3], x1[3], x2[3];
|
|
vtkIdType pts[1];
|
|
|
|
//
|
|
// Build the case table
|
|
//
|
|
for ( i=0, index = 0; i < 2; i++)
|
|
{
|
|
if (cellScalars->GetComponent(i,0) >= value)
|
|
{
|
|
index |= CASE_MASK[i];
|
|
}
|
|
}
|
|
|
|
vertCase = vertCases + index;
|
|
vert = vertCase->verts;
|
|
|
|
if ( vert[0] > -1 )
|
|
{
|
|
t = (value - cellScalars->GetComponent(vert[0],0)) /
|
|
(cellScalars->GetComponent(vert[1],0) -
|
|
cellScalars->GetComponent(vert[0],0));
|
|
this->Points->GetPoint(vert[0], x1);
|
|
this->Points->GetPoint(vert[1], x2);
|
|
for (i=0; i<3; i++)
|
|
{
|
|
x[i] = x1[i] + t * (x2[i] - x1[i]);
|
|
}
|
|
|
|
if ( locator->InsertUniquePoint(x, pts[0]) )
|
|
{
|
|
if ( outPd )
|
|
{
|
|
vtkIdType p1 = this->PointIds->GetId(vert[0]);
|
|
vtkIdType p2 = this->PointIds->GetId(vert[1]);
|
|
outPd->InterpolateEdge(inPd,pts[0],p1,p2,t);
|
|
}
|
|
}
|
|
newCellId = verts->InsertNextCell(1,pts);
|
|
outCd->CopyData(inCd,cellId,newCellId);
|
|
}
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Compute distance to finite line. Returns parametric coordinate t
|
|
// and point location on line.
|
|
double vtkLine::DistanceToLine(double x[3], double p1[3], double p2[3],
|
|
double &t, double closestPoint[3])
|
|
{
|
|
double p21[3], denom, num;
|
|
double *closest;
|
|
double tolerance;
|
|
//
|
|
// Determine appropriate vectors
|
|
//
|
|
p21[0] = p2[0]- p1[0];
|
|
p21[1] = p2[1]- p1[1];
|
|
p21[2] = p2[2]- p1[2];
|
|
|
|
//
|
|
// Get parametric location
|
|
//
|
|
num = p21[0]*(x[0]-p1[0]) + p21[1]*(x[1]-p1[1]) + p21[2]*(x[2]-p1[2]);
|
|
denom = vtkMath::Dot(p21,p21);
|
|
|
|
// trying to avoid an expensive fabs
|
|
tolerance = VTK_TOL*num;
|
|
if (tolerance < 0.0)
|
|
{
|
|
tolerance = -tolerance;
|
|
}
|
|
if ( -tolerance < denom && denom < tolerance ) //numerically bad!
|
|
{
|
|
closest = p1; //arbitrary, point is (numerically) far away
|
|
}
|
|
//
|
|
// If parametric coordinate is within 0<=p<=1, then the point is closest to
|
|
// the line. Otherwise, it's closest to a point at the end of the line.
|
|
//
|
|
else if ( (t=num/denom) < 0.0 )
|
|
{
|
|
closest = p1;
|
|
}
|
|
else if ( t > 1.0 )
|
|
{
|
|
closest = p2;
|
|
}
|
|
else
|
|
{
|
|
closest = p21;
|
|
p21[0] = p1[0] + t*p21[0];
|
|
p21[1] = p1[1] + t*p21[1];
|
|
p21[2] = p1[2] + t*p21[2];
|
|
}
|
|
|
|
closestPoint[0] = closest[0];
|
|
closestPoint[1] = closest[1];
|
|
closestPoint[2] = closest[2];
|
|
return vtkMath::Distance2BetweenPoints(closest,x);
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
//
|
|
// Determine the distance of the current vertex to the edge defined by
|
|
// the vertices provided. Returns distance squared. Note: line is assumed
|
|
// infinite in extent.
|
|
//
|
|
double vtkLine::DistanceToLine (double x[3], double p1[3], double p2[3])
|
|
{
|
|
int i;
|
|
double np1[3], p1p2[3], proj, den;
|
|
|
|
for (i=0; i<3; i++)
|
|
{
|
|
np1[i] = x[i] - p1[i];
|
|
p1p2[i] = p1[i] - p2[i];
|
|
}
|
|
|
|
if ( (den=vtkMath::Norm(p1p2)) != 0.0 )
|
|
{
|
|
for (i=0; i<3; i++)
|
|
{
|
|
p1p2[i] /= den;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return vtkMath::Dot(np1,np1);
|
|
}
|
|
|
|
proj = vtkMath::Dot(np1,p1p2);
|
|
|
|
return (vtkMath::Dot(np1,np1) - proj*proj);
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
// Line-line intersection. Intersection has to occur within [0,1] parametric
|
|
// coordinates and with specified tolerance.
|
|
int vtkLine::IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
|
|
double x[3], double pcoords[3], int& subId)
|
|
{
|
|
double a1[3], a2[3];
|
|
double projXYZ[3];
|
|
int i;
|
|
|
|
subId = 0;
|
|
pcoords[1] = pcoords[2] = 0.0;
|
|
|
|
this->Points->GetPoint(0, a1);
|
|
this->Points->GetPoint(1, a2);
|
|
|
|
if ( this->Intersection(p1, p2, a1, a2, t, pcoords[0]) ==
|
|
VTK_YES_INTERSECTION )
|
|
{
|
|
// make sure we are within tolerance
|
|
for (i=0; i<3; i++)
|
|
{
|
|
x[i] = a1[i] + pcoords[0]*(a2[i]-a1[i]);
|
|
projXYZ[i] = p1[i] + t*(p2[i]-p1[i]);
|
|
}
|
|
if ( vtkMath::Distance2BetweenPoints(x,projXYZ) <= tol*tol )
|
|
{
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
else //check to see if it lies within tolerance
|
|
{
|
|
// one of the parametric coords must be outside 0-1
|
|
if (t < 0.0)
|
|
{
|
|
t = 0.0;
|
|
if (vtkLine::DistanceToLine(p1,a1,a2,pcoords[0],x) <= tol*tol)
|
|
{
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
if (t > 1.0)
|
|
{
|
|
t = 1.0;
|
|
if (vtkLine::DistanceToLine(p2,a1,a2,pcoords[0],x) <= tol*tol)
|
|
{
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
if (pcoords[0] < 0.0)
|
|
{
|
|
pcoords[0] = 0.0;
|
|
if (vtkLine::DistanceToLine(a1,p1,p2,t,x) <= tol*tol)
|
|
{
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
if (pcoords[0] > 1.0)
|
|
{
|
|
pcoords[0] = 1.0;
|
|
if (vtkLine::DistanceToLine(a2,p1,p2,t,x) <= tol*tol)
|
|
{
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
int vtkLine::Triangulate(int vtkNotUsed(index), vtkIdList *ptIds,
|
|
vtkPoints *pts)
|
|
{
|
|
pts->Reset();
|
|
ptIds->Reset();
|
|
|
|
ptIds->InsertId(0,this->PointIds->GetId(0));
|
|
pts->InsertPoint(0,this->Points->GetPoint(0));
|
|
|
|
ptIds->InsertId(1,this->PointIds->GetId(1));
|
|
pts->InsertPoint(1,this->Points->GetPoint(1));
|
|
|
|
return 1;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
void vtkLine::Derivatives(int vtkNotUsed(subId),
|
|
double vtkNotUsed(pcoords)[3],
|
|
double *values,
|
|
int dim, double *derivs)
|
|
{
|
|
double x0[3], x1[3], deltaX[3];
|
|
int i, j;
|
|
|
|
this->Points->GetPoint(0, x0);
|
|
this->Points->GetPoint(1, x1);
|
|
|
|
for (i=0; i<3; i++)
|
|
{
|
|
deltaX[i] = x1[i] - x0[i];
|
|
}
|
|
for (i=0; i<dim; i++)
|
|
{
|
|
for (j=0; j<3; j++)
|
|
{
|
|
if ( deltaX[j] != 0 )
|
|
{
|
|
derivs[3*i+j] = (values[2*i+1] - values[2*i]) / deltaX[j];
|
|
}
|
|
else
|
|
{
|
|
derivs[3*i+j] =0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------
|
|
// support line clipping
|
|
typedef int LINE_LIST;
|
|
typedef struct {
|
|
LINE_LIST lines[2];
|
|
} LINE_CASES;
|
|
|
|
static LINE_CASES lineCases[] = {
|
|
{{ -1, -1}}, // 0
|
|
{{100, 1}}, // 1
|
|
{{ 0, 101}}, // 2
|
|
{{100, 101}}}; // 3
|
|
|
|
// Clip this line using scalar value provided. Like contouring, except
|
|
// that it cuts the line to produce other lines.
|
|
void vtkLine::Clip(double value, vtkDataArray *cellScalars,
|
|
vtkPointLocator *locator, vtkCellArray *lines,
|
|
vtkPointData *inPd, vtkPointData *outPd,
|
|
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
|
|
int insideOut)
|
|
{
|
|
static int CASE_MASK[3] = {1,2};
|
|
LINE_CASES *lineCase;
|
|
int i, j, index, *vert, newCellId;
|
|
vtkIdType pts[3];
|
|
int vertexId;
|
|
double t, x1[3], x2[3], x[3];
|
|
|
|
// Build the case table
|
|
if ( insideOut )
|
|
{
|
|
for ( i=0, index = 0; i < 2; i++)
|
|
{
|
|
if (cellScalars->GetComponent(i,0) <= value)
|
|
{
|
|
index |= CASE_MASK[i];
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for ( i=0, index = 0; i < 2; i++)
|
|
{
|
|
if (cellScalars->GetComponent(i,0) > value)
|
|
{
|
|
index |= CASE_MASK[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Select the case based on the index and get the list of lines for this case
|
|
lineCase = lineCases + index;
|
|
vert = lineCase->lines;
|
|
|
|
// generate clipped line
|
|
if ( vert[0] > -1 )
|
|
{
|
|
for (i=0; i<2; i++) // insert line
|
|
{
|
|
// vertex exists, and need not be interpolated
|
|
if (vert[i] >= 100)
|
|
{
|
|
vertexId = vert[i] - 100;
|
|
this->Points->GetPoint(vertexId, x);
|
|
if ( locator->InsertUniquePoint(x, pts[i]) )
|
|
{
|
|
outPd->CopyData(inPd,this->PointIds->GetId(vertexId),pts[i]);
|
|
}
|
|
}
|
|
|
|
else //new vertex, interpolate
|
|
{
|
|
t = (value - cellScalars->GetComponent(0,0)) /
|
|
(cellScalars->GetComponent(1,0) - cellScalars->GetComponent(0,0));
|
|
|
|
this->Points->GetPoint(0, x1);
|
|
this->Points->GetPoint(1, x2);
|
|
for (j=0; j<3; j++)
|
|
{
|
|
x[j] = x1[j] + t * (x2[j] - x1[j]);
|
|
}
|
|
|
|
if ( locator->InsertUniquePoint(x, pts[i]) )
|
|
{
|
|
vtkIdType p1 = this->PointIds->GetId(0);
|
|
vtkIdType p2 = this->PointIds->GetId(1);
|
|
outPd->InterpolateEdge(inPd,pts[i],p1,p2,t);
|
|
}
|
|
}
|
|
}
|
|
// check for degenerate lines
|
|
if ( pts[0] != pts[1] )
|
|
{
|
|
newCellId = lines->InsertNextCell(2,pts);
|
|
outCd->CopyData(inCd,cellId,newCellId);
|
|
}
|
|
}
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
//
|
|
// Compute interpolation functions
|
|
//
|
|
void vtkLine::InterpolationFunctions(double pcoords[3], double weights[2])
|
|
{
|
|
weights[0] = 1.0 - pcoords[0];
|
|
weights[1] = pcoords[0];
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
static double vtkLineCellPCoords[6] = {0.0,0.0,0.0, 1.0,0.0,0.0};
|
|
double *vtkLine::GetParametricCoords()
|
|
{
|
|
return vtkLineCellPCoords;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------
|
|
void vtkLine::PrintSelf(ostream& os, vtkIndent indent)
|
|
{
|
|
this->Superclass::PrintSelf(os,indent);
|
|
}
|
|
|
|
|