You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
389 lines
15 KiB
389 lines
15 KiB
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: $RCSfile: vtkSimpleCellTessellator.h,v $
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
// .NAME vtkSimpleCellTessellator - helper class to perform cell tessellation
|
|
// .SECTION Description
|
|
// vtkSimpleCellTessellator is a helper class to perform adaptive tessellation
|
|
// of particular cell topologies. The major purpose for this class is to
|
|
// transform higher-order cell types (e.g., higher-order finite elements)
|
|
// into linear cells that can then be easily visualized by VTK. This class
|
|
// works in conjunction with the vtkGenericDataSet and vtkGenericAdaptorCell
|
|
// classes.
|
|
//
|
|
// This algorithm is based on edge subdivision. An error metric along each
|
|
// edge is evaluated, and if the error is greater than some tolerance, the
|
|
// edge is subdivided (as well as all connected 2D and 3D cells). The process
|
|
// repeats until the error metric is satisfied. Since the algorithm is based
|
|
// on edge subdivision it inherently avoid T-junctions.
|
|
//
|
|
// A significant issue addressed by this algorithm is to insure face
|
|
// compatibility across neigboring cells. That is, diagonals due to face
|
|
// triangulation must match to insure that the mesh is compatible. The
|
|
// algorithm employs a precomputed table to accelerate the tessellation
|
|
// process. The table was generated with the help of vtkOrderedTriangulator
|
|
// the basic idea is that the choice of diagonal is made only by considering the
|
|
// relative value of the point ids.
|
|
//
|
|
// .SECTION See Also
|
|
// vtkGenericCellTessellator vtkGenericSubdivisionErrorMetric vtkAttributesErrorMetric
|
|
// vtkGeometricErrorMetric vtkViewDependentErrorMetric
|
|
|
|
#ifndef __vtkSimpleCellTessellator_h
|
|
#define __vtkSimpleCellTessellator_h
|
|
|
|
#include "vtkGenericCellTessellator.h"
|
|
|
|
class vtkTriangleTile;
|
|
class vtkTetraTile;
|
|
class vtkCellArray;
|
|
class vtkDoubleArray;
|
|
class vtkGenericEdgeTable;
|
|
class vtkGenericSubdivisionErrorMetric;
|
|
class vtkGenericAttributeCollection;
|
|
class vtkGenericAdaptorCell;
|
|
class vtkGenericCellIterator;
|
|
class vtkPointData;
|
|
class vtkOrderedTriangulator;
|
|
class vtkPolygon;
|
|
class vtkIdList;
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// The tessellation object
|
|
class VTK_FILTERING_EXPORT vtkSimpleCellTessellator : public vtkGenericCellTessellator
|
|
{
|
|
public:
|
|
static vtkSimpleCellTessellator *New();
|
|
vtkTypeRevisionMacro(vtkSimpleCellTessellator,vtkGenericCellTessellator);
|
|
void PrintSelf(ostream& os, vtkIndent indent);
|
|
|
|
// Description:
|
|
// Get the higher order cell in order to access the evaluation function.
|
|
vtkGetObjectMacro(GenericCell, vtkGenericAdaptorCell);
|
|
|
|
// Description:
|
|
// Tessellate a face of a 3D `cell'. The face is specified by the
|
|
// index value.
|
|
// The result is a set of smaller linear triangles in `cellArray' with
|
|
// `points' and point data `internalPd'.
|
|
// \pre cell_exists: cell!=0
|
|
// \pre valid_dimension: cell->GetDimension()==3
|
|
// \pre valid_index_range: (index>=0) && (index<cell->GetNumberOfBoundaries(2))
|
|
// \pre att_exists: att!=0
|
|
// \pre points_exists: points!=0
|
|
// \pre cellArray_exists: cellArray!=0
|
|
// \pre internalPd_exists: internalPd!=0
|
|
void TessellateFace(vtkGenericAdaptorCell *cell,
|
|
vtkGenericAttributeCollection *att,
|
|
vtkIdType index,
|
|
vtkDoubleArray *points,
|
|
vtkCellArray *cellArray,
|
|
vtkPointData *internalPd);
|
|
|
|
// Description:
|
|
// Tessellate a 3D `cell'. The result is a set of smaller linear
|
|
// tetrahedra in `cellArray' with `points' and point data `internalPd'.
|
|
// \pre cell_exists: cell!=0
|
|
// \pre valid_dimension: cell->GetDimension()==3
|
|
// \pre att_exists: att!=0
|
|
// \pre points_exists: points!=0
|
|
// \pre cellArray_exists: cellArray!=0
|
|
// \pre internalPd_exists: internalPd!=0
|
|
void Tessellate(vtkGenericAdaptorCell *cell,
|
|
vtkGenericAttributeCollection *att,
|
|
vtkDoubleArray *points,
|
|
vtkCellArray *cellArray,
|
|
vtkPointData *internalPd );
|
|
|
|
// Description:
|
|
// Triangulate a 2D `cell'. The result is a set of smaller linear triangles
|
|
// in `cellArray' with `points' and point data `internalPd'.
|
|
// \pre cell_exists: cell!=0
|
|
// \pre valid_dimension: cell->GetDimension()==2
|
|
// \pre att_exists: att!=0
|
|
// \pre points_exists: points!=0
|
|
// \pre cellArray_exists: cellArray!=0
|
|
// \pre internalPd_exists: internalPd!=0
|
|
void Triangulate(vtkGenericAdaptorCell *cell,
|
|
vtkGenericAttributeCollection *att,
|
|
vtkDoubleArray *points,
|
|
vtkCellArray *cellArray,
|
|
vtkPointData *internalPd);
|
|
|
|
// Description:
|
|
// Reset the output for repeated use of this class.
|
|
void Reset();
|
|
|
|
|
|
// Description:
|
|
// Initialize the tessellator with a data set `ds'.
|
|
void Initialize(vtkGenericDataSet *ds);
|
|
|
|
// Description:
|
|
// Return the number of fixed subdivisions. It is used to prevent from
|
|
// infinite loop in degenerated cases. For order 3 or higher, if the
|
|
// inflection point is exactly on the mid-point, error metric will not
|
|
// detect that a subdivision is required. 0 means no fixed subdivision:
|
|
// there will be only adaptive subdivisions.
|
|
//
|
|
// The algorithm first performs `GetFixedSubdivisions' non adaptive
|
|
// subdivisions followed by at most `GetMaxAdaptiveSubdivisions' adaptive
|
|
// subdivisions. Hence, there are at most `GetMaxSubdivisionLevel'
|
|
// subdivisions.
|
|
// \post positive_result: result>=0 && result<=GetMaxSubdivisionLevel()
|
|
int GetFixedSubdivisions();
|
|
|
|
// Description:
|
|
// Return the maximum level of subdivision. It is used to prevent from
|
|
// infinite loop in degenerated cases. For order 3 or higher, if the
|
|
// inflection point is exactly on the mid-point, error metric will not
|
|
// detect that a subdivision is required. 0 means no subdivision,
|
|
// neither fixed nor adaptive.
|
|
// \post positive_result: result>=GetFixedSubdivisions()
|
|
int GetMaxSubdivisionLevel();
|
|
|
|
// Description:
|
|
// Return the maximum number of adaptive subdivisions.
|
|
// \post valid_result: result==GetMaxSubdivisionLevel()-GetFixedSubdivisions()
|
|
int GetMaxAdaptiveSubdivisions();
|
|
|
|
// Description:
|
|
// Set the number of fixed subdivisions. See GetFixedSubdivisions() for
|
|
// more explanations.
|
|
// \pre positive_level: level>=0 && level<=GetMaxSubdivisionLevel()
|
|
// \post is_set: GetFixedSubdivisions()==level
|
|
void SetFixedSubdivisions(int level);
|
|
|
|
// Description:
|
|
// Set the maximum level of subdivision. See GetMaxSubdivisionLevel() for
|
|
// more explanations.
|
|
// \pre positive_level: level>=GetFixedSubdivisions()
|
|
// \post is_set: level==GetMaxSubdivisionLevel()
|
|
void SetMaxSubdivisionLevel(int level);
|
|
|
|
// Description:
|
|
// Set both the number of fixed subdivisions and the maximum level of
|
|
// subdivisions. See GetFixedSubdivisions(), GetMaxSubdivisionLevel() and
|
|
// GetMaxAdaptiveSubdivisions() for more explanations.
|
|
// \pre positive_fixed: fixed>=0
|
|
// \pre valid_range: fixed<=maxLevel
|
|
// \post fixed_is_set: fixed==GetFixedSubdivisions()
|
|
// \post maxLevel_is_set: maxLevel==GetMaxSubdivisionLevel()
|
|
void SetSubdivisionLevels(int fixed,
|
|
int maxLevel);
|
|
|
|
|
|
protected:
|
|
vtkSimpleCellTessellator();
|
|
~vtkSimpleCellTessellator();
|
|
|
|
// Description:
|
|
// Extract point `pointId' from the edge table to the output point and output
|
|
// point data.
|
|
void CopyPoint(vtkIdType pointId);
|
|
|
|
// Description:
|
|
//HashTable instead of vtkPointLocator
|
|
vtkGenericEdgeTable *EdgeTable;
|
|
|
|
void InsertEdgesIntoEdgeTable( vtkTriangleTile &tri );
|
|
void RemoveEdgesFromEdgeTable( vtkTriangleTile &tri );
|
|
void InsertPointsIntoEdgeTable( vtkTriangleTile &tri );
|
|
|
|
void InsertEdgesIntoEdgeTable( vtkTetraTile &tetra );
|
|
void RemoveEdgesFromEdgeTable( vtkTetraTile &tetra );
|
|
|
|
// Description:
|
|
// Initialize `root' with the sub-tetra defined by the `localIds' points on
|
|
// the complex cell, `ids' are the global ids over the mesh of those points.
|
|
// The sub-tetra is also defined by the ids of its edges and of its faces
|
|
// relative to the complex cell. -1 means that the edge or the face of the
|
|
// sub-tetra is not an original edge or face of the complex cell.
|
|
// \pre cell_exists: this->GenericCell!=0
|
|
// \pre localIds_exists: localIds!=0
|
|
// \pre localIds_size: sizeof(localIds)==4
|
|
// \pre ids_exists: ids!=0
|
|
// \pre ids_size: sizeof(ids)==4
|
|
// \pre edgeIds_exists: edgeIds!=0
|
|
// \pre edgeIds_size: sizeof(edgeIds)==6
|
|
// \pre faceIds_exists: faceIds!=0
|
|
// \pre faceIds_size: sizeof(faceIds)==4
|
|
void InitTetraTile(vtkTetraTile &root,
|
|
vtkIdType *localIds,
|
|
vtkIdType *ids,
|
|
int *edgeIds,
|
|
int *faceIds);
|
|
|
|
// Description:
|
|
// Triangulate a triangle of `cell'. This triangle can be the top-level
|
|
// triangle if the cell is a triangle or a toplevel sub-triangle is the cell
|
|
// is a polygon, or a triangular face of a 3D cell or a top-level
|
|
// sub-triangle of a face of a 3D cell if the face is not a triangle.
|
|
// Arguments `localIds', `ids' and `edgeIds' have the same meaning than
|
|
// for InitTetraTile.
|
|
// \pre cell_exists: cell!=0
|
|
// \pre localIds_exists: localIds!=0
|
|
// \pre localIds_size: sizeof(localIds)==3
|
|
// \pre ids_exists: ids!=0
|
|
// \pre ids_size: sizeof(ids)==3
|
|
// \pre edgeIds_exists: edgeIds!=0
|
|
// \pre edgeIds_size: sizeof(edgeIds)==3
|
|
void TriangulateTriangle(vtkGenericAdaptorCell *cell,
|
|
vtkIdType *localIds,
|
|
vtkIdType *ids,
|
|
int *edgeIds,
|
|
vtkGenericAttributeCollection *att,
|
|
vtkDoubleArray *points,
|
|
vtkCellArray *cellArray,
|
|
vtkPointData *internalPd);
|
|
|
|
// Description:
|
|
// To access the higher order cell from third party library
|
|
vtkGenericAdaptorCell *GenericCell;
|
|
|
|
// Description:
|
|
// Allocate some memory if Scalars does not exists or is smaller than size.
|
|
// \pre positive_size: size>0
|
|
void AllocateScalars(int size);
|
|
|
|
// Description:
|
|
// Scalar buffer used to save the interpolate values of the attributes
|
|
// The capacity is at least the number of components of the attribute
|
|
// collection ot the current cell.
|
|
|
|
// Scalar buffer that stores the global coordinates, parametric coordinates,
|
|
// attributes at left, mid and right point. The format is:
|
|
// lxlylz lrlslt [lalb lcldle...] mxmymz mrmsmt [mamb mcmdme...]
|
|
// rxryrz rrrsrt [rarb rcrdre...]
|
|
// The ScalarsCapacity>=(6+attributeCollection->GetNumberOfComponents())*3
|
|
|
|
double *Scalars;
|
|
int ScalarsCapacity;
|
|
|
|
// Description:
|
|
// Number of double value to skip to go to the next point into Scalars array
|
|
// It is 6+attributeCollection->GetNumberOfComponents()
|
|
int PointOffset;
|
|
|
|
// Description:
|
|
// Used to iterate over edges boundaries in GetNumberOfCellsUsingEdges()
|
|
vtkGenericCellIterator *CellIterator;
|
|
|
|
// Description:
|
|
// To access the higher order field from third party library
|
|
vtkGenericAttributeCollection *AttributeCollection;
|
|
|
|
// Description:
|
|
// To avoid New/Delete
|
|
vtkDoubleArray *TessellatePoints; //Allow to use GetPointer
|
|
vtkCellArray *TessellateCellArray;
|
|
vtkPointData *TessellatePointData;
|
|
|
|
int FindEdgeReferenceCount(double p1[3], double p2[3],
|
|
vtkIdType &e1, vtkIdType &e2);
|
|
|
|
int GetNumberOfCellsUsingFace( int faceId );
|
|
int GetNumberOfCellsUsingEdge( int edgeId );
|
|
|
|
// Description:
|
|
// Is the edge defined by vertices (`p1',`p2') in parametric coordinates on
|
|
// some edge of the original tetrahedron? If yes return on which edge it is,
|
|
// else return -1.
|
|
// \pre p1!=p2
|
|
// \pre p1 and p2 are in bounding box (0,0,0) (1,1,1)
|
|
// \post valid_result: (result==-1) || ( result>=0 && result<=5 )
|
|
int IsEdgeOnFace(double p1[3], double p2[3]);
|
|
|
|
// Description:
|
|
// Return 1 if the parent of edge defined by vertices (`p1',`p2') in
|
|
// parametric coordinates, is an edge; 3 if there is no parent (the edge is
|
|
// inside). If the parent is an edge, return its id in `localId'.
|
|
// \pre p1!=p2
|
|
// \pre p1 and p2 are in bounding box (0,0,0) (1,1,1)
|
|
// \post valid_result: (result==1)||(result==3)
|
|
int FindEdgeParent2D(double p1[3], double p2[3], int &localId);
|
|
|
|
// Description:
|
|
// Return 1 if the parent of edge defined by vertices (`p1',`p2') in
|
|
// parametric coordinates, is an edge; 2 if the parent is a face, 3 if there
|
|
// is no parent (the edge is inside). If the parent is an edge or a face,
|
|
// return its id in `localId'.
|
|
// \pre p1!=p2
|
|
// \pre p1 and p2 are in bounding box (0,0,0) (1,1,1)
|
|
// \post valid_result: result>=1 && result<=3
|
|
int FindEdgeParent(double p1[3], double p2[3], int &localId);
|
|
|
|
// Description:
|
|
// Allocate some memory if PointIds does not exist or is smaller than size.
|
|
// \pre positive_size: size>0
|
|
void AllocatePointIds(int size);
|
|
|
|
// Description:
|
|
// Are the faces `originalFace' and `face' equal?
|
|
// The result is independent from any order or orientation.
|
|
// \pre originalFace_exists: originalFace!=0
|
|
int FacesAreEqual(int *originalFace,
|
|
int face[3]);
|
|
|
|
// Description:
|
|
// Dataset to be tessellated.
|
|
vtkGenericDataSet *DataSet;
|
|
|
|
// Description:
|
|
// Number of points in the dataset to be tessellated.
|
|
vtkIdType NumberOfPoints;
|
|
|
|
int FixedSubdivisions;
|
|
int MaxSubdivisionLevel;
|
|
int CurrentSubdivisionLevel;
|
|
|
|
// Description:
|
|
// For each edge (6) of the sub-tetra, there is the id of the original edge
|
|
// or -1 if the edge is not an original edge
|
|
int *EdgeIds;
|
|
// Description:
|
|
// For each face (4) of the sub-tetra, there is the id of the original face
|
|
// or -1 if the face is not an original face
|
|
int *FaceIds;
|
|
|
|
// The following variables are for complex cells.
|
|
|
|
// Used to create tetra from more complex cells, because the tessellator
|
|
// is supposed to deal with simplices only.
|
|
vtkOrderedTriangulator *Triangulator;
|
|
|
|
// Used to store the sub-tetra during the tessellation of complex
|
|
// cells.
|
|
vtkCellArray *Connectivity;
|
|
|
|
// Used to create triangles from a face of a complex cell.
|
|
vtkPolygon *Polygon;
|
|
|
|
// Used to store the sub-triangles during the tessellation of complex cells.
|
|
vtkIdList *TriangleIds;
|
|
|
|
vtkIdType *PointIds;
|
|
int PointIdsCapacity;
|
|
|
|
private:
|
|
vtkSimpleCellTessellator(const vtkSimpleCellTessellator&); // Not implemented.
|
|
void operator=(const vtkSimpleCellTessellator&); // Not implemented.
|
|
|
|
//BTX
|
|
friend class vtkTetraTile;
|
|
friend class vtkTriangleTile;
|
|
//ETX
|
|
};
|
|
|
|
#endif
|
|
|