Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

161 lines
5.9 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkGenericContourFilter.h,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkGenericContourFilter - generate isocontours from input dataset
// .SECTION Description
// vtkGenericContourFilter is a filter that takes as input any (generic)
// dataset and generates on output isosurfaces and/or isolines. The exact
// form of the output depends upon the dimensionality of the input data.
// Data consisting of 3D cells will generate isosurfaces, data consisting of
// 2D cells will generate isolines, and data with 1D or 0D cells will
// generate isopoints. Combinations of output type are possible if the input
// dimension is mixed.
//
// To use this filter you must specify one or more contour values.
// You can either use the method SetValue() to specify each contour
// value, or use GenerateValues() to generate a series of evenly
// spaced contours. It is also possible to accelerate the operation of
// this filter (at the cost of extra memory) by using a
// vtkScalarTree. A scalar tree is used to quickly locate cells that
// contain a contour surface. This is especially effective if multiple
// contours are being extracted. If you want to use a scalar tree,
// invoke the method UseScalarTreeOn().
//
// This filter has been implemented to operate on generic datasets, rather
// than the typical vtkDataSet (and subclasses). vtkGenericDataSet is a more
// complex cousin of vtkDataSet, typically consisting of nonlinear,
// higher-order cells. To process this type of data, generic cells are
// automatically tessellated into linear cells prior to isocontouring.
// .SECTION Caveats
// For unstructured data or structured grids, normals and gradients
// are not computed. Use vtkPolyDataNormals to compute the surface
// normals.
// .SECTION See Also
// vtkContourFilter vtkGenericDataSet
#ifndef __vtkGenericContourFilter_h
#define __vtkGenericContourFilter_h
#include "vtkPolyDataAlgorithm.h"
class vtkContourValues;
class vtkPointLocator;
class vtkPointData;
class vtkCellData;
class VTK_GENERIC_FILTERING_EXPORT vtkGenericContourFilter : public vtkPolyDataAlgorithm
{
public:
vtkTypeRevisionMacro(vtkGenericContourFilter,
vtkPolyDataAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Construct object with initial range (0,1) and single contour value
// of 0.0.
static vtkGenericContourFilter *New();
//BTX
typedef double PointType[3]; // Arbitrary definition of a point
//ETX
// Description:
// Methods to set / get contour values.
void SetValue(int i, float value);
double GetValue(int i);
double *GetValues();
void GetValues(double *contourValues);
void SetNumberOfContours(int number);
int GetNumberOfContours();
void GenerateValues(int numContours, double range[2]);
void GenerateValues(int numContours, double rangeStart, double rangeEnd);
// Description:
// Modified GetMTime Because we delegate to vtkContourValues
unsigned long GetMTime();
// Description:
// Set/Get the computation of normals. Normal computation is fairly
// expensive in both time and storage. If the output data will be
// processed by filters that modify topology or geometry, it may be
// wise to turn Normals and Gradients off.
vtkSetMacro(ComputeNormals,int);
vtkGetMacro(ComputeNormals,int);
vtkBooleanMacro(ComputeNormals,int);
// Description:
// Set/Get the computation of gradients. Gradient computation is
// fairly expensive in both time and storage. Note that if
// ComputeNormals is on, gradients will have to be calculated, but
// will not be stored in the output dataset. If the output data
// will be processed by filters that modify topology or geometry, it
// may be wise to turn Normals and Gradients off.
vtkSetMacro(ComputeGradients,int);
vtkGetMacro(ComputeGradients,int);
vtkBooleanMacro(ComputeGradients,int);
// Description:
// Set/Get the computation of scalars.
vtkSetMacro(ComputeScalars,int);
vtkGetMacro(ComputeScalars,int);
vtkBooleanMacro(ComputeScalars,int);
// Description:
// Set / get a spatial locator for merging points. By default,
// an instance of vtkMergePoints is used.
void SetLocator(vtkPointLocator *locator);
vtkGetObjectMacro(Locator,vtkPointLocator);
// Description:
// Create default locator. Used to create one when none is
// specified. The locator is used to merge coincident points.
void CreateDefaultLocator();
// Description:
// If you want to contour by an arbitrary scalar attribute, then set its
// name here.
// By default this in NULL and the filter will use the active scalar array.
vtkGetStringMacro(InputScalarsSelection);
virtual void SelectInputScalars(const char *fieldName);
protected:
vtkGenericContourFilter();
~vtkGenericContourFilter();
int RequestData(vtkInformation *, vtkInformationVector **, vtkInformationVector *);
int FillInputPortInformation(int, vtkInformation*);
vtkContourValues *ContourValues;
int ComputeNormals;
int ComputeGradients;
int ComputeScalars;
vtkPointLocator *Locator;
char *InputScalarsSelection;
vtkSetStringMacro(InputScalarsSelection);
// Used internal by vtkGenericAdaptorCell::Contour()
vtkPointData *internalPD;
vtkPointData *secondaryPD;
vtkCellData *secondaryCD;
private:
vtkGenericContourFilter(const vtkGenericContourFilter&); // Not implemented.
void operator=(const vtkGenericContourFilter&); // Not implemented.
};
#endif