Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

260 lines
7.6 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkStreamLine.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkStreamLine.h"
#include "vtkCellArray.h"
#include "vtkDataSet.h"
#include "vtkFloatArray.h"
#include "vtkFloatArray.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
#include "vtkPolyLine.h"
vtkCxxRevisionMacro(vtkStreamLine, "$Revision: 1.59 $");
vtkStandardNewMacro(vtkStreamLine);
// Construct object with step size set to 1.0.
vtkStreamLine::vtkStreamLine()
{
this->StepLength = 1.0;
this->NumberOfStreamers = 0;
}
int vtkStreamLine::RequestData(
vtkInformation *,
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
vtkInformation *sourceInfo = inputVector[1]->GetInformationObject(0);
vtkDataSet *input = vtkDataSet::SafeDownCast(
inInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPolyData *output = vtkPolyData::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkDataSet *source = 0;
if (sourceInfo)
{
source = vtkDataSet::SafeDownCast(
sourceInfo->Get(vtkDataObject::DATA_OBJECT()));
}
vtkStreamer::StreamPoint *sPrev, *sPtr;
vtkPoints *newPts;
vtkFloatArray *newVectors;
vtkFloatArray *newScalars=NULL;
vtkCellArray *newLines;
vtkIdType ptId, i, id;
int j;
vtkIdList *pts;
double tOffset, x[3], v[3], s, r;
double theta;
vtkPolyLine* lineNormalGenerator = NULL;
vtkFloatArray* normals = NULL;
vtkFloatArray* rotation = 0;
this->SavePointInterval = this->StepLength;
this->vtkStreamer::Integrate(input, source);
if ( this->NumberOfStreamers <= 0 ) {return 1;}
pts = vtkIdList::New();
pts->Allocate(2500);
//
// Convert streamer into lines. Lines may be dashed.
//
newPts = vtkPoints::New();
newPts->Allocate(1000);
newVectors = vtkFloatArray::New();
newVectors->SetNumberOfComponents(3);
newVectors->Allocate(3000);
if ( this->Vorticity )
{
lineNormalGenerator = vtkPolyLine::New();
normals = vtkFloatArray::New();
normals->SetNumberOfComponents(3);
normals->Allocate(3000);
rotation = vtkFloatArray::New();
rotation->SetNumberOfComponents(1);
rotation->Allocate(1000);
rotation->SetName("Thetas");
output->GetPointData()->AddArray(rotation);
}
if ( input->GetPointData()->GetScalars() || this->SpeedScalars
|| this->OrientationScalars)
{
newScalars = vtkFloatArray::New();
newScalars->Allocate(1000);
}
newLines = vtkCellArray::New();
newLines->Allocate(newLines->EstimateSize(2*this->NumberOfStreamers,
VTK_CELL_SIZE));
//
// Loop over all streamers generating points
//
for (ptId=0; ptId < this->NumberOfStreamers; ptId++)
{
if ( this->Streamers[ptId].GetNumberOfPoints() < 2 )
{
continue;
}
sPrev = this->Streamers[ptId].GetStreamPoint(0);
sPtr = this->Streamers[ptId].GetStreamPoint(1);
if ( this->Streamers[ptId].GetNumberOfPoints() == 2 && sPtr->cellId >= 0 )
{
continue;
}
tOffset = sPrev->t;
for ( i=1;
i < this->Streamers[ptId].GetNumberOfPoints() && sPtr->cellId >= 0;
i++, sPrev=sPtr, sPtr=this->Streamers[ptId].GetStreamPoint(i) )
{
//
// Create points for line
//
while ( tOffset >= sPrev->t && tOffset < sPtr->t )
{
r = (tOffset - sPrev->t) / (sPtr->t - sPrev->t);
for (j=0; j<3; j++)
{
x[j] = sPrev->x[j] + r * (sPtr->x[j] - sPrev->x[j]);
v[j] = sPrev->v[j] + r * (sPtr->v[j] - sPrev->v[j]);
}
// add point to line
id = newPts->InsertNextPoint(x);
pts->InsertNextId(id);
newVectors->InsertTuple(id,v);
if ( newScalars )
{
s = sPrev->s + r * (sPtr->s - sPrev->s);
newScalars->InsertTuple(id,&s);
}
if ( this->Vorticity )
{
// Store the rotation values. Used after all the streamlines
// are generated.
theta = sPrev->theta + r * (sPtr->theta - sPrev->theta);
rotation->InsertTuple(id, &theta);
}
tOffset += this->StepLength;
} // while
} //for this streamer
if ( pts->GetNumberOfIds() > 1 )
{
newLines->InsertNextCell(pts);
pts->Reset();
}
} //for all streamers
vtkDebugMacro(<<"Created " << newPts->GetNumberOfPoints() << " points, "
<< newLines->GetNumberOfCells() << " lines");
if (this->Vorticity)
{
// Rotate the normal vectors with stream vorticity
vtkIdType nPts=0;
vtkIdType *linePts=0;
double normal[3], local1[3], local2[3], length, costheta, sintheta;
lineNormalGenerator->GenerateSlidingNormals(newPts,newLines,normals);
// Loop over all lines, from the above code we are know that each line
// will have at least two points and that no points will be shared
// between lines. It is important to loop over the points used by the
// lines because newPts may actually contain points that are not used by
// any lines. The normals are only calculated for points that are used
// in lines so referencing normals for all points can lead to UMRs
for (newLines->InitTraversal(); newLines->GetNextCell(nPts,linePts); )
{
for(i=0; i<nPts; i++)
{
normals->GetTuple(linePts[i], normal);
newVectors->GetTuple(linePts[i], v);
// obtain two unit orthogonal vectors on the plane perpendicular to
// the streamline
for(j=0; j<3; j++)
{
local1[j] = normal[j];
}
length = vtkMath::Normalize(local1);
vtkMath::Cross(local1, v, local2);
vtkMath::Normalize(local2);
// Rotate the normal with theta
rotation->GetTuple(linePts[i], &theta);
costheta = cos(theta);
sintheta = sin(theta);
for(j=0; j<3; j++)
{
normal[j] = length* (costheta*local1[j] + sintheta*local2[j]);
}
normals->SetTuple(linePts[i], normal);
}
}
output->GetPointData()->SetNormals(normals);
normals->Delete();
lineNormalGenerator->Delete();
rotation->Delete();
}
output->SetPoints(newPts);
newPts->Delete();
output->GetPointData()->SetVectors(newVectors);
newVectors->Delete();
if ( newScalars )
{
int idx = output->GetPointData()->AddArray(newScalars);
output->GetPointData()->SetActiveAttribute(idx, vtkDataSetAttributes::SCALARS);
newScalars->Delete();
}
pts->Delete();
output->SetLines(newLines);
newLines->Delete();
// Delete the streamers since they are no longer needed
delete[] this->Streamers;
this->Streamers = 0;
this->NumberOfStreamers = 0;
output->Squeeze();
return 1;
}
void vtkStreamLine::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Step Length: " << this->StepLength << "\n";
}