Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

963 lines
30 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkGridSynchronizedTemplates3D.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkSynchronizedTemplates3D.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkCharArray.h"
#include "vtkDoubleArray.h"
#include "vtkExtentTranslator.h"
#include "vtkFloatArray.h"
#include "vtkGridSynchronizedTemplates3D.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkIntArray.h"
#include "vtkLongArray.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
#include "vtkShortArray.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include "vtkStructuredGrid.h"
#include "vtkStructuredPoints.h"
#include "vtkUnsignedCharArray.h"
#include "vtkUnsignedIntArray.h"
#include "vtkUnsignedLongArray.h"
#include "vtkUnsignedShortArray.h"
#include <math.h>
vtkCxxRevisionMacro(vtkGridSynchronizedTemplates3D, "$Revision: 1.6 $");
vtkStandardNewMacro(vtkGridSynchronizedTemplates3D);
//----------------------------------------------------------------------------
// Description:
// Construct object with initial scalar range (0,1) and single contour value
// of 0.0. The ImageRange are set to extract the first k-plane.
vtkGridSynchronizedTemplates3D::vtkGridSynchronizedTemplates3D()
{
this->ContourValues = vtkContourValues::New();
this->ComputeNormals = 1;
this->ComputeGradients = 0;
this->ComputeScalars = 1;
this->ExecuteExtent[0] = this->ExecuteExtent[1]
= this->ExecuteExtent[2] = this->ExecuteExtent[3]
= this->ExecuteExtent[4] = this->ExecuteExtent[5] = 0;
this->MinimumPieceSize[0] = 10;
this->MinimumPieceSize[1] = 10;
this->MinimumPieceSize[2] = 10;
// by default process active point scalars
this->SetInputArrayToProcess(0,0,0,vtkDataObject::FIELD_ASSOCIATION_POINTS,
vtkDataSetAttributes::SCALARS);
}
//----------------------------------------------------------------------------
vtkGridSynchronizedTemplates3D::~vtkGridSynchronizedTemplates3D()
{
this->ContourValues->Delete();
}
//----------------------------------------------------------------------------
void vtkGridSynchronizedTemplates3D::SetInputMemoryLimit(
long vtkNotUsed(limit))
{
vtkErrorMacro( << "This filter no longer supports a memory limit." );
vtkErrorMacro( << "This filter no longer initiates streaming." );
vtkErrorMacro( << "Please use a .... after this filter to achieve similar functionality." );
}
//----------------------------------------------------------------------------
// Description:
// Overload standard modified time function. If contour values are modified,
// then this object is modified as well.
unsigned long vtkGridSynchronizedTemplates3D::GetMTime()
{
unsigned long mTime=this->Superclass::GetMTime();
unsigned long mTime2=this->ContourValues->GetMTime();
mTime = ( mTime2 > mTime ? mTime2 : mTime );
return mTime;
}
//----------------------------------------------------------------------------
void vtkGridSynchronizedTemplates3DInitializeOutput(int *ext,
vtkStructuredGrid *input,
vtkPolyData *o,
vtkFloatArray *scalars,
vtkFloatArray *normals,
vtkFloatArray *gradients,
vtkDataArray *inScalars)
{
vtkPoints *newPts;
vtkCellArray *newPolys;
long estimatedSize;
estimatedSize = (int) pow ((double)
((ext[1]-ext[0]+1)*(ext[3]-ext[2]+1)*(ext[5]-ext[4]+1)), .75);
if (estimatedSize < 1024)
{
estimatedSize = 1024;
}
newPts = vtkPoints::New();
newPts->Allocate(estimatedSize,estimatedSize);
newPolys = vtkCellArray::New();
newPolys->Allocate(newPolys->EstimateSize(estimatedSize,3));
o->SetPoints(newPts);
newPts->Delete();
o->SetPolys(newPolys);
newPolys->Delete();
o->GetPointData()->CopyAllOn();
// It is more efficient to just create the scalar array
// rather than redundantly interpolate the scalars.
if (input->GetPointData()->GetScalars() == inScalars)
{
o->GetPointData()->CopyScalarsOff();
}
else
{
o->GetPointData()->CopyFieldOff(inScalars->GetName());
}
if (normals)
{
normals->SetNumberOfComponents(3);
normals->Allocate(3*estimatedSize,3*estimatedSize/2);
normals->SetName("Normals");
}
if (gradients)
{
gradients->SetNumberOfComponents(3);
gradients->Allocate(3*estimatedSize,3*estimatedSize/2);
gradients->SetName("Gradients");
}
if (scalars)
{
scalars->Allocate(estimatedSize,estimatedSize/2);
scalars->SetName("Scalars");
}
// It is more efficient to just create the scalar array
o->GetPointData()->InterpolateAllocate(input->GetPointData(),
estimatedSize,estimatedSize/2);
o->GetCellData()->CopyAllocate(input->GetCellData(),
estimatedSize,estimatedSize/2);
}
//----------------------------------------------------------------------------
// Close to central differences for a grid as I could get.
// Given a linear gradient assumption find gradient that minimizes
// error squared for + and - (*3) neighbors).
template <class T, class PointsType>
void ComputeGridPointGradient(int i, int j, int k, int inExt[6],
int incY, int incZ, T *sc, PointsType* pt,
double g[3])
{
double N[6][3];
double NtN[3][3], NtNi[3][3];
double *NtN2[3], *NtNi2[3];
double tmpDoubleArray[3];
int tmpIntArray[3];
double s[6], Nts[3], sum;
int count = 0;
T *s2;
PointsType *p2;
if (i == 2 && k == 2)
{
count = 0;
}
// x-direction
if (i > inExt[0])
{
p2 = pt - 3;
s2 = sc - 1;
N[count][0] = p2[0] - pt[0];
N[count][1] = p2[1] - pt[1];
N[count][2] = p2[2] - pt[2];
s[count] = (double)(*s2) - (double)(*sc);
++count;
}
if (i < inExt[1])
{
p2 = pt + 3;
s2 = sc + 1;
N[count][0] = p2[0] - pt[0];
N[count][1] = p2[1] - pt[1];
N[count][2] = p2[2] - pt[2];
s[count] = (double)(*s2) - (double)(*sc);
++count;
}
// y-direction
if (j > inExt[2])
{
p2 = pt - 3*incY;
s2 = sc - incY;
N[count][0] = p2[0] - pt[0];
N[count][1] = p2[1] - pt[1];
N[count][2] = p2[2] - pt[2];
s[count] = (double)(*s2) - (double)(*sc);
++count;
}
if (j < inExt[3])
{
p2 = pt + 3*incY;
s2 = sc + incY;
N[count][0] = p2[0] - pt[0];
N[count][1] = p2[1] - pt[1];
N[count][2] = p2[2] - pt[2];
s[count] = (double)(*s2) - (double)(*sc);
++count;
}
// z-direction
if (k > inExt[4])
{
p2 = pt - 3*incZ;
s2 = sc - incZ;
N[count][0] = p2[0] - pt[0];
N[count][1] = p2[1] - pt[1];
N[count][2] = p2[2] - pt[2];
s[count] = (double)(*s2) - (double)(*sc);
++count;
}
if (k < inExt[5])
{
p2 = pt + 3*incZ;
s2 = sc + incZ;
N[count][0] = p2[0] - pt[0];
N[count][1] = p2[1] - pt[1];
N[count][2] = p2[2] - pt[2];
s[count] = (double)(*s2) - (double)(*sc);
++count;
}
// compute transpose(N)N.
// since this will be a symetric matrix, we could make the
// computation a little more efficient.
for (i = 0; i < 3; ++i)
{
for (j = 0; j < 3; ++j)
{
sum = 0.0;
for (k = 0; k < count; ++k)
{
sum += N[k][i] * N[k][j];
}
NtN[i][j] = sum;
}
}
// compute the inverse of NtN
// We have to setup a double** for the invert matrix call (@#$%!&%$!)
NtN2[0] = &(NtN[0][0]);
NtN2[1] = &(NtN[1][0]);
NtN2[2] = &(NtN[2][0]);
NtNi2[0] = &(NtNi[0][0]);
NtNi2[1] = &(NtNi[1][0]);
NtNi2[2] = &(NtNi[2][0]);
if (vtkMath::InvertMatrix(NtN2, NtNi2, 3, tmpIntArray, tmpDoubleArray) == 0)
{
vtkGenericWarningMacro("Cannot compute gradient of grid");
return;
}
// compute transpose(N)s.
for (i = 0; i < 3; ++i)
{
sum = 0.0;
for (j = 0; j < count; ++j)
{
sum += N[j][i] * s[j];
}
Nts[i] = sum;
}
// now compute gradient
for (i = 0; i < 3; ++i)
{
sum = 0.0;
for (j = 0; j < 3; ++j)
{
sum += NtNi[j][i] * Nts[j];
}
g[i] = sum;
}
}
//----------------------------------------------------------------------------
#define VTK_CSP3PA(i2,j2,k2,s,p, grad, norm) \
if (NeedGradients) \
{ \
if (!g0) \
{ \
ComputeGridPointGradient(i, j, k, inExt, incY, incZ, s0, p0, n0); \
g0 = 1; \
} \
ComputeGridPointGradient(i2, j2, k2, inExt, incY, incZ, s, p, n1); \
for (jj=0; jj<3; jj++) \
{ \
grad[jj] = n0[jj] + t * (n1[jj] - n0[jj]); \
} \
if (ComputeGradients) \
{ \
newGradients->InsertNextTuple(grad); \
} \
if (ComputeNormals) \
{ \
norm[0] = -grad[0]; norm[1] = -grad[1]; norm[2] = -grad[2]; \
vtkMath::Normalize(norm); \
newNormals->InsertNextTuple(norm); \
} \
} \
if (ComputeScalars) \
{ \
newScalars->InsertNextTuple(&value); \
}
//----------------------------------------------------------------------------
// Contouring filter specialized for images
template <class T, class PointsType>
void ContourGrid(vtkGridSynchronizedTemplates3D *self,
int *exExt, T *scalars,
vtkStructuredGrid *input, vtkPolyData *output, PointsType*, vtkDataArray *inScalars)
{
int *inExt = input->GetExtent();
int xdim = exExt[1] - exExt[0] + 1;
int ydim = exExt[3] - exExt[2] + 1;
double n0[3], n1[3]; // used in gradient macro
double *values = self->GetValues();
int numContours = self->GetNumberOfContours();
PointsType *inPtPtrX, *inPtPtrY, *inPtPtrZ;
PointsType *p0, *p1, *p2, *p3;
T *inPtrX, *inPtrY, *inPtrZ;
T *s0, *s1, *s2, *s3;
int XMin, XMax, YMin, YMax, ZMin, ZMax;
int incY, incZ;
PointsType* points =
static_cast<PointsType*>(input->GetPoints()->GetData()->GetVoidPointer(0));
double t;
int *isect1Ptr, *isect2Ptr;
vtkIdType ptIds[3];
int *tablePtr;
int v0, v1, v2, v3;
int idx, vidx;
double value;
int i, j, k;
int zstep, yisectstep;
int offsets[12];
int ComputeNormals = self->GetComputeNormals();
int ComputeGradients = self->GetComputeGradients();
int ComputeScalars = self->GetComputeScalars();
int NeedGradients = ComputeGradients || ComputeNormals;
int jj, g0;
// We need to know the edgePointId's for interpolating attributes.
vtkIdType edgePtId, inCellId, outCellId;
vtkPointData *inPD = input->GetPointData();
vtkCellData *inCD = input->GetCellData();
vtkPointData *outPD = output->GetPointData();
vtkCellData *outCD = output->GetCellData();
// Temporary point data.
double x[3];
double grad[3];
double norm[3];
// Used to be passed in as parameteters.
vtkCellArray *newPolys;
vtkPoints *newPts;
vtkFloatArray *newScalars = NULL;
vtkFloatArray *newNormals = NULL;
vtkFloatArray *newGradients = NULL;
if (ComputeScalars)
{
newScalars = vtkFloatArray::New();
}
if (ComputeNormals)
{
newNormals = vtkFloatArray::New();
}
if (ComputeGradients)
{
newGradients = vtkFloatArray::New();
}
vtkGridSynchronizedTemplates3DInitializeOutput(exExt, input, output,
newScalars, newNormals, newGradients, inScalars);
newPts = output->GetPoints();
newPolys = output->GetPolys();
// this is an exploded execute extent.
XMin = exExt[0];
XMax = exExt[1];
YMin = exExt[2];
YMax = exExt[3];
ZMin = exExt[4];
ZMax = exExt[5];
// to skip over an x row of the input.
incY = inExt[1]-inExt[0]+1;
// to skip over an xy slice of the input.
incZ = (inExt[3]-inExt[2]+1)*incY;
// Kens increments, probably to do with edge array
zstep = xdim*ydim;
yisectstep = xdim*3;
// compute offsets probably how to get to the edges in the edge array.
offsets[0] = -xdim*3;
offsets[1] = -xdim*3 + 1;
offsets[2] = -xdim*3 + 2;
offsets[3] = -xdim*3 + 4;
offsets[4] = -xdim*3 + 5;
offsets[5] = 0;
offsets[6] = 2;
offsets[7] = 5;
offsets[8] = (zstep - xdim)*3;
offsets[9] = (zstep - xdim)*3 + 1;
offsets[10] = (zstep - xdim)*3 + 4;
offsets[11] = zstep*3;
// allocate storage array
int *isect1 = new int [xdim*ydim*3*2];
// set impossible edges to -1
for (i = 0; i < ydim; i++)
{
isect1[(i+1)*xdim*3-3] = -1;
isect1[(i+1)*xdim*3*2-3] = -1;
}
for (i = 0; i < xdim; i++)
{
isect1[((ydim-1)*xdim + i)*3 + 1] = -1;
isect1[((ydim-1)*xdim + i)*3*2 + 1] = -1;
}
//fprintf(stderr, "%d: -------- Extent %d, %d, %d, %d, %d, %d\n", threadId,
// exExt[0], exExt[1], exExt[2], exExt[3], exExt[4], exExt[5]);
// for each contour
for (vidx = 0; vidx < numContours; vidx++)
{
value = values[vidx];
// skip any slices which are overlap for computing gradients.
inPtPtrZ = points + 3*((ZMin - inExt[4]) * incZ +
(YMin - inExt[2]) * incY +
(XMin - inExt[0]));
inPtrZ = scalars + ((ZMin - inExt[4]) * incZ +
(YMin - inExt[2]) * incY +
(XMin - inExt[0]));
s2 = inPtrZ;
v2 = (*s2 < value ? 0 : 1);
//==================================================================
for (k = ZMin; k <= ZMax; k++)
{
// swap the buffers
if (k%2)
{
offsets[8] = (zstep - xdim)*3;
offsets[9] = (zstep - xdim)*3 + 1;
offsets[10] = (zstep - xdim)*3 + 4;
offsets[11] = zstep*3;
isect1Ptr = isect1;
isect2Ptr = isect1 + xdim*ydim*3;
}
else
{
offsets[8] = (-zstep - xdim)*3;
offsets[9] = (-zstep - xdim)*3 + 1;
offsets[10] = (-zstep - xdim)*3 + 4;
offsets[11] = -zstep*3;
isect1Ptr = isect1 + xdim*ydim*3;
isect2Ptr = isect1;
}
inPtPtrY = inPtPtrZ;
inPtrY = inPtrZ;
for (j = YMin; j <= YMax; j++)
{
// Should not impact perfomance here/
edgePtId = (j-inExt[2])*incY + (k-inExt[4])*incZ;
// Increments are different for cells.
// Since the cells are not contoured until the second row of templates,
// subtract 1 from i,j,and k. Note: first cube is formed when i=0, j=1, and k=1.
inCellId = (XMin-inExt[0]) + (inExt[1]-inExt[0])*( (j-inExt[2]-1) + (k-inExt[4]-1)*(inExt[3]-inExt[2]) );
p1 = inPtPtrY;
s1 = inPtrY;
v1 = (*s1 < value ? 0 : 1);
inPtPtrX = inPtPtrY;
inPtrX = inPtrY;
// inCellId is ised to keep track of ids for copying cell attributes.
for (i = XMin; i <= XMax; i++, inCellId++)
{
p0 = p1;
s0 = s1;
v0 = v1;
// this flag keeps up from computing gradient for grid point 0 twice.
g0 = 0;
*isect2Ptr = -1;
*(isect2Ptr + 1) = -1;
*(isect2Ptr + 2) = -1;
if (i < XMax)
{
p1 = (inPtPtrX + 3);
s1 = (inPtrX + 1);
v1 = (*s1 < value ? 0 : 1);
if (v0 ^ v1)
{
// watch for degenerate points
if (*s0 == value)
{
if (i > XMin && *(isect2Ptr-3) > -1)
{
*isect2Ptr = *(isect2Ptr-3);
}
else if (j > XMin && *(isect2Ptr - yisectstep + 1) > -1)
{
*isect2Ptr = *(isect2Ptr - yisectstep + 1);
}
else if (k > ZMin && *(isect1Ptr+2) > -1)
{
*isect2Ptr = *(isect1Ptr+2);
}
}
else if (*s1 == value)
{
if (j > YMin && *(isect2Ptr - yisectstep +4) > -1)
{
*isect2Ptr = *(isect2Ptr - yisectstep + 4);
}
else if (k > ZMin && i < XMax && *(isect1Ptr + 5) > -1)
{
*isect2Ptr = *(isect1Ptr + 5);
}
}
// if the edge has not been set yet then it is a new point
if (*isect2Ptr == -1)
{
t = (value - (double)(*s0)) / ((double)(*s1) - (double)(*s0));
x[0] = p0[0] + t*(p1[0] - p0[0]);
x[1] = p0[1] + t*(p1[1] - p0[1]);
x[2] = p0[2] + t*(p1[2] - p0[2]);
*isect2Ptr = newPts->InsertNextPoint(x);
VTK_CSP3PA(i+1,j,k,s1,p1,grad,norm);
outPD->InterpolateEdge(inPD, *isect2Ptr, edgePtId, edgePtId+1, t);
}
}
}
if (j < YMax)
{
p2 = (inPtPtrX + incY*3);
s2 = (inPtrX + incY);
v2 = (*s2 < value ? 0 : 1);
if (v0 ^ v2)
{
// watch for degen points
if (*s0 == value)
{
if (*isect2Ptr > -1)
{
*(isect2Ptr + 1) = *isect2Ptr;
}
else if (i > XMin && *(isect2Ptr-3) > -1)
{
*(isect2Ptr + 1) = *(isect2Ptr-3);
}
else if (j > YMin && *(isect2Ptr - yisectstep + 1) > -1)
{
*(isect2Ptr + 1) = *(isect2Ptr - yisectstep + 1);
}
else if (k > ZMin && *(isect1Ptr+2) > -1)
{
*(isect2Ptr + 1) = *(isect1Ptr+2);
}
}
else if (*s2 == value && k > ZMin && *(isect1Ptr + yisectstep + 2) > -1)
{
*(isect2Ptr+1) = *(isect1Ptr + yisectstep + 2);
}
// if the edge has not been set yet then it is a new point
if (*(isect2Ptr + 1) == -1)
{
t = (value - (double)(*s0)) / ((double)(*s2) - (double)(*s0));
x[0] = p0[0] + t*(p2[0] - p0[0]);
x[1] = p0[1] + t*(p2[1] - p0[1]);
x[2] = p0[2] + t*(p2[2] - p0[2]);
*(isect2Ptr + 1) = newPts->InsertNextPoint(x);
VTK_CSP3PA(i,j+1,k,s2,p2,grad,norm);
outPD->InterpolateEdge(inPD, *(isect2Ptr+1), edgePtId,
edgePtId+incY, t);
}
}
}
if (k < ZMax)
{
p3 = (inPtPtrX + incZ*3);
s3 = (inPtrX + incZ);
v3 = (*s3 < value ? 0 : 1);
if (v0 ^ v3)
{
// watch for degen points
if (*s0 == value)
{
if (*isect2Ptr > -1)
{
*(isect2Ptr + 2) = *isect2Ptr;
}
else if (*(isect2Ptr+1) > -1)
{
*(isect2Ptr + 2) = *(isect2Ptr+1);
}
else if (i > XMin && *(isect2Ptr-3) > -1)
{
*(isect2Ptr + 2) = *(isect2Ptr-3);
}
else if (j > YMin && *(isect2Ptr - yisectstep + 1) > -1)
{
*(isect2Ptr + 2) = *(isect2Ptr - yisectstep + 1);
}
else if (k > ZMin && *(isect1Ptr+2) > -1)
{
*(isect2Ptr + 2) = *(isect1Ptr+2);
}
}
if (*(isect2Ptr + 2) == -1)
{
t = (value - (double)(*s0)) / ((double)(*s3) - (double)(*s0));
x[0] = p0[0] + t*(p3[0] - p0[0]);
x[1] = p0[1] + t*(p3[1] - p0[1]);
x[2] = p0[2] + t*(p3[2] - p0[2]);
*(isect2Ptr + 2) = newPts->InsertNextPoint(x);
VTK_CSP3PA(i,j,k+1,s3,p3,grad,norm);
outPD->InterpolateEdge(inPD, *(isect2Ptr+2),
edgePtId, edgePtId+incZ, t);
}
}
}
// To keep track of ids for interpolating attributes.
++edgePtId;
// now add any polys that need to be added
// basically look at the isect values,
// form an index and lookup the polys
if (j > YMin && i < XMax && k > ZMin)
{
idx = (v0 ? 4096 : 0);
idx = idx + (*(isect1Ptr - yisectstep) > -1 ? 2048 : 0);
idx = idx + (*(isect1Ptr -yisectstep +1) > -1 ? 1024 : 0);
idx = idx + (*(isect1Ptr -yisectstep +2) > -1 ? 512 : 0);
idx = idx + (*(isect1Ptr -yisectstep +4) > -1 ? 256 : 0);
idx = idx + (*(isect1Ptr -yisectstep +5) > -1 ? 128 : 0);
idx = idx + (*(isect1Ptr) > -1 ? 64 : 0);
idx = idx + (*(isect1Ptr + 2) > -1 ? 32 : 0);
idx = idx + (*(isect1Ptr + 5) > -1 ? 16 : 0);
idx = idx + (*(isect2Ptr -yisectstep) > -1 ? 8 : 0);
idx = idx + (*(isect2Ptr -yisectstep +1) > -1 ? 4 : 0);
idx = idx + (*(isect2Ptr -yisectstep +4) > -1 ? 2 : 0);
idx = idx + (*(isect2Ptr) > -1 ? 1 : 0);
tablePtr = VTK_SYNCHRONIZED_TEMPLATES_3D_TABLE_2
+ VTK_SYNCHRONIZED_TEMPLATES_3D_TABLE_1[idx];
// to protect data against multiple threads
if ( input->IsCellVisible(inCellId) )
{
while (*tablePtr != -1)
{
ptIds[0] = *(isect1Ptr + offsets[*tablePtr]);
tablePtr++;
ptIds[1] = *(isect1Ptr + offsets[*tablePtr]);
tablePtr++;
ptIds[2] = *(isect1Ptr + offsets[*tablePtr]);
tablePtr++;
if (ptIds[0] != ptIds[1] &&
ptIds[0] != ptIds[2] &&
ptIds[1] != ptIds[2])
{
outCellId = newPolys->InsertNextCell(3,ptIds);
outCD->CopyData(inCD, inCellId, outCellId);
}
}
}
}
inPtPtrX += 3;
++inPtrX;
isect2Ptr += 3;
isect1Ptr += 3;
}
inPtPtrY += 3*incY;
inPtrY += incY;
}
inPtPtrZ += 3*incZ;
inPtrZ += incZ;
}
}
if (newScalars)
{
newScalars->SetName(inScalars->GetName());
idx = output->GetPointData()->AddArray(newScalars);
output->GetPointData()->SetActiveAttribute(idx, vtkDataSetAttributes::SCALARS);
newScalars->Delete();
newScalars = NULL;
}
if (newGradients)
{
output->GetPointData()->SetVectors(newGradients);
newGradients->Delete();
newGradients = NULL;
}
if (newNormals)
{
output->GetPointData()->SetNormals(newNormals);
newNormals->Delete();
newNormals = NULL;
}
delete [] isect1;
}
template <class T>
void ContourGrid(vtkGridSynchronizedTemplates3D *self,
int *exExt, T *scalars, vtkStructuredGrid *input,
vtkPolyData *output, vtkDataArray *inScalars)
{
switch(input->GetPoints()->GetData()->GetDataType())
{
vtkTemplateMacro(
ContourGrid(self, exExt, scalars, input, output, (VTK_TT*)0, inScalars));
}
}
//----------------------------------------------------------------------------
// Contouring filter specialized for images (or slices from images)
void vtkGridSynchronizedTemplates3D::ThreadedExecute(int *exExt, int ,
vtkStructuredGrid *input,
vtkInformationVector **inputVector,
vtkInformation *outInfo)
{
vtkDataArray *inScalars = this->GetInputArrayToProcess(0,inputVector);
vtkPolyData *output = vtkPolyData::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
long dataSize;
vtkDebugMacro(<< "Executing 3D structured contour");
if ( inScalars == NULL )
{
vtkErrorMacro(<<"Scalars must be defined for contouring");
return;
}
if ( input->GetDataDimension() != 3 )
{
vtkErrorMacro(<<"3D structured contours requires 3D data");
return;
}
//
// Check dimensionality of data and get appropriate form
//
dataSize = (exExt[1]-exExt[0]+1) * (exExt[3]-exExt[2]+1)
* (exExt[5]-exExt[4]+1);
//
// Check data type and execute appropriate function
//
if (inScalars->GetNumberOfComponents() == 1 )
{
void *scalars = inScalars->GetVoidPointer(0);
switch (inScalars->GetDataType())
{
vtkTemplateMacro(
ContourGrid(this, exExt, (VTK_TT *)scalars, input, output, inScalars));
}//switch
}
else //multiple components - have to convert
{
vtkDoubleArray *image = vtkDoubleArray::New();
image->SetNumberOfComponents(inScalars->GetNumberOfComponents());
image->Allocate(dataSize*image->GetNumberOfComponents());
inScalars->GetTuples(0,dataSize,image);
double *scalars = image->GetPointer(0);
ContourGrid(this, exExt, scalars, input, output, inScalars);
image->Delete();
}
// Lets set the name of the scalars here.
if (this->ComputeScalars)
{
vtkDataArray *outScalars = output->GetPointData()->GetScalars();
outScalars->SetName(inScalars->GetName());
}
}
//----------------------------------------------------------------------------
int vtkGridSynchronizedTemplates3D::RequestUpdateExtent(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
int piece, numPieces;
int *wholeExt;
int ext[6];
vtkExtentTranslator *translator = vtkExtentTranslator::SafeDownCast(
inInfo->Get(vtkStreamingDemandDrivenPipeline::EXTENT_TRANSLATOR()));
wholeExt = inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT());
// Get request from output
piece =
outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_PIECE_NUMBER());
numPieces =
outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_NUMBER_OF_PIECES());
// Start with the whole grid.
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), ext);
// get the extent associated with the piece.
if (translator == NULL)
{
// Default behavior
if (piece != 0)
{
ext[0] = ext[2] = ext[4] = 0;
ext[1] = ext[3] = ext[5] = -1;
}
}
else
{
translator->PieceToExtentThreadSafe(piece, numPieces, 0, wholeExt, ext,
translator->GetSplitMode(),0);
}
// As a side product of this call, ExecuteExtent is set.
// This is the region that we are really updating, although
// we may require a larger input region in order to generate
// it if normals / gradients are being computed
this->ExecuteExtent[0] = ext[0];
this->ExecuteExtent[1] = ext[1];
this->ExecuteExtent[2] = ext[2];
this->ExecuteExtent[3] = ext[3];
this->ExecuteExtent[4] = ext[4];
this->ExecuteExtent[5] = ext[5];
// expand if we need to compute gradients
if (this->ComputeGradients || this->ComputeNormals)
{
ext[0] -= 1;
if (ext[0] < wholeExt[0])
{
ext[0] = wholeExt[0];
}
ext[1] += 1;
if (ext[1] > wholeExt[1])
{
ext[1] = wholeExt[1];
}
ext[2] -= 1;
if (ext[2] < wholeExt[2])
{
ext[2] = wholeExt[2];
}
ext[3] += 1;
if (ext[3] > wholeExt[3])
{
ext[3] = wholeExt[3];
}
ext[4] -= 1;
if (ext[4] < wholeExt[4])
{
ext[4] = wholeExt[4];
}
ext[5] += 1;
if (ext[5] > wholeExt[5])
{
ext[5] = wholeExt[5];
}
}
// Set the update extent of the input.
inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), ext, 6);
return 1;
}
//----------------------------------------------------------------------------
int vtkGridSynchronizedTemplates3D::FillInputPortInformation(
int, vtkInformation *info)
{
info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkStructuredGrid");
return 1;
}
//----------------------------------------------------------------------------
void vtkGridSynchronizedTemplates3D::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
this->ContourValues->PrintSelf(os,indent.GetNextIndent());
os << indent << "Compute Normals: " << (this->ComputeNormals ? "On\n" : "Off\n");
os << indent << "Compute Gradients: " << (this->ComputeGradients ? "On\n" : "Off\n");
os << indent << "Compute Scalars: " << (this->ComputeScalars ? "On\n" : "Off\n");
}
//----------------------------------------------------------------------------
int vtkGridSynchronizedTemplates3D::RequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
// get the input and ouptut
vtkStructuredGrid *input = vtkStructuredGrid::SafeDownCast(
inInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPolyData *output = vtkPolyData::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
// Make sure the attributes match the geometry.
if (input->CheckAttributes())
{
return 1;
}
if (input->GetNumberOfPoints() == 0)
{
return 1;
}
// just call the threaded execute directly.
this->ThreadedExecute(this->GetExecuteExtent(), 0, input, inputVector, outInfo);
output->Squeeze();
return 1;
}