Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1277 lines
39 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkDelaunay2D.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkDelaunay2D.h"
#include "vtkAbstractTransform.h"
#include "vtkCellArray.h"
#include "vtkDoubleArray.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPlane.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
#include "vtkPolygon.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include "vtkTriangle.h"
#include "vtkTransform.h"
vtkCxxRevisionMacro(vtkDelaunay2D, "$Revision: 1.68.10.1 $");
vtkStandardNewMacro(vtkDelaunay2D);
vtkCxxSetObjectMacro(vtkDelaunay2D,Transform,vtkAbstractTransform);
// Construct object with Alpha = 0.0; Tolerance = 0.00001; Offset = 1.25;
// BoundingTriangulation turned off.
vtkDelaunay2D::vtkDelaunay2D()
{
this->Alpha = 0.0;
this->Tolerance = 0.00001;
this->BoundingTriangulation = 0;
this->Offset = 1.0;
this->Transform = NULL;
this->ProjectionPlaneMode = VTK_DELAUNAY_XY_PLANE;
// optional 2nd input
this->SetNumberOfInputPorts(2);
}
vtkDelaunay2D::~vtkDelaunay2D()
{
if (this->Transform)
{
this->Transform->UnRegister(this);
}
}
//----------------------------------------------------------------------------
// Specify the input data or filter. Old style.
void vtkDelaunay2D::SetSource(vtkPolyData *input)
{
this->Superclass::SetInput(1, input);
}
//----------------------------------------------------------------------------
// Specify the input data or filter. New style.
void vtkDelaunay2D::SetSourceConnection(vtkAlgorithmOutput *algOutput)
{
this->Superclass::SetInputConnection(1, algOutput);
}
vtkPolyData *vtkDelaunay2D::GetSource()
{
if (this->GetNumberOfInputConnections(1) < 1)
{
return NULL;
}
return vtkPolyData::SafeDownCast(
this->GetExecutive()->GetInputData(1, 0));
}
// Determine whether point x is inside of circumcircle of triangle
// defined by points (x1, x2, x3). Returns non-zero if inside circle.
// (Note that z-component is ignored.)
int vtkDelaunay2D::InCircle (double x[3], double x1[3], double x2[3],
double x3[3])
{
double radius2, center[2], dist2;
radius2 = vtkTriangle::Circumcircle(x1,x2,x3,center);
// check if inside/outside circumcircle
dist2 = (x[0]-center[0]) * (x[0]-center[0]) +
(x[1]-center[1]) * (x[1]-center[1]);
if ( dist2 < (0.999999999999*radius2) )
{
return 1;
}
else
{
return 0;
}
}
#define VTK_DEL2D_TOLERANCE 1.0e-014
// Recursive method to locate triangle containing point. Starts with arbitrary
// triangle (tri) and "walks" towards it. Influenced by some of Guibas and
// Stolfi's work. Returns id of enclosing triangle, or -1 if no triangle
// found. Also, the array nei[3] is used to communicate info about points
// that lie on triangle edges: nei[0] is neighboring triangle id, and nei[1]
// and nei[2] are the vertices defining the edge.
vtkIdType vtkDelaunay2D::FindTriangle(double x[3], vtkIdType ptIds[3],
vtkIdType tri, double tol,
vtkIdType nei[3], vtkIdList *neighbors)
{
int i, j, ir, ic, inside, i2, i3;
vtkIdType *pts, npts, newNei;
double p[3][3], n[2], vp[2], vx[2], dp, minProj;
// get local triangle info
this->Mesh->GetCellPoints(tri,npts,pts);
for (i=0; i<3; i++)
{
ptIds[i] = pts[i];
this->GetPoint(ptIds[i], p[i]);
}
// Randomization (of find edge neighbora) avoids walking in
// circles in certain weird cases
srand(tri);
ir = rand() % 3;
// evaluate in/out of each edge
for (inside=1, minProj=0.0, ic=0; ic<3; ic++)
{
i = (ir+ic) % 3;
i2 = (i+1) % 3;
i3 = (i+2) % 3;
// create a 2D edge normal to define a "half-space"; evaluate points (i.e.,
// candiate point and other triangle vertex not on this edge).
n[0] = -(p[i2][1] - p[i][1]);
n[1] = p[i2][0] - p[i][0];
vtkMath::Normalize2D(n);
// compute local vectors
for (j=0; j<2; j++)
{
vp[j] = p[i3][j] - p[i][j];
vx[j] = x[j] - p[i][j];
}
//check for duplicate point
vtkMath::Normalize2D(vp);
if ( vtkMath::Normalize2D(vx) <= tol )
{
this->NumberOfDuplicatePoints++;
return -1;
}
// see if two points are in opposite half spaces
dp = vtkMath::Dot2D(n,vx) * (vtkMath::Dot2D(n,vp) < 0 ? -1.0 : 1.0);
if ( dp < VTK_DEL2D_TOLERANCE )
{
if ( dp < minProj ) //track edge most orthogonal to point direction
{
inside = 0;
nei[1] = ptIds[i];
nei[2] = ptIds[i2];
minProj = dp;
}
}//outside this edge
}//for each edge
if ( inside ) // all edges have tested positive
{
nei[0] = (-1);
return tri;
}
else if ( !inside && (fabs(minProj) < VTK_DEL2D_TOLERANCE) ) // on edge
{
this->Mesh->GetCellEdgeNeighbors(tri,nei[1],nei[2],neighbors);
nei[0] = neighbors->GetId(0);
return tri;
}
else //walk towards point
{
this->Mesh->GetCellEdgeNeighbors(tri,nei[1],nei[2],neighbors);
if ( (newNei=neighbors->GetId(0)) == nei[0] )
{
this->NumberOfDegeneracies++;
return -1;
}
else
{
nei[0] = tri;
return this->FindTriangle(x,ptIds,newNei,tol,nei,neighbors);
}
}
}
#undef VTK_DEL2D_TOLERANCE
// Recursive method checks whether edge is Delaunay, and if not, swaps edge.
// Continues until all edges are Delaunay. Points p1 and p2 form the edge in
// question; x is the coordinates of the inserted point; tri is the current
// triangle id.
void vtkDelaunay2D::CheckEdge(vtkIdType ptId, double x[3], vtkIdType p1,
vtkIdType p2, vtkIdType tri)
{
int i;
vtkIdType *pts, npts, numNei, nei, p3;
double x1[3], x2[3], x3[3];
vtkIdList *neighbors;
vtkIdType swapTri[3];
this->GetPoint(p1,x1);
this->GetPoint(p2,x2);
neighbors = vtkIdList::New();
neighbors->Allocate(2);
this->Mesh->GetCellEdgeNeighbors(tri,p1,p2,neighbors);
numNei = neighbors->GetNumberOfIds();
if ( numNei > 0 ) //i.e., not a boundary edge
{
// get neighbor info including opposite point
nei = neighbors->GetId(0);
this->Mesh->GetCellPoints(nei, npts, pts);
for (i=0; i<2; i++)
{
if ( pts[i] != p1 && pts[i] != p2 )
{
break;
}
}
p3 = pts[i];
this->GetPoint(p3,x3);
// see whether point is in circumcircle
if ( this->InCircle (x3, x, x1, x2) )
{// swap diagonal
this->Mesh->RemoveReferenceToCell(p1,tri);
this->Mesh->RemoveReferenceToCell(p2,nei);
this->Mesh->ResizeCellList(ptId,1);
this->Mesh->AddReferenceToCell(ptId,nei);
this->Mesh->ResizeCellList(p3,1);
this->Mesh->AddReferenceToCell(p3,tri);
swapTri[0] = ptId; swapTri[1] = p3; swapTri[2] = p2;
this->Mesh->ReplaceCell(tri,3,swapTri);
swapTri[0] = ptId; swapTri[1] = p1; swapTri[2] = p3;
this->Mesh->ReplaceCell(nei,3,swapTri);
// two new edges become suspect
this->CheckEdge(ptId, x, p3, p2, tri);
this->CheckEdge(ptId, x, p1, p3, nei);
}//in circle
}//interior edge
neighbors->Delete();
}
// 2D Delaunay triangulation. Steps are as follows:
// 1. For each point
// 2. Find triangle point is in
// 3. Create 3 triangles from each edge of triangle that point is in
// 4. Recursively evaluate Delaunay criterion for each edge neighbor
// 5. If criterion not satisfied; swap diagonal
//
int vtkDelaunay2D::RequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *sourceInfo = inputVector[1]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
// get the input and ouptut
vtkPointSet *input = vtkPointSet::SafeDownCast(
inInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPolyData *source = 0;
if (sourceInfo)
{
source =
vtkPolyData::SafeDownCast(sourceInfo->Get(vtkDataObject::DATA_OBJECT()));
}
vtkPolyData *output = vtkPolyData::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkIdType numPoints, i;
vtkIdType numTriangles = 0;
vtkIdType ptId, tri[4], nei[3];
vtkIdType p1 = 0;
vtkIdType p2 = 0;
vtkPoints *inPoints;
vtkPoints *points;
vtkPoints *tPoints = NULL;
vtkCellArray *triangles;
int ncells;
vtkIdType nodes[4][3], *neiPts;
vtkIdType *triPts = 0;
vtkIdType numNeiPts;
vtkIdType npts = 0;
vtkIdType pts[3];
vtkIdList *neighbors, *cells;
double center[3], radius, tol, x[3];
int *triUse = NULL;
double *bounds;
vtkDebugMacro(<<"Generating 2D Delaunay triangulation");
if (this->Transform && this->BoundingTriangulation)
{
vtkWarningMacro(<<"Bounding triangulation cannot be used when an input transform is specified. Output will not contain bounding triangulation.");
}
if (this->ProjectionPlaneMode == VTK_BEST_FITTING_PLANE && this->BoundingTriangulation)
{
vtkWarningMacro(<<"Bounding triangulation cannot be used when the best fitting plane option is on. Output will not contain bounding triangulation.");
}
// Initialize; check input
//
if ( (inPoints=input->GetPoints()) == NULL )
{
vtkErrorMacro("<<Cannot triangulate; no input points");
return 1;
}
if ( (numPoints=inPoints->GetNumberOfPoints()) <= 2 )
{
vtkErrorMacro("<<Cannot triangulate; need at least 3 input points");
return 1;
}
neighbors = vtkIdList::New(); neighbors->Allocate(2);
cells = vtkIdList::New(); cells->Allocate(64);
this->NumberOfDuplicatePoints = 0;
this->NumberOfDegeneracies = 0;
this->Mesh = vtkPolyData::New();
// If the user specified a transform, apply it to the input data.
//
// Only the input points are transformed. We do not bother
// transforming the source points (if specified). The reason is
// that only the topology of the Source is used during the constrain
// operation. The point ids in the Source topology are assumed to
// reference points in the input. So, when an input transform is
// used, only the input points are transformed. We do not bother
// with transforming the Source points since they are never
// referenced.
if (this->Transform)
{
tPoints = vtkPoints::New();
this->Transform->TransformPoints(inPoints, tPoints);
}
else
{
// If the user asked this filter to compute the best fitting plane,
// proceed to compute the plane and generate a transform that will
// map the input points into that plane.
if(this->ProjectionPlaneMode == VTK_BEST_FITTING_PLANE)
{
this->SetTransform( this->ComputeBestFittingPlane(input) );
tPoints = vtkPoints::New();
this->Transform->TransformPoints(inPoints, tPoints);
}
}
// Create initial bounding triangulation. Have to create bounding points.
// Initialize mesh structure.
//
points = vtkPoints::New();
// This will copy doubles to doubles if the input is double.
points->SetDataTypeToDouble();
points->SetNumberOfPoints(numPoints);
if (!this->Transform)
{
points->DeepCopy(inPoints);
}
else
{
points->DeepCopy(tPoints);
tPoints->Delete();
tPoints = NULL;
}
bounds = points->GetBounds();
center[0] = (bounds[0]+bounds[1])/2.0;
center[1] = (bounds[2]+bounds[3])/2.0;
center[2] = (bounds[4]+bounds[5])/2.0;
tol = input->GetLength();
radius = this->Offset * tol;
tol *= this->Tolerance;
for (ptId=0; ptId<8; ptId++)
{
x[0] = center[0]
+ radius*cos((double)(45.0*ptId)*vtkMath::DegreesToRadians());
x[1] = center[1]
+ radius*sin((double)(45.0*ptId)*vtkMath::DegreesToRadians());
x[2] = center[2];
points->InsertPoint(numPoints+ptId,x);
}
// We do this for speed accessing points
this->Points = ((vtkDoubleArray *)points->GetData())->GetPointer(0);
triangles = vtkCellArray::New();
triangles->Allocate(triangles->EstimateSize(2*numPoints,3));
//create bounding triangles (there are six)
pts[0] = numPoints; pts[1] = numPoints + 1; pts[2] = numPoints + 2;
triangles->InsertNextCell(3,pts);
pts[0] = numPoints + 2; pts[1] = numPoints + 3; pts[2] = numPoints + 4;
triangles->InsertNextCell(3,pts);
pts[0] = numPoints + 4; pts[1] = numPoints + 5; pts[2] = numPoints + 6;
triangles->InsertNextCell(3,pts);
pts[0] = numPoints + 6; pts[1] = numPoints + 7; pts[2] = numPoints + 0;
triangles->InsertNextCell(3,pts);
pts[0] = numPoints + 0; pts[1] = numPoints + 2; pts[2] = numPoints + 6;
triangles->InsertNextCell(3,pts);
pts[0] = numPoints + 2; pts[1] = numPoints + 4; pts[2] = numPoints + 6;
triangles->InsertNextCell(3,pts);
tri[0] = 0;
this->Mesh->SetPoints(points);
this->Mesh->SetPolys(triangles);
this->Mesh->BuildLinks(); //build cell structure
// For each point; find triangle containing point. Then evaluate three
// neighboring triangles for Delaunay criterion. Triangles that do not
// satisfy criterion have their edges swapped. This continues recursively
// until all triangles have been shown to be Delaunay.
//
for (ptId=0; ptId < numPoints; ptId++)
{
this->GetPoint(ptId,x);
nei[0] = (-1); //where we are coming from...nowhere initially
if ( (tri[0] = this->FindTriangle(x,pts,tri[0],tol,nei,neighbors)) >= 0 )
{
if ( nei[0] < 0 ) //in triangle
{
//delete this triangle; create three new triangles
//first triangle is replaced with one of the new ones
nodes[0][0] = ptId; nodes[0][1] = pts[0]; nodes[0][2] = pts[1];
this->Mesh->RemoveReferenceToCell(pts[2], tri[0]);
this->Mesh->ReplaceCell(tri[0], 3, nodes[0]);
this->Mesh->ResizeCellList(ptId,1);
this->Mesh->AddReferenceToCell(ptId,tri[0]);
//create two new triangles
nodes[1][0] = ptId; nodes[1][1] = pts[1]; nodes[1][2] = pts[2];
tri[1] = this->Mesh->InsertNextLinkedCell(VTK_TRIANGLE, 3, nodes[1]);
nodes[2][0] = ptId; nodes[2][1] = pts[2]; nodes[2][2] = pts[0];
tri[2] = this->Mesh->InsertNextLinkedCell(VTK_TRIANGLE, 3, nodes[2]);
// Check edge neighbors for Delaunay criterion. If not satisfied, flip
// edge diagonal. (This is done recursively.)
this->CheckEdge(ptId, x, pts[0], pts[1], tri[0]);
this->CheckEdge(ptId, x, pts[1], pts[2], tri[1]);
this->CheckEdge(ptId, x, pts[2], pts[0], tri[2]);
}
else // on triangle edge
{
//update cell list
this->Mesh->GetCellPoints(nei[0],numNeiPts,neiPts);
for (i=0; i<3; i++)
{
if ( neiPts[i] != nei[1] && neiPts[i] != nei[2] )
{
p1 = neiPts[i];
}
if ( pts[i] != nei[1] && pts[i] != nei[2] )
{
p2 = pts[i];
}
}
this->Mesh->ResizeCellList(p1,1);
this->Mesh->ResizeCellList(p2,1);
//replace two triangles
this->Mesh->RemoveReferenceToCell(nei[2],tri[0]);
this->Mesh->RemoveReferenceToCell(nei[2],nei[0]);
nodes[0][0] = ptId; nodes[0][1] = p2; nodes[0][2] = nei[1];
this->Mesh->ReplaceCell(tri[0], 3, nodes[0]);
nodes[1][0] = ptId; nodes[1][1] = p1; nodes[1][2] = nei[1];
this->Mesh->ReplaceCell(nei[0], 3, nodes[1]);
this->Mesh->ResizeCellList(ptId, 2);
this->Mesh->AddReferenceToCell(ptId,tri[0]);
this->Mesh->AddReferenceToCell(ptId,nei[0]);
tri[1] = nei[0];
//create two new triangles
nodes[2][0] = ptId; nodes[2][1] = p2; nodes[2][2] = nei[2];
tri[2] = this->Mesh->InsertNextLinkedCell(VTK_TRIANGLE, 3, nodes[2]);
nodes[3][0] = ptId; nodes[3][1] = p1; nodes[3][2] = nei[2];
tri[3] = this->Mesh->InsertNextLinkedCell(VTK_TRIANGLE, 3, nodes[3]);
// Check edge neighbors for Delaunay criterion.
for ( i=0; i<4; i++ )
{
this->CheckEdge (ptId, x, nodes[i][1], nodes[i][2], tri[i]);
}
}
}//if triangle found
else
{
tri[0] = 0; //no triangle found
}
if ( ! (ptId % 1000) )
{
vtkDebugMacro(<<"point #" << ptId);
this->UpdateProgress ((double)ptId/numPoints);
if (this->GetAbortExecute())
{
break;
}
}
}//for all points
vtkDebugMacro(<<"Triangulated " << numPoints <<" points, "
<< this->NumberOfDuplicatePoints
<< " of which were duplicates");
if ( this->NumberOfDegeneracies > 0 )
{
vtkDebugMacro(<< this->NumberOfDegeneracies
<< " degenerate triangles encountered, mesh quality suspect");
}
// Finish up by recovering the boundary, or deleting all triangles connected
// to the bounding triangulation points or not satisfying alpha criterion,
if ( !this->BoundingTriangulation || this->Alpha > 0.0 || source )
{
numTriangles = this->Mesh->GetNumberOfCells();
if ( source )
{
triUse = this->RecoverBoundary(source);
}
else
{
triUse = new int[numTriangles];
for (i=0; i<numTriangles; i++)
{
triUse[i] = 1;
}
}
}
// Delete triangles connected to boundary points (if not desired)
if ( ! this->BoundingTriangulation )
{
for (ptId=numPoints; ptId < (numPoints+8); ptId++)
{
this->Mesh->GetPointCells(ptId, cells);
ncells = cells->GetNumberOfIds();
for (i=0; i < ncells; i++)
{
triUse[cells->GetId(i)] = 0; //mark as deleted
}
}
}
// If non-zero alpha value, then figure out which parts of mesh are
// contained within alpha radius.
//
if ( this->Alpha > 0.0 )
{
double alpha2 = this->Alpha * this->Alpha;
double x1[3], x2[3], x3[3];
double xx1[3], xx2[3], xx3[3];
vtkIdType cellId, numNei, ap1, ap2, neighbor;
vtkCellArray *alphaVerts = vtkCellArray::New();
alphaVerts->Allocate(numPoints);
vtkCellArray *alphaLines = vtkCellArray::New();
alphaLines->Allocate(numPoints);
char *pointUse = new char[numPoints+8];
for (ptId=0; ptId < (numPoints+8); ptId++)
{
pointUse[ptId] = 0;
}
//traverse all triangles; evaluating Delaunay criterion
for (i=0; i < numTriangles; i++)
{
if ( triUse[i] == 1 )
{
this->Mesh->GetCellPoints(i, npts, triPts);
// if any point is one of the bounding points that was added
// at the beginning of the algorithm, then grab the points
// from the variable "points" (this list has the boundary
// points and the original points have been transformed by the
// input transform). if none of the points are bounding points,
// then grab the points from the variable "inPoints" so the alpha
// criterion is applied in the nontransformed space.
if (triPts[0]<numPoints && triPts[1]<numPoints && triPts[2]<numPoints)
{
inPoints->GetPoint(triPts[0],x1);
inPoints->GetPoint(triPts[1],x2);
inPoints->GetPoint(triPts[2],x3);
}
else
{
points->GetPoint(triPts[0],x1);
points->GetPoint(triPts[1],x2);
points->GetPoint(triPts[2],x3);
}
// evaluate the alpha criterion in 3D
vtkTriangle::ProjectTo2D(x1, x2, x3, xx1, xx2, xx3);
if ( vtkTriangle::Circumcircle(xx1,xx2,xx3,center) > alpha2 )
{
triUse[i] = 0;
}
else
{
for (int j=0; j<3; j++)
{
pointUse[triPts[j]] = 1;
}
}
}//if non-deleted triangle
}//for all triangles
//traverse all edges see whether we need to create some
for (cellId=0, triangles->InitTraversal();
triangles->GetNextCell(npts,triPts); cellId++)
{
if ( ! triUse[cellId] )
{
for (i=0; i < npts; i++)
{
ap1 = triPts[i];
ap2 = triPts[(i+1)%npts];
if (this->BoundingTriangulation || (ap1<numPoints && ap2<numPoints))
{
this->Mesh->GetCellEdgeNeighbors(cellId,ap1,ap2,neighbors);
numNei = neighbors->GetNumberOfIds();
if ( numNei < 1 || ((neighbor=neighbors->GetId(0)) > cellId
&& !triUse[neighbor]) )
{//see whether edge is shorter than Alpha
// same argument as above, if one is a boundary point, get
// it using this->GetPoint() which are transformed points. if
// neither of the points are boundary points, get the from
// inPoints (untransformed points) so alpha comparison done
// untransformed space
if (ap1 < numPoints && ap2 < numPoints)
{
inPoints->GetPoint(ap1,x1);
inPoints->GetPoint(ap2,x2);
}
else
{
this->GetPoint(ap1,x1);
this->GetPoint(ap2,x2);
}
if ( (vtkMath::Distance2BetweenPoints(x1,x2)*0.25) <= alpha2 )
{
pointUse[ap1] = 1; pointUse[ap2] = 1;
pts[0] = ap1;
pts[1] = ap2;
alphaLines->InsertNextCell(2,pts);
}//if passed test
}//test edge
}//if valid edge
}//for all edges of this triangle
}//if triangle not output
}//for all triangles
//traverse all points, create vertices if none used
for (ptId=0; ptId<(numPoints+8); ptId++)
{
if ( !pointUse[ptId]
&& (ptId < numPoints || this->BoundingTriangulation) )
{
pts[0] = ptId;
alphaVerts->InsertNextCell(1,pts);
}
}
// update output
delete [] pointUse;
output->SetVerts(alphaVerts);
alphaVerts->Delete();
output->SetLines(alphaLines);
alphaLines->Delete();
}
// Update output; free up supporting data structures.
//
if ( this->BoundingTriangulation && !this->Transform)
{
output->SetPoints(points);
}
else
{
output->SetPoints(inPoints);
output->GetPointData()->PassData(input->GetPointData());
}
if ( this->Alpha <= 0.0 && this->BoundingTriangulation && !source )
{
output->SetPolys(triangles);
}
else
{
vtkCellArray *alphaTriangles = vtkCellArray::New();
alphaTriangles->Allocate(numTriangles);
vtkIdType *alphaTriPts;
for (i=0; i<numTriangles; i++)
{
if ( triUse[i] )
{
this->Mesh->GetCellPoints(i,npts,alphaTriPts);
alphaTriangles->InsertNextCell(3,alphaTriPts);
}
}
output->SetPolys(alphaTriangles);
alphaTriangles->Delete();
delete [] triUse;
}
points->Delete();
triangles->Delete();
this->Mesh->Delete();
neighbors->Delete();
cells->Delete();
// If the best fitting option was ON, then the current transform
// is the one that was computed internally. We must now destroy it.
if( this->ProjectionPlaneMode == VTK_BEST_FITTING_PLANE )
{
if (this->Transform)
{
this->Transform->UnRegister(this);
this->Transform = NULL;
}
}
output->Squeeze();
return 1;
}
// Methods used to recover edges. Uses lines and polygons to determine boundary
// and inside/outside.
//
// Only the topology of the Source is used during the constrain operation.
// The point ids in the Source topology are assumed to reference points
// in the input. So, when an input transform is used, only the input points
// are transformed. We do not bother with transforming the Source points
// since they are never referenced.
int *vtkDelaunay2D::RecoverBoundary(vtkPolyData *source)
{
vtkCellArray *lines=source->GetLines();
vtkCellArray *polys=source->GetPolys();
vtkIdType *pts = 0;
vtkIdType npts = 0;
vtkIdType i, p1, p2;
int *triUse;
// Recover the edges of the mesh
for ( lines->InitTraversal(); lines->GetNextCell(npts,pts); )
{
for (i=0; i<(npts-1); i++)
{
p1 = pts[i];
p2 = pts[i+1];
if ( ! this->Mesh->IsEdge(p1,p2) )
{
this->RecoverEdge(p1, p2);
}
}
}
// Recover the enclosed regions (polygons) of the mesh
for ( polys->InitTraversal(); polys->GetNextCell(npts,pts); )
{
for (i=0; i<npts; i++)
{
p1 = pts[i];
p2 = pts[(i+1)%npts];
if ( ! this->Mesh->IsEdge(p1,p2) )
{
this->RecoverEdge(p1, p2);
}
}
}
// Generate inside/outside marks on mesh
int numTriangles = this->Mesh->GetNumberOfCells();
triUse = new int[numTriangles];
for (i=0; i<numTriangles; i++)
{
triUse[i] = 1;
}
// Use any polygons to mark inside and outside. (Note that if an edge was not
// recovered, we're going to have a problem.) The first polygon is assumed to
// define the outside of the polygon; additional polygons carve out inside
// holes.
this->FillPolygons(polys, triUse);
return triUse;
}
// Method attempts to recover an edge by retriangulating mesh around the edge.
// What we do is identify a "submesh" of triangles that includes the edge to recover.
// Then we split the submesh in two with the recovered edge, and triangulate each of
// the two halves. If any part of this fails, we leave things alone.
int vtkDelaunay2D::RecoverEdge(vtkIdType p1, vtkIdType p2)
{
vtkIdType cellId = 0;
int i, j, k;
double p1X[3], p2X[3], xyNormal[3], splitNormal[3], p21[3];
double x1[3], x2[3], sepNormal[3], v21[3];
int ncells, v1=0, v2=0, signX1=0, signX2, signP1, signP2;
vtkIdType *pts, *leftTris, *rightTris, npts, numRightTris, numLeftTris;
int success=0;
vtkIdList *cells=vtkIdList::New(); cells->Allocate(64);
vtkIdList *tris=vtkIdList::New(); tris->Allocate(64);
vtkPolygon *rightPoly=vtkPolygon::New();
vtkPolygon *leftPoly=vtkPolygon::New();
vtkIdList *leftChain=leftPoly->GetPointIds();
vtkIdList *rightChain=rightPoly->GetPointIds();
vtkPoints *leftChainX=leftPoly->GetPoints();
vtkPoints *rightChainX=rightPoly->GetPoints();
vtkIdList *neis=vtkIdList::New(); neis->Allocate(4);
vtkIdList *rightPtIds=vtkIdList::New(); rightPtIds->Allocate(64);
vtkIdList *leftPtIds=vtkIdList::New(); leftPtIds->Allocate(64);
vtkPoints *rightTriPts=vtkPoints::New(); rightTriPts->Allocate(64);
vtkPoints *leftTriPts=vtkPoints::New(); leftTriPts->Allocate(64);
// Compute a split plane along (p1,p2) and parallel to the z-axis.
//
this->GetPoint(p1,p1X); p1X[2] = 0.0; //split plane point
this->GetPoint(p2,p2X); p2X[2] = 0.0; //split plane point
xyNormal[0] = xyNormal[1] = 0.0; xyNormal[2] = 1.0;
for (i=0; i<3; i++ )
{
p21[i] = p2X[i] - p1X[i]; //working in x-y plane
}
vtkMath::Cross (p21,xyNormal,splitNormal);
if ( vtkMath::Normalize(splitNormal) == 0.0 )
{//Usually means coincident points
goto FAILURE;
}
// Identify a triangle connected to the point p1 containing a portion of the edge.
//
this->Mesh->GetPointCells(p1, cells);
ncells = cells->GetNumberOfIds();
for (i=0; i < ncells; i++)
{
cellId = cells->GetId(i);
this->Mesh->GetCellPoints(cellId, npts, pts);
for (j=0; j<3; j++)
{
if ( pts[j] == p1 )
{
break;
}
}
v1 = pts[(j+1)%3];
v2 = pts[(j+2)%3];
this->GetPoint(v1,x1); x1[2] = 0.0;
this->GetPoint(v2,x2); x2[2] = 0.0;
signX1 = (vtkPlane::Evaluate(splitNormal, p1X, x1) > 0.0 ? 1 : -1);
signX2 = (vtkPlane::Evaluate(splitNormal, p1X, x2) > 0.0 ? 1 : -1);
if ( signX1 != signX2 ) //points of triangle on either side of edge
{
// determine if edge separates p1 from p2 - then we've found triangle
v21[0] = x2[0] - x1[0]; //working in x-y plane
v21[1] = x2[1] - x1[1];
v21[2] = 0.0;
vtkMath::Cross (v21,xyNormal,sepNormal);
if ( vtkMath::Normalize(sepNormal) == 0.0 )
{ //bad mesh
goto FAILURE;
}
signP1 = (vtkPlane::Evaluate(sepNormal, x1, p1X) > 0.0 ? 1 : -1);
signP2 = (vtkPlane::Evaluate(sepNormal, x1, p2X) > 0.0 ? 1 : -1);
if ( signP1 != signP2 ) //is a separation line
{
break;
}
}
} //for all cells
if ( i >= ncells )
{//something is really screwed up
goto FAILURE;
}
// We found initial triangle; begin to track triangles containing edge. Also,
// the triangle defines the beginning of two "chains" which form a boundary of
// enclosing triangles around the edge. Create the two chains (from p1 to p2).
// (The chains are actually defining two polygons on either side of the edge.)
//
tris->InsertId(0, cellId);
rightChain->InsertId(0, p1); rightChainX->InsertPoint(0, p1X);
leftChain->InsertId(0, p1); leftChainX->InsertPoint(0, p1X);
if ( signX1 > 0 )
{
rightChain->InsertId(1, v1); rightChainX->InsertPoint(1, x1);
leftChain->InsertId(1, v2); leftChainX->InsertPoint(1, x2);
}
else
{
leftChain->InsertId(1, v1); leftChainX->InsertPoint(1, x1);
rightChain->InsertId(1, v2); rightChainX->InsertPoint(1, x2);
}
// Walk along triangles (edge neighbors) towards point p2.
while ( v1 != p2 )
{
this->Mesh->GetCellEdgeNeighbors(cellId, v1, v2, neis);
if ( neis->GetNumberOfIds() != 1 )
{//Mesh is folded or degenerate
goto FAILURE;
}
cellId = neis->GetId(0);
tris->InsertNextId(cellId);
this->Mesh->GetCellPoints(cellId, npts, pts);
for (j=0; j<3; j++)
{
if ( pts[j] != v1 && pts[j] != v2 )
{//found point opposite current edge (v1,v2)
if ( pts[j] == p2 )
{
v1 = p2; //this will cause the walk to stop
rightChain->InsertNextId(p2); rightChainX->InsertNextPoint(p2X);
leftChain->InsertNextId(p2); leftChainX->InsertNextPoint(p2X);
}
else
{//keep walking
this->GetPoint(pts[j], x1); x1[2] = 0.0;
if ( vtkPlane::Evaluate(splitNormal, p1X, x1) > 0.0 )
{
v1 = pts[j];
rightChain->InsertNextId(v1); rightChainX->InsertNextPoint(x1);
}
else
{
v2 = pts[j];
leftChain->InsertNextId(v2); leftChainX->InsertNextPoint(x1);
}
}
break;
}//else found opposite point
}//for all points in triangle
}//while walking
// Now that the to chains are formed, each chain forms a polygon (along with
// the edge (p1,p2)) that requires triangulation. If we can successfully
// triangulate the two polygons, we will delete the triangles contained within
// the chains and replace them with the new triangulation.
//
success = 1;
success &= (rightPoly->Triangulate(0, rightPtIds, rightTriPts));
numRightTris = rightPtIds->GetNumberOfIds() / 3;
success &= (leftPoly->Triangulate(0, leftPtIds, leftTriPts));
numLeftTris = leftPtIds->GetNumberOfIds() / 3;
if ( ! success )
{//polygons on either side of edge are poorly shaped
goto FAILURE;
}
// Okay, delete the old triangles and replace them with new ones. There should be
// the same number of new triangles as old ones.
leftTris = leftPtIds->GetPointer(0);
for ( j=i=0; i<numLeftTris; i++, j++, leftTris+=3)
{
cellId = tris->GetId(j);
this->Mesh->RemoveCellReference(cellId);
for (k=0; k<3; k++)
{//allocate new space for cell lists
this->Mesh->ResizeCellList(leftTris[k],1);
}
this->Mesh->ReplaceLinkedCell(cellId, 3, leftTris);
}
rightTris = rightPtIds->GetPointer(0);
for ( i=0; i<numRightTris; i++, j++, rightTris+=3)
{
cellId = tris->GetId(j);
this->Mesh->RemoveCellReference(cellId);
for (k=0; k<3; k++)
{//allocate new space for cell lists
this->Mesh->ResizeCellList(rightTris[k],1);
}
this->Mesh->ReplaceLinkedCell(cellId, 3, rightTris);
}
FAILURE:
tris->Delete(); cells->Delete();
leftPoly->Delete(); rightPoly->Delete(); neis->Delete();
rightPtIds->Delete(); leftPtIds->Delete();
rightTriPts->Delete(); leftTriPts->Delete();
return success;
}
void vtkDelaunay2D::FillPolygons(vtkCellArray *polys, int *triUse)
{
vtkIdType p1, p2, j, kk;
int i, k;
vtkIdType *pts = 0;
vtkIdType *triPts;
vtkIdType npts = 0;
vtkIdType numPts;
static double xyNormal[3]={0.0,0.0,1.0};
double negDir[3], x21[3], x1[3], x2[3], x[3];
vtkIdList *neis=vtkIdList::New();
vtkIdType cellId, numNeis;
vtkIdList *currentFront = vtkIdList::New(), *tmpFront;
vtkIdList *nextFront = vtkIdList::New();
vtkIdType numCellsInFront, neiId;
vtkIdType numTriangles=this->Mesh->GetNumberOfCells();
// Loop over edges of polygon, marking triangles on "outside" of polygon as outside.
// Then perform a fill.
for ( polys->InitTraversal(); polys->GetNextCell(npts,pts); )
{
currentFront->Reset();
for (i=0; i<npts; i++)
{
p1 = pts[i];
p2 = pts[(i+1)%npts];
if ( ! this->Mesh->IsEdge(p1,p2) )
{
vtkWarningMacro(<<"Edge not recovered, polygon fill suspect");
}
else //Mark the "outside" triangles
{
neis->Reset();
this->GetPoint(p1,x1);
this->GetPoint(p2,x2);
for (j=0; j<3; j++)
{
x21[j] = x2[j] - x1[j];
}
vtkMath::Cross (x21,xyNormal,negDir);
this->Mesh->GetCellEdgeNeighbors(-1, p1, p2, neis); //get both triangles
numNeis = neis->GetNumberOfIds();
for (j=0; j<numNeis; j++)
{//find the vertex not on the edge; evaluate it (and the cell) in/out
cellId = neis->GetId(j);
this->Mesh->GetCellPoints(cellId, numPts, triPts);
for (k=0; k<3; k++)
{
if ( triPts[k] != p1 && triPts[k] != p2 )
{
break;
}
}
this->GetPoint(triPts[k],x); x[2] = 0.0;
if ( vtkPlane::Evaluate(negDir, x1, x) > 0.0 )
{
triUse[cellId] = 0;
currentFront->InsertNextId(cellId);
}
else
{
triUse[cellId] = -1;
}
}
}//edge was recovered
}//for all edges in polygon
// Okay, now perform a fill operation (filling "outside" values).
//
while ( (numCellsInFront = currentFront->GetNumberOfIds()) > 0 )
{
for (j=0; j < numCellsInFront; j++)
{
cellId = currentFront->GetId(j);
this->Mesh->GetCellPoints(cellId, numPts, triPts);
for (k=0; k<3; k++)
{
p1 = triPts[k];
p2 = triPts[(k+1)%3];
this->Mesh->GetCellEdgeNeighbors(cellId, p1, p2, neis);
numNeis = neis->GetNumberOfIds();
for (kk=0; kk<numNeis; kk++)
{
neiId = neis->GetId(kk);
if ( triUse[neiId] == 1 ) //0 is what we're filling with
{
triUse[neiId] = 0;
nextFront->InsertNextId(neiId);
}
}//mark all neigbors
}//for all edges of cell
} //all cells in front
tmpFront = currentFront;
currentFront = nextFront;
nextFront = tmpFront;
nextFront->Reset();
} //while still advancing
}//for all polygons
//convert all unvisited to inside
for (i=0; i<numTriangles; i++)
{
if ( triUse[i] == -1 )
{
triUse[i] = 1;
}
}
currentFront->Delete();
nextFront->Delete();
neis->Delete();
}
//----------------------------------------------------------------------------
int vtkDelaunay2D::FillInputPortInformation(int port, vtkInformation* info)
{
if (port == 0)
{
info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkPointSet");
}
else if (port == 1)
{
info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkPolyData");
info->Set(vtkAlgorithm::INPUT_IS_OPTIONAL(), 1);
}
return 1;
}
//----------------------------------------------------------------------------
vtkAbstractTransform * vtkDelaunay2D::ComputeBestFittingPlane(
vtkPointSet *input)
{
vtkIdType numPts=input->GetNumberOfPoints();
double m[9], v[3], x[3];
vtkIdType ptId;
int i;
double *c1, *c2, *c3, det;
double normal[3];
double origin[3];
const double tolerance = 1.0e-03;
// This code was taken from the vtkTextureMapToPlane class
// and slightly modified.
//
for (i=0; i<3; i++)
{
normal[i] = 0.0;
}
// Compute least squares approximation.
// Compute 3x3 least squares matrix
v[0] = v[1] = v[2] = 0.0;
for (i=0; i<9; i++)
{
m[i] = 0.0;
}
for (ptId=0; ptId < numPts; ptId++)
{
input->GetPoint(ptId, x);
v[0] += x[0]*x[2];
v[1] += x[1]*x[2];
v[2] += x[2];
m[0] += x[0]*x[0];
m[1] += x[0]*x[1];
m[2] += x[0];
m[3] += x[0]*x[1];
m[4] += x[1]*x[1];
m[5] += x[1];
m[6] += x[0];
m[7] += x[1];
}
m[8] = numPts;
origin[0] = m[2] / numPts;
origin[1] = m[5] / numPts;
origin[2] = v[2] / numPts;
// Solve linear system using Kramers rule
//
c1 = m; c2 = m+3; c3 = m+6;
if ( (det = vtkMath::Determinant3x3 (c1,c2,c3)) > tolerance )
{
normal[0] = vtkMath::Determinant3x3 (v,c2,c3) / det;
normal[1] = vtkMath::Determinant3x3 (c1,v,c3) / det;
normal[2] = -1.0; // because of the formulation
}
vtkTransform * transform = vtkTransform::New();
// Set the new Z axis as the normal to the best fitting
// plane.
double zaxis[3];
zaxis[0] = 0;
zaxis[1] = 0;
zaxis[2] = 1;
double rotationAxis[3];
vtkMath::Normalize(normal);
vtkMath::Cross(normal,zaxis,rotationAxis);
vtkMath::Normalize(rotationAxis);
const double rotationAngle =
180.0*acos(vtkMath::Dot(zaxis,normal))/3.1415926;
transform->PreMultiply();
transform->Identity();
transform->RotateWXYZ(rotationAngle,
rotationAxis[0], rotationAxis[1], rotationAxis[2]);
// Set the center of mass as the origin of coordinates
transform->Translate( -origin[0], -origin[1], -origin[2] );
return transform;
}
//----------------------------------------------------------------------------
void vtkDelaunay2D::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Alpha: " << this->Alpha << "\n";
os << indent << "ProjectionPlaneMode: "
<< ((this->ProjectionPlaneMode == VTK_BEST_FITTING_PLANE)? "Best Fitting Plane" : "XY Plane") << "\n";
os << indent << "Transform: " << (this->Transform ? "specified" : "none") << "\n";
os << indent << "Tolerance: " << this->Tolerance << "\n";
os << indent << "Offset: " << this->Offset << "\n";
os << indent << "Bounding Triangulation: "
<< (this->BoundingTriangulation ? "On\n" : "Off\n");
}