Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

389 lines
15 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkSimpleCellTessellator.h,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkSimpleCellTessellator - helper class to perform cell tessellation
// .SECTION Description
// vtkSimpleCellTessellator is a helper class to perform adaptive tessellation
// of particular cell topologies. The major purpose for this class is to
// transform higher-order cell types (e.g., higher-order finite elements)
// into linear cells that can then be easily visualized by VTK. This class
// works in conjunction with the vtkGenericDataSet and vtkGenericAdaptorCell
// classes.
//
// This algorithm is based on edge subdivision. An error metric along each
// edge is evaluated, and if the error is greater than some tolerance, the
// edge is subdivided (as well as all connected 2D and 3D cells). The process
// repeats until the error metric is satisfied. Since the algorithm is based
// on edge subdivision it inherently avoid T-junctions.
//
// A significant issue addressed by this algorithm is to insure face
// compatibility across neigboring cells. That is, diagonals due to face
// triangulation must match to insure that the mesh is compatible. The
// algorithm employs a precomputed table to accelerate the tessellation
// process. The table was generated with the help of vtkOrderedTriangulator
// the basic idea is that the choice of diagonal is made only by considering the
// relative value of the point ids.
//
// .SECTION See Also
// vtkGenericCellTessellator vtkGenericSubdivisionErrorMetric vtkAttributesErrorMetric
// vtkGeometricErrorMetric vtkViewDependentErrorMetric
#ifndef __vtkSimpleCellTessellator_h
#define __vtkSimpleCellTessellator_h
#include "vtkGenericCellTessellator.h"
class vtkTriangleTile;
class vtkTetraTile;
class vtkCellArray;
class vtkDoubleArray;
class vtkGenericEdgeTable;
class vtkGenericSubdivisionErrorMetric;
class vtkGenericAttributeCollection;
class vtkGenericAdaptorCell;
class vtkGenericCellIterator;
class vtkPointData;
class vtkOrderedTriangulator;
class vtkPolygon;
class vtkIdList;
//-----------------------------------------------------------------------------
//
// The tessellation object
class VTK_FILTERING_EXPORT vtkSimpleCellTessellator : public vtkGenericCellTessellator
{
public:
static vtkSimpleCellTessellator *New();
vtkTypeRevisionMacro(vtkSimpleCellTessellator,vtkGenericCellTessellator);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Get the higher order cell in order to access the evaluation function.
vtkGetObjectMacro(GenericCell, vtkGenericAdaptorCell);
// Description:
// Tessellate a face of a 3D `cell'. The face is specified by the
// index value.
// The result is a set of smaller linear triangles in `cellArray' with
// `points' and point data `internalPd'.
// \pre cell_exists: cell!=0
// \pre valid_dimension: cell->GetDimension()==3
// \pre valid_index_range: (index>=0) && (index<cell->GetNumberOfBoundaries(2))
// \pre att_exists: att!=0
// \pre points_exists: points!=0
// \pre cellArray_exists: cellArray!=0
// \pre internalPd_exists: internalPd!=0
void TessellateFace(vtkGenericAdaptorCell *cell,
vtkGenericAttributeCollection *att,
vtkIdType index,
vtkDoubleArray *points,
vtkCellArray *cellArray,
vtkPointData *internalPd);
// Description:
// Tessellate a 3D `cell'. The result is a set of smaller linear
// tetrahedra in `cellArray' with `points' and point data `internalPd'.
// \pre cell_exists: cell!=0
// \pre valid_dimension: cell->GetDimension()==3
// \pre att_exists: att!=0
// \pre points_exists: points!=0
// \pre cellArray_exists: cellArray!=0
// \pre internalPd_exists: internalPd!=0
void Tessellate(vtkGenericAdaptorCell *cell,
vtkGenericAttributeCollection *att,
vtkDoubleArray *points,
vtkCellArray *cellArray,
vtkPointData *internalPd );
// Description:
// Triangulate a 2D `cell'. The result is a set of smaller linear triangles
// in `cellArray' with `points' and point data `internalPd'.
// \pre cell_exists: cell!=0
// \pre valid_dimension: cell->GetDimension()==2
// \pre att_exists: att!=0
// \pre points_exists: points!=0
// \pre cellArray_exists: cellArray!=0
// \pre internalPd_exists: internalPd!=0
void Triangulate(vtkGenericAdaptorCell *cell,
vtkGenericAttributeCollection *att,
vtkDoubleArray *points,
vtkCellArray *cellArray,
vtkPointData *internalPd);
// Description:
// Reset the output for repeated use of this class.
void Reset();
// Description:
// Initialize the tessellator with a data set `ds'.
void Initialize(vtkGenericDataSet *ds);
// Description:
// Return the number of fixed subdivisions. It is used to prevent from
// infinite loop in degenerated cases. For order 3 or higher, if the
// inflection point is exactly on the mid-point, error metric will not
// detect that a subdivision is required. 0 means no fixed subdivision:
// there will be only adaptive subdivisions.
//
// The algorithm first performs `GetFixedSubdivisions' non adaptive
// subdivisions followed by at most `GetMaxAdaptiveSubdivisions' adaptive
// subdivisions. Hence, there are at most `GetMaxSubdivisionLevel'
// subdivisions.
// \post positive_result: result>=0 && result<=GetMaxSubdivisionLevel()
int GetFixedSubdivisions();
// Description:
// Return the maximum level of subdivision. It is used to prevent from
// infinite loop in degenerated cases. For order 3 or higher, if the
// inflection point is exactly on the mid-point, error metric will not
// detect that a subdivision is required. 0 means no subdivision,
// neither fixed nor adaptive.
// \post positive_result: result>=GetFixedSubdivisions()
int GetMaxSubdivisionLevel();
// Description:
// Return the maximum number of adaptive subdivisions.
// \post valid_result: result==GetMaxSubdivisionLevel()-GetFixedSubdivisions()
int GetMaxAdaptiveSubdivisions();
// Description:
// Set the number of fixed subdivisions. See GetFixedSubdivisions() for
// more explanations.
// \pre positive_level: level>=0 && level<=GetMaxSubdivisionLevel()
// \post is_set: GetFixedSubdivisions()==level
void SetFixedSubdivisions(int level);
// Description:
// Set the maximum level of subdivision. See GetMaxSubdivisionLevel() for
// more explanations.
// \pre positive_level: level>=GetFixedSubdivisions()
// \post is_set: level==GetMaxSubdivisionLevel()
void SetMaxSubdivisionLevel(int level);
// Description:
// Set both the number of fixed subdivisions and the maximum level of
// subdivisions. See GetFixedSubdivisions(), GetMaxSubdivisionLevel() and
// GetMaxAdaptiveSubdivisions() for more explanations.
// \pre positive_fixed: fixed>=0
// \pre valid_range: fixed<=maxLevel
// \post fixed_is_set: fixed==GetFixedSubdivisions()
// \post maxLevel_is_set: maxLevel==GetMaxSubdivisionLevel()
void SetSubdivisionLevels(int fixed,
int maxLevel);
protected:
vtkSimpleCellTessellator();
~vtkSimpleCellTessellator();
// Description:
// Extract point `pointId' from the edge table to the output point and output
// point data.
void CopyPoint(vtkIdType pointId);
// Description:
//HashTable instead of vtkPointLocator
vtkGenericEdgeTable *EdgeTable;
void InsertEdgesIntoEdgeTable( vtkTriangleTile &tri );
void RemoveEdgesFromEdgeTable( vtkTriangleTile &tri );
void InsertPointsIntoEdgeTable( vtkTriangleTile &tri );
void InsertEdgesIntoEdgeTable( vtkTetraTile &tetra );
void RemoveEdgesFromEdgeTable( vtkTetraTile &tetra );
// Description:
// Initialize `root' with the sub-tetra defined by the `localIds' points on
// the complex cell, `ids' are the global ids over the mesh of those points.
// The sub-tetra is also defined by the ids of its edges and of its faces
// relative to the complex cell. -1 means that the edge or the face of the
// sub-tetra is not an original edge or face of the complex cell.
// \pre cell_exists: this->GenericCell!=0
// \pre localIds_exists: localIds!=0
// \pre localIds_size: sizeof(localIds)==4
// \pre ids_exists: ids!=0
// \pre ids_size: sizeof(ids)==4
// \pre edgeIds_exists: edgeIds!=0
// \pre edgeIds_size: sizeof(edgeIds)==6
// \pre faceIds_exists: faceIds!=0
// \pre faceIds_size: sizeof(faceIds)==4
void InitTetraTile(vtkTetraTile &root,
vtkIdType *localIds,
vtkIdType *ids,
int *edgeIds,
int *faceIds);
// Description:
// Triangulate a triangle of `cell'. This triangle can be the top-level
// triangle if the cell is a triangle or a toplevel sub-triangle is the cell
// is a polygon, or a triangular face of a 3D cell or a top-level
// sub-triangle of a face of a 3D cell if the face is not a triangle.
// Arguments `localIds', `ids' and `edgeIds' have the same meaning than
// for InitTetraTile.
// \pre cell_exists: cell!=0
// \pre localIds_exists: localIds!=0
// \pre localIds_size: sizeof(localIds)==3
// \pre ids_exists: ids!=0
// \pre ids_size: sizeof(ids)==3
// \pre edgeIds_exists: edgeIds!=0
// \pre edgeIds_size: sizeof(edgeIds)==3
void TriangulateTriangle(vtkGenericAdaptorCell *cell,
vtkIdType *localIds,
vtkIdType *ids,
int *edgeIds,
vtkGenericAttributeCollection *att,
vtkDoubleArray *points,
vtkCellArray *cellArray,
vtkPointData *internalPd);
// Description:
// To access the higher order cell from third party library
vtkGenericAdaptorCell *GenericCell;
// Description:
// Allocate some memory if Scalars does not exists or is smaller than size.
// \pre positive_size: size>0
void AllocateScalars(int size);
// Description:
// Scalar buffer used to save the interpolate values of the attributes
// The capacity is at least the number of components of the attribute
// collection ot the current cell.
// Scalar buffer that stores the global coordinates, parametric coordinates,
// attributes at left, mid and right point. The format is:
// lxlylz lrlslt [lalb lcldle...] mxmymz mrmsmt [mamb mcmdme...]
// rxryrz rrrsrt [rarb rcrdre...]
// The ScalarsCapacity>=(6+attributeCollection->GetNumberOfComponents())*3
double *Scalars;
int ScalarsCapacity;
// Description:
// Number of double value to skip to go to the next point into Scalars array
// It is 6+attributeCollection->GetNumberOfComponents()
int PointOffset;
// Description:
// Used to iterate over edges boundaries in GetNumberOfCellsUsingEdges()
vtkGenericCellIterator *CellIterator;
// Description:
// To access the higher order field from third party library
vtkGenericAttributeCollection *AttributeCollection;
// Description:
// To avoid New/Delete
vtkDoubleArray *TessellatePoints; //Allow to use GetPointer
vtkCellArray *TessellateCellArray;
vtkPointData *TessellatePointData;
int FindEdgeReferenceCount(double p1[3], double p2[3],
vtkIdType &e1, vtkIdType &e2);
int GetNumberOfCellsUsingFace( int faceId );
int GetNumberOfCellsUsingEdge( int edgeId );
// Description:
// Is the edge defined by vertices (`p1',`p2') in parametric coordinates on
// some edge of the original tetrahedron? If yes return on which edge it is,
// else return -1.
// \pre p1!=p2
// \pre p1 and p2 are in bounding box (0,0,0) (1,1,1)
// \post valid_result: (result==-1) || ( result>=0 && result<=5 )
int IsEdgeOnFace(double p1[3], double p2[3]);
// Description:
// Return 1 if the parent of edge defined by vertices (`p1',`p2') in
// parametric coordinates, is an edge; 3 if there is no parent (the edge is
// inside). If the parent is an edge, return its id in `localId'.
// \pre p1!=p2
// \pre p1 and p2 are in bounding box (0,0,0) (1,1,1)
// \post valid_result: (result==1)||(result==3)
int FindEdgeParent2D(double p1[3], double p2[3], int &localId);
// Description:
// Return 1 if the parent of edge defined by vertices (`p1',`p2') in
// parametric coordinates, is an edge; 2 if the parent is a face, 3 if there
// is no parent (the edge is inside). If the parent is an edge or a face,
// return its id in `localId'.
// \pre p1!=p2
// \pre p1 and p2 are in bounding box (0,0,0) (1,1,1)
// \post valid_result: result>=1 && result<=3
int FindEdgeParent(double p1[3], double p2[3], int &localId);
// Description:
// Allocate some memory if PointIds does not exist or is smaller than size.
// \pre positive_size: size>0
void AllocatePointIds(int size);
// Description:
// Are the faces `originalFace' and `face' equal?
// The result is independent from any order or orientation.
// \pre originalFace_exists: originalFace!=0
int FacesAreEqual(int *originalFace,
int face[3]);
// Description:
// Dataset to be tessellated.
vtkGenericDataSet *DataSet;
// Description:
// Number of points in the dataset to be tessellated.
vtkIdType NumberOfPoints;
int FixedSubdivisions;
int MaxSubdivisionLevel;
int CurrentSubdivisionLevel;
// Description:
// For each edge (6) of the sub-tetra, there is the id of the original edge
// or -1 if the edge is not an original edge
int *EdgeIds;
// Description:
// For each face (4) of the sub-tetra, there is the id of the original face
// or -1 if the face is not an original face
int *FaceIds;
// The following variables are for complex cells.
// Used to create tetra from more complex cells, because the tessellator
// is supposed to deal with simplices only.
vtkOrderedTriangulator *Triangulator;
// Used to store the sub-tetra during the tessellation of complex
// cells.
vtkCellArray *Connectivity;
// Used to create triangles from a face of a complex cell.
vtkPolygon *Polygon;
// Used to store the sub-triangles during the tessellation of complex cells.
vtkIdList *TriangleIds;
vtkIdType *PointIds;
int PointIdsCapacity;
private:
vtkSimpleCellTessellator(const vtkSimpleCellTessellator&); // Not implemented.
void operator=(const vtkSimpleCellTessellator&); // Not implemented.
//BTX
friend class vtkTetraTile;
friend class vtkTriangleTile;
//ETX
};
#endif