Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

363 lines
12 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkLinkEdgels.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkLinkEdgels.h"
#include "vtkCellArray.h"
#include "vtkDoubleArray.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
vtkCxxRevisionMacro(vtkLinkEdgels, "$Revision: 1.39 $");
vtkStandardNewMacro(vtkLinkEdgels);
// Construct instance of vtkLinkEdgels with GradientThreshold set to
// 0.1, PhiThreshold set to 90 degrees and LinkThreshold set to 90 degrees.
vtkLinkEdgels::vtkLinkEdgels()
{
this->GradientThreshold = 0.1;
this->PhiThreshold = 90;
this->LinkThreshold = 90;
}
int vtkLinkEdgels::RequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
// get the input and ouptut
vtkImageData *input = vtkImageData::SafeDownCast(
inInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPolyData *output = vtkPolyData::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPointData *pd;
vtkPoints *newPts;
vtkCellArray *newLines;
vtkDoubleArray *inScalars;
vtkDoubleArray *outScalars;
vtkDoubleArray *outVectors;
int *dimensions;
double *CurrMap, *inDataPtr;
vtkDataArray *inVectors;
int ptId;
vtkDebugMacro(<< "Extracting structured points geometry");
pd = input->GetPointData();
dimensions = input->GetDimensions();
inScalars = vtkDoubleArray::SafeDownCast(pd->GetScalars());
inVectors = pd->GetVectors();
if ((input->GetNumberOfPoints()) < 2 || inScalars == NULL)
{
vtkErrorMacro(<<"No data to transform (or wrong data type)!");
return 1;
}
// set up the input
inDataPtr = inScalars->GetPointer(0);
// Finally do edge following to extract the edge data from the Thin image
newPts = vtkPoints::New();
newLines = vtkCellArray::New();
outScalars = vtkDoubleArray::New();
outVectors = vtkDoubleArray::New();
outVectors->SetNumberOfComponents(3);
vtkDebugMacro("doing edge linking\n");
//
// Traverse all points, for each point find Gradient in the Image map.
//
for (ptId=0; ptId < dimensions[2]; ptId++)
{
CurrMap = inDataPtr + dimensions[0]*dimensions[1]*ptId;
this->LinkEdgels(dimensions[0],dimensions[1],CurrMap, inVectors,
newLines,newPts,outScalars,outVectors,ptId);
}
output->SetPoints(newPts);
output->SetLines(newLines);
// Update ourselves
// outScalars->ComputeRange();
output->GetPointData()->SetScalars(outScalars);
output->GetPointData()->SetVectors(outVectors);
newPts->Delete();
newLines->Delete();
outScalars->Delete();
outVectors->Delete();
return 1;
}
// This method links the edges for one image.
void vtkLinkEdgels::LinkEdgels(int xdim, int ydim, double *image,
vtkDataArray *inVectors,
vtkCellArray *newLines,
vtkPoints *newPts,
vtkDoubleArray *outScalars,
vtkDoubleArray *outVectors,
int z)
{
int **forward;
int **backward;
int x,y,ypos,zpos;
int currX, currY, i;
int newX, newY;
double vec[3], vec1[3], vec2[3];
double linkThresh, phiThresh;
// these direction vectors are rotated 90 degrees
// to convert gradient direction into edgel direction
static double directions[8][2] = {
{0,1}, {-0.707, 0.707},
{-1,0}, {-0.707, -0.707},
{0,-1}, {0.707, -0.707},
{1,0}, {0.707, 0.707}};
static int xoffset[8] = {1,1,0,-1,-1,-1,0,1};
static int yoffset[8] = {0,1,1,1,0,-1,-1,-1};
int length, start;
int bestDirection = 0;
double error, bestError;
forward = new int *[ydim];
backward = new int *[ydim];
for (i = 0; i < ydim; i++)
{
forward[i] = new int [xdim];
backward[i] = new int [xdim];
memset(forward[i],0,xdim*sizeof(int));
memset(backward[i],0,xdim*sizeof(int));
}
zpos = z*xdim*ydim;
linkThresh = cos(this->LinkThreshold*3.1415926/180.0);
phiThresh = cos(this->PhiThreshold*3.1415926/180.0);
// first find all forward & backwards links
for (y = 0; y < ydim; y++)
{
ypos = y*xdim;
for (x = 0; x < xdim; x++)
{
// find forward and backward neighbor for this pixel
// if its value is less than threshold then ignore it
if (image[x+ypos] < this->GradientThreshold)
{
forward[y][x] = -1;
backward[y][x] = -1;
}
else
{
// try all neighbors as forward, first try four connected
inVectors->GetTuple(x+ypos+zpos,vec1);
vtkMath::Normalize(vec1);
// first eliminate based on phi1 - alpha
bestError = 0;
for (i = 0; i < 8; i += 2)
{
// make sure it passes the linkThresh test
if ((directions[i][0]*vec1[0]+directions[i][1]*vec1[1]) >=
linkThresh)
{
// make sure we dont go off the edge and are >= GradientThresh
// and it hasn't already been set
if ((x + xoffset[i] >= 0)&&(x + xoffset[i] < xdim)&&
(y + yoffset[i] >= 0)&&(y + yoffset[i] < ydim)&&
(!backward[y+yoffset[i]][x+xoffset[i]])&&
(image[x + xoffset[i] + (y+yoffset[i])*xdim] >=
this->GradientThreshold))
{
// satisfied the first test, now check second
inVectors->GetTuple(x + xoffset[i] +
(y + yoffset[i])*xdim + zpos,vec2);
vtkMath::Normalize(vec2);
if ((vec1[0]*vec2[0] + vec1[1]*vec2[1]) >= phiThresh)
{
// pased phi - phi test does the forward neighbor
// pass the link test
if ((directions[i][0]*vec2[0]+directions[i][1]*vec2[1]) >=
linkThresh)
{
// check against the current best solution
error = (directions[i][0]*vec2[0]+directions[i][1]*vec2[1])
+ (directions[i][0]*vec1[0]+directions[i][1]*vec1[1])
+ (vec1[0]*vec2[0] + vec1[1]*vec2[1]);
if (error > bestError)
{
bestDirection = i;
bestError = error;
}
}
}
}
}
}
if (bestError > 0)
{
forward[y][x] = (bestDirection+1);
backward[y+yoffset[bestDirection]][x+xoffset[bestDirection]]
= ((bestDirection+4)%8)+1;
}
else
{
// check the eight connected neighbors now
for (i = 1; i < 8; i += 2)
{
// make sure it passes the linkThresh test
if ((directions[i][0]*vec1[0]+directions[i][1]*vec1[1]) >=
linkThresh)
{
// make sure we dont go off the edge and are >= GradientThresh
// and it hasn't already been set
if ((x + xoffset[i] >= 0)&&(x + xoffset[i] < xdim)&&
(y + yoffset[i] >= 0)&&(y + yoffset[i] < ydim)&&
(!backward[y+yoffset[i]][x+xoffset[i]])&&
(image[x + xoffset[i] + (y+yoffset[i])*xdim] >=
this->GradientThreshold))
{
// satisfied the first test, now check second
inVectors->GetTuple(x + xoffset[i] +
(y + yoffset[i])*xdim + zpos,vec2);
vtkMath::Normalize(vec2);
if ((vec1[0]*vec2[0] + vec1[1]*vec2[1]) >= phiThresh)
{
// pased phi - phi test does the forward neighbor
// pass the link test
if ((directions[i][0]*vec2[0]+directions[i][1]*vec2[1]) >=
linkThresh)
{
// check against the current best solution
error = (directions[i][0]*vec2[0]+directions[i][1]*vec2[1])
+ (directions[i][0]*vec1[0]+directions[i][1]*vec1[1])
+ (vec1[0]*vec2[0] + vec1[1]*vec2[1]);
if (error > bestError)
{
bestDirection = i;
bestError = error;
}
}
}
}
}
}
if (bestError > 0)
{
forward[y][x] = (bestDirection+1);
backward[y+yoffset[bestDirection]][x+xoffset[bestDirection]]
= ((bestDirection+4)%8)+1;
}
}
}
}
}
// now construct the chains
vec[2] = z;
for (y = 0; y < ydim; y++)
{
ypos = y*xdim;
for (x = 0; x < xdim; x++)
{
// do we have part of an edgel chain ?
// isolated edgels do not qualify
if (backward[y][x] > 0)
{
// trace back to the beginning
currX = x;
currY = y;
do
{
newX = currX + xoffset[backward[currY][currX] - 1];
currY += yoffset[backward[currY][currX] - 1];
currX = newX;
}
while ((currX != x || currY != y) && backward[currY][currX]);
// now trace to the end and build the digital curve
length = 0;
start = outScalars->GetNumberOfTuples();
newX = currX;
newY = currY;
do
{
currX = newX;
currY = newY;
outScalars->InsertNextTuple(&(image[currX + currY*xdim]));
inVectors->GetTuple(currX+currY*xdim+zpos,vec2);
vtkMath::Normalize(vec2);
outVectors->InsertNextTuple(vec2);
vec[0] = currX;
vec[1] = currY;
newPts->InsertNextPoint(vec);
length++;
// if there is a next pixel select it
if (forward[currY][currX])
{
newX = currX + xoffset[forward[currY][currX] - 1];
newY = currY + yoffset[forward[currY][currX] - 1];
}
// clear out this edgel now that were done with it
backward[newY][newX] = 0;
forward[currY][currX] = 0;
}
while ((currX != newX || currY != newY));
// build up the cell
newLines->InsertNextCell(length);
for (i = 0; i < length; i++)
{
newLines->InsertCellPoint(start);
start++;
}
}
}
}
// free up the memory
for (i = 0; i < ydim; i++)
{
delete [] forward[i];
delete [] backward[i];
}
delete [] forward;
delete [] backward;
}
int vtkLinkEdgels::FillInputPortInformation(int, vtkInformation *info)
{
info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkImageData");
return 1;
}
void vtkLinkEdgels::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "GradientThreshold:" << this->GradientThreshold << "\n";
os << indent << "LinkThreshold:" << this->LinkThreshold << "\n";
os << indent << "PhiThreshold:" << this->PhiThreshold << "\n";
}