Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

138 lines
5.2 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkQuadraticWedge.h,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkQuadraticWedge - cell represents a parabolic, 15-node isoparametric wedge
// .SECTION Description
// vtkQuadraticWedge is a concrete implementation of vtkNonLinearCell to
// represent a three-dimensional, 15-node isoparametric parabolic
// wedge. The interpolation is the standard finite element, quadratic
// isoparametric shape function. The cell includes a mid-edge node. The
// ordering of the fifteen points defining the cell is point ids (0-5,6-15)
// where point ids 0-5 are the six corner vertices of the wedge; followed by
// nine midedge nodes (6-15). Note that these midedge nodes correspond lie
// on the edges defined by (0,1), (1,2), (2,0), (3,4), (4,5), (5,3), (0,3),
// (1,4), (2,5).
// .SECTION See Also
// vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra
// vtkQuadraticHexahedron vtkQuadraticQuad vtkQuadraticPyramid
#ifndef __vtkQuadraticWedge_h
#define __vtkQuadraticWedge_h
#include "vtkNonLinearCell.h"
class vtkQuadraticEdge;
class vtkQuadraticQuad;
class vtkQuadraticTriangle;
class vtkWedge;
class vtkDoubleArray;
class VTK_FILTERING_EXPORT vtkQuadraticWedge : public vtkNonLinearCell
{
public:
static vtkQuadraticWedge *New();
vtkTypeRevisionMacro(vtkQuadraticWedge,vtkNonLinearCell);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Implement the vtkCell API. See the vtkCell API for descriptions
// of these methods.
int GetCellType() {return VTK_QUADRATIC_WEDGE;}
int GetCellDimension() {return 3;}
int GetNumberOfEdges() {return 9;}
int GetNumberOfFaces() {return 5;}
vtkCell *GetEdge(int edgeId);
vtkCell *GetFace(int faceId);
int CellBoundary(int subId, double pcoords[3], vtkIdList *pts);
void Contour(double value, vtkDataArray *cellScalars,
vtkPointLocator *locator, vtkCellArray *verts,
vtkCellArray *lines, vtkCellArray *polys,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd);
int EvaluatePosition(double x[3], double* closestPoint,
int& subId, double pcoords[3],
double& dist2, double *weights);
void EvaluateLocation(int& subId, double pcoords[3], double x[3],
double *weights);
int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts);
void Derivatives(int subId, double pcoords[3], double *values,
int dim, double *derivs);
virtual double *GetParametricCoords();
// Description:
// Clip this quadratic hexahedron using scalar value provided. Like
// contouring, except that it cuts the hex to produce linear
// tetrahedron.
void Clip(double value, vtkDataArray *cellScalars,
vtkPointLocator *locator, vtkCellArray *tetras,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
int insideOut);
// Description:
// Line-edge intersection. Intersection has to occur within [0,1] parametric
// coordinates and with specified tolerance.
int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
double x[3], double pcoords[3], int& subId);
// Description:
// Return the center of the quadratic wedge in parametric coordinates.
int GetParametricCenter(double pcoords[3]);
// Description:
// Quadratic hexahedron specific methods.
static void InterpolationFunctions(double pcoords[3], double weights[15]);
static void InterpolationDerivs(double pcoords[3], double derivs[45]);
// Description:
// Given parametric coordinates compute inverse Jacobian transformation
// matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
// function derivatives.
void JacobianInverse(double pcoords[3], double **inverse, double derivs[45]);
protected:
vtkQuadraticWedge();
~vtkQuadraticWedge();
vtkQuadraticEdge *Edge;
vtkQuadraticTriangle *TriangleFace;
vtkQuadraticQuad *Face;
vtkWedge *Wedge;
vtkPointData *PointData;
vtkCellData *CellData;
vtkDoubleArray *CellScalars;
vtkDoubleArray *Scalars; //used to avoid New/Delete in contouring/clipping
void Subdivide(vtkPointData *inPd, vtkCellData *inCd, vtkIdType cellId, vtkDataArray *cellScalars);
private:
vtkQuadraticWedge(const vtkQuadraticWedge&); // Not implemented.
void operator=(const vtkQuadraticWedge&); // Not implemented.
};
//----------------------------------------------------------------------------
// Return the center of the quadratic wedge in parametric coordinates.
inline int vtkQuadraticWedge::GetParametricCenter(double pcoords[3])
{
pcoords[0] = pcoords[1] = 1./3;
pcoords[2] = 0.5;
return 0;
}
#endif