Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

140 lines
5.1 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkCurvatures.h,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkCurvatures - compute curvatures (Gauss and mean) of a Polydata object
// .SECTION Description
// vtkCurvatures takes a polydata input and computes the curvature of the
// mesh at each point. Four possible methods of computation are available :
//
// Gauss Curvature
// discrete Gauss curvature (K) computation,
// \f$K(vertex v) = 2*PI-\sum_{facet neighbs f of v} (angle_f at v)\f$
// The contribution of every facet is for the moment weighted by \f$Area(facet)/3\f$
// The units of Gaussian Curvature are \f$[1/m^2]\f$
//
// Mean Curvature
// \f$H(vertex v) = average over edges neighbs e of H(e)\f$
// \f$H(edge e) = length(e)*dihedral_angle(e)\f$
// NB: dihedral_angle is the ORIENTED angle between -PI and PI,
// this means that the surface is assumed to be orientable
// the computation creates the orientation
// The units of Mean Curvature are [1/m]
//
// Maximum (\f$k_max\f$) and Minimum (\f$k_min\f$) Principal Curvatures
// \f$k_max = H + sqrt(H^2 - K)\f$
// \f$k_min = H - sqrt(H^2 - K)\f$
// Excepting spherical and planar surfaces which have equal principal curvatures,
// the curvature at a point on a surface varies with the direction one "sets off"
// from the point. For all directions, the curvature will pass through two extrema:
// a minimum (\f$k_min\f$) and a maximum (\f$k_max\f$) which occur at mutually orthogonal
// directions to each other.
//
// NB. The sign of the Gauss curvature is a geometric ivariant, it should be +ve
// when the surface looks like a sphere, -ve when it looks like a saddle,
// however, the sign of the Mean curvature is not, it depends on the
// convention for normals - This code assumes that normals point outwards (ie
// from the surface of a sphere outwards). If a given mesh produces curvatures
// of opposite senses then the flag InvertMeanCurvature can be set and the
// Curvature reported by the Mean calculation will be inverted.
//
// .SECTION Thanks
// Philip Batchelor philipp.batchelor@kcl.ac.uk for creating and contributing
// the class and Andrew Maclean a.maclean@acfr.usyd.edu.au for cleanups and
// fixes. Thanks also to Goodwin Lawlor for contributing patch to calculate
// principal curvatures
//
// .SECTION See Also
//
#ifndef __vtkCurvatures_h
#define __vtkCurvatures_h
#include "vtkPolyDataAlgorithm.h"
#define VTK_CURVATURE_GAUSS 0
#define VTK_CURVATURE_MEAN 1
#define VTK_CURVATURE_MAXIMUM 2
#define VTK_CURVATURE_MINIMUM 3
class VTK_GRAPHICS_EXPORT vtkCurvatures : public vtkPolyDataAlgorithm
{
public:
vtkTypeRevisionMacro(vtkCurvatures,vtkPolyDataAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Construct with curvature type set to Gauss
static vtkCurvatures *New();
// Description:
// Set/Get Curvature type
// VTK_CURVATURE_GAUSS: Gaussian curvature, stored as
// DataArray "Gauss_Curvature"
// VTK_CURVATURE_MEAN : Mean curvature, stored as
// DataArray "Mean_Curvature"
vtkSetMacro(CurvatureType,int);
vtkGetMacro(CurvatureType,int);
void SetCurvatureTypeToGaussian()
{ this->SetCurvatureType(VTK_CURVATURE_GAUSS); }
void SetCurvatureTypeToMean()
{ this->SetCurvatureType(VTK_CURVATURE_MEAN); }
void SetCurvatureTypeToMaximum()
{ this->SetCurvatureType(VTK_CURVATURE_MAXIMUM); }
void SetCurvatureTypeToMinimum()
{ this->SetCurvatureType(VTK_CURVATURE_MINIMUM); }
// Description:
// Set/Get the flag which inverts the mean curvature calculation for
// meshes with inward pointing normals (default false)
vtkSetMacro(InvertMeanCurvature,int);
vtkGetMacro(InvertMeanCurvature,int);
vtkBooleanMacro(InvertMeanCurvature,int);
protected:
vtkCurvatures();
// Usual data generation method
int RequestData(vtkInformation *, vtkInformationVector **, vtkInformationVector *);
// Description:
// discrete Gauss curvature (K) computation,
// cf http://www-ipg.umds.ac.uk/p.batchelor/curvatures/curvatures.html
void GetGaussCurvature(vtkPolyData *output);
// discrete Mean curvature (H) computation,
// cf http://www-ipg.umds.ac.uk/p.batchelor/curvatures/curvatures.html
void GetMeanCurvature(vtkPolyData *output);
//Description:
// Maximum principal curvature \f$k_max = H + sqrt(H^2 -K)\f$
void GetMaximumCurvature(vtkPolyData *input, vtkPolyData *output);
//Description:
// Minimum principal curvature \f$k_min = H - sqrt(H^2 -K)\f$
void GetMinimumCurvature(vtkPolyData *input, vtkPolyData *output);
// Vars
int CurvatureType;
int InvertMeanCurvature;
private:
vtkCurvatures(const vtkCurvatures&); // Not implemented.
void operator=(const vtkCurvatures&); // Not implemented.
};
#endif