Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1264 lines
36 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkGreedyTerrainDecimation.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkGreedyTerrainDecimation.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkPriorityQueue.h"
#include "vtkImageData.h"
#include "vtkPolyData.h"
#include "vtkPointData.h"
#include "vtkPoints.h"
#include "vtkCellArray.h"
#include "vtkTriangle.h"
#include "vtkDoubleArray.h"
#include "vtkFloatArray.h"
#include "vtkMath.h"
#include <vtkstd/vector>
vtkCxxRevisionMacro(vtkGreedyTerrainDecimation, "$Revision: 1.22.12.1 $");
vtkStandardNewMacro(vtkGreedyTerrainDecimation);
// Define some constants describing vertices
//
#define VTK_VERTEX_NO_TRIANGLE -1
#define VTK_VERTEX_INSERTED -2
#define VTK_IN_TRIANGLE 0
#define VTK_INTERIOR_EDGE 1
#define VTK_BOUNDARY_EDGE 2
//Supporting classes for points
class vtkTerrainInfo
{
public:
vtkTerrainInfo():TriangleId(VTK_VERTEX_NO_TRIANGLE) {}
vtkIdType TriangleId;
};
//PIMPL STL encapsulation
//
// Maps input point ids to owning mesh triangle
class vtkGreedyTerrainDecimationTerrainInfoType : public vtkstd::vector<vtkTerrainInfo>
{
public:
typedef vtkstd::vector<vtkTerrainInfo> Superclass;
typedef Superclass::size_type size_type;
vtkGreedyTerrainDecimationTerrainInfoType(size_type n, const vtkTerrainInfo& value):
vtkstd::vector<vtkTerrainInfo>(n,value) {}
};
// Maps mesh point id to input point id
class vtkGreedyTerrainDecimationPointInfoType : public vtkstd::vector<vtkIdType> {};
// Begin vtkGreedyTerrainDecimation class implementation-----------------------------------------
//
vtkGreedyTerrainDecimation::vtkGreedyTerrainDecimation()
{
this->ErrorMeasure = VTK_ERROR_SPECIFIED_REDUCTION;
this->NumberOfTriangles = 1000;
this->Reduction = 0.90;
this->AbsoluteError = 1;
this->RelativeError = 0.01;
this->BoundaryVertexDeletion = 1;
this->ComputeNormals = 0;
this->Normals = 0;
}
vtkGreedyTerrainDecimation::~vtkGreedyTerrainDecimation()
{
}
inline void vtkGreedyTerrainDecimation::GetTerrainPoint(int i, int j, double x[3])
{
x[0] = this->Origin[0] + i*this->Spacing[0];
x[1] = this->Origin[1] + j*this->Spacing[1];
}
inline void vtkGreedyTerrainDecimation::ComputeImageCoordinates(vtkIdType inputPtId, int ij[2])
{
ij[0] = inputPtId % this->Dimensions[0];
ij[1] = inputPtId / this->Dimensions[0];
}
inline vtkIdType vtkGreedyTerrainDecimation::InsertNextPoint(vtkIdType inputPtId,
double x[3])
{
if ( (this->CurrentPointId+1) >= (vtkIdType)this->PointInfo->size() )
{
this->PointInfo->resize(2*this->PointInfo->size());
}
double *ptr = this->Points->WritePointer(3*this->CurrentPointId,3);
*ptr++ = *x++;
*ptr++ = *x++;
*ptr = *x;
this->OutputPD->CopyData(this->InputPD,inputPtId,this->CurrentPointId);
(*this->PointInfo)[this->CurrentPointId] = inputPtId;
return this->CurrentPointId++;
}
inline double *vtkGreedyTerrainDecimation::GetPoint(vtkIdType id)
{
return this->Points->GetPointer(3*id);
}
inline void vtkGreedyTerrainDecimation::GetPoint(vtkIdType id, double x[3])
{
double *ptr = this->Points->GetPointer(3*id);
x[0] = *ptr++;
x[1] = *ptr++;
x[2] = *ptr;
}
void vtkGreedyTerrainDecimation::EstimateOutputSize(const vtkIdType numInputPts,
vtkIdType &numPts, vtkIdType &numTris)
{
switch (this->ErrorMeasure)
{
case VTK_ERROR_NUMBER_OF_TRIANGLES:
numTris = this->NumberOfTriangles;
break;
case VTK_ERROR_SPECIFIED_REDUCTION:
numTris = static_cast<int>(2*numInputPts*(1.0-this->Reduction));
break;
default:
numTris = numInputPts;
}
numPts = numTris/2 + 1;
numPts = (numPts < 4 ? 4 : numPts); //insure enough storage for initial four corner points
return;
}
int vtkGreedyTerrainDecimation::SatisfiesErrorMeasure(double error)
{
switch (this->ErrorMeasure)
{
case VTK_ERROR_NUMBER_OF_TRIANGLES:
if ( this->Mesh->GetNumberOfPolys() >= this->NumberOfTriangles ) return 1;
break;
case VTK_ERROR_SPECIFIED_REDUCTION:
{
double reduction = (double)this->Mesh->GetNumberOfPolys()/this->MaximumNumberOfTriangles;
if ( (1.0 - reduction) <= this->Reduction ) return 1;
}
break;
case VTK_ERROR_ABSOLUTE:
if ( error <= this->AbsoluteError ) return 1;
break;
case VTK_ERROR_RELATIVE:
if ( (error/this->Length) <= this->RelativeError ) return 1;
break;
}
return 0;
}
//Update all triangles connected to this mesh point
void vtkGreedyTerrainDecimation::UpdateTriangles(vtkIdType ptId)
{
unsigned short ncells;
vtkIdType *cells, npts, *pts;
this->Mesh->GetPointCells(ptId,ncells,cells);
for (unsigned short i=0; i<ncells; i++)
{
this->Mesh->GetCellPoints(cells[i], npts, pts);
this->UpdateTriangle(cells[i], (*this->PointInfo)[pts[0]],
(*this->PointInfo)[pts[1]], (*this->PointInfo)[pts[2]]);
}
}
//Update all points as to which triangle they lie in. Basically a scanline algorithm.
void vtkGreedyTerrainDecimation::UpdateTriangle(vtkIdType triId,
vtkIdType p1, vtkIdType p2, vtkIdType p3)
{
// Scan convert triangle / update points as to which triangle contains each point
int ij1[2], ij2[2], ij3[2];
this->ComputeImageCoordinates(p1, ij1);
this->ComputeImageCoordinates(p2, ij2);
this->ComputeImageCoordinates(p3, ij3);
double h[4]; //extra entry added for interpolated value
h[0] = (double) this->Heights->GetTuple1(p1);
h[1] = (double) this->Heights->GetTuple1(p2);
h[2] = (double) this->Heights->GetTuple1(p3);
this->UpdateTriangle(triId, ij1, ij2, ij3, h);
}
void vtkGreedyTerrainDecimation::InsertBoundaryVertices()
{
int i, j;
vtkIdType inputPtId, offset;
// Insert vertices around boundary of image
// Note that the four corner vertices are already inserted.
// Along x-axis at y=0.
for (i=1; i<(this->Dimensions[0]-1); i++)
{
inputPtId = i;
this->AddPointToTriangulation(inputPtId);
}
// Along x-axis at y=dim[1].
offset = this->Dimensions[0]*(this->Dimensions[1]-1);
for (i=1; i<(this->Dimensions[0]-1); i++)
{
inputPtId = offset + i;
this->AddPointToTriangulation(inputPtId);
}
// Along y-axis at x=0.
for (j=1; j<(this->Dimensions[1]-1); j++)
{
inputPtId = j*this->Dimensions[0];
this->AddPointToTriangulation(inputPtId);
}
// Along y-axis at x=dims[0].
offset = this->Dimensions[0]-1;
for (j=1; j<(this->Dimensions[1]-1); j++)
{
inputPtId = offset + j*this->Dimensions[0];
this->AddPointToTriangulation(inputPtId);
}
}
// Determine whether point x is inside of circumcircle of triangle
// defined by points (x1, x2, x3). Returns non-zero if inside circle.
// (Note that z-component is ignored.)
int vtkGreedyTerrainDecimation::InCircle (double x[3], double x1[3], double x2[3],
double x3[3])
{
double radius2, center[2], dist2;
radius2 = vtkTriangle::Circumcircle(x1,x2,x3,center);
// check if inside/outside circumcircle
dist2 = (x[0]-center[0]) * (x[0]-center[0]) +
(x[1]-center[1]) * (x[1]-center[1]);
if ( dist2 < (0.999999999999*radius2) )
{
return 1;
}
else
{
return 0;
}
}
#define VTK_DEL2D_TOLERANCE 1.0e-014
// Recursive method to locate triangle containing point. Starts with arbitrary
// triangle (tri) and "walks" towards it. Influenced by some of Guibas and
// Stolfi's work. Returns id of enclosing triangle, or -1 if no triangle
// found. Also, the array nei[3] is used to communicate info about points
// that lie on triangle edges: nei[0] is neighboring triangle id, and nei[1]
// and nei[2] are the vertices defining the edge.
vtkIdType vtkGreedyTerrainDecimation::FindTriangle(double x[3], vtkIdType ptIds[3],
vtkIdType tri, double tol,
vtkIdType nei[3], vtkIdList *neighbors,
int& status)
{
int i, j, ir, ic, inside, i2, i3;
vtkIdType *pts, npts, newNei;
double p[3][3], n[2], vp[2], vx[2], dp, minProj;
// get local triangle info
this->Mesh->GetCellPoints(tri,npts,pts);
for (i=0; i<3; i++)
{
ptIds[i] = pts[i];
this->GetPoint(ptIds[i], p[i]);
}
// Randomization (of find edge neighbors) avoids walking in
// circles in certain weird cases
srand(tri);
ir = rand() % 3;
// evaluate in/out of each edge
for (inside=1, minProj=VTK_DEL2D_TOLERANCE, ic=0; ic<3; ic++)
{
i = (ir+ic) % 3;
i2 = (i+1) % 3;
i3 = (i+2) % 3;
// create a 2D edge normal to define a "half-space"; evaluate points (i.e.,
// candiate point and other triangle vertex not on this edge).
n[0] = -(p[i2][1] - p[i][1]);
n[1] = p[i2][0] - p[i][0];
vtkMath::Normalize2D(n);
// compute local vectors
for (j=0; j<2; j++)
{
vp[j] = p[i3][j] - p[i][j];
vx[j] = x[j] - p[i][j];
}
//check for duplicate point
vtkMath::Normalize2D(vp);
if ( vtkMath::Normalize2D(vx) <= tol )
{
vtkErrorMacro("Duplicate point");
return -1;
}
// see if two points are in opposite half spaces
dp = vtkMath::Dot2D(n,vx) * (vtkMath::Dot2D(n,vp) < 0 ? -1.0 : 1.0);
if ( dp < VTK_DEL2D_TOLERANCE )
{
if ( dp < minProj ) //track edge most orthogonal to point direction
{
inside = 0;
nei[1] = ptIds[i];
nei[2] = ptIds[i2];
minProj = dp;
}
}//outside this edge
}//for each edge
if ( inside ) // all edges have tested positive
{
nei[0] = (-1);
status = VTK_IN_TRIANGLE;
return tri;
}
else if ( !inside && (fabs(minProj) < VTK_DEL2D_TOLERANCE) ) // on edge
{
this->Mesh->GetCellEdgeNeighbors(tri,nei[1],nei[2],neighbors);
if ( neighbors->GetNumberOfIds() < 1 )
{
nei[0] = (-1);
status = VTK_BOUNDARY_EDGE;
}
else
{
nei[0] = neighbors->GetId(0);
status = VTK_INTERIOR_EDGE;
}
return tri;
}
else //walk towards point
{
this->Mesh->GetCellEdgeNeighbors(tri,nei[1],nei[2],neighbors);
if ( (newNei=neighbors->GetId(0)) == nei[0] )
{
vtkErrorMacro("Degeneracy");
return -1;
}
else
{
nei[0] = tri;
return this->FindTriangle(x,ptIds,newNei,tol,nei,neighbors,status);
}
}
}
#undef VTK_DEL2D_TOLERANCE
// Recursive method checks whether edge is Delaunay, and if not, swaps edge.
// Continues until all edges are Delaunay. Points p1 and p2 form the edge in
// question; x is the coordinates of the inserted point; tri is the current
// triangle id.
void vtkGreedyTerrainDecimation::CheckEdge(vtkIdType ptId, double x[3], vtkIdType p1,
vtkIdType p2, vtkIdType tri, int depth)
{
if ( depth > 15 )
{
return;
}
int i;
vtkIdType *pts, npts, numNei, nei, p3;
double x1[3], x2[3], x3[3];
vtkIdList *neighbors;
vtkIdType swapTri[3];
this->GetPoint(p1,x1);
this->GetPoint(p2,x2);
neighbors = vtkIdList::New();
neighbors->Allocate(2);
this->Mesh->GetCellEdgeNeighbors(tri,p1,p2,neighbors);
numNei = neighbors->GetNumberOfIds();
if ( numNei > 0 ) //i.e., not a boundary edge
{
// get neighbor info including opposite point
nei = neighbors->GetId(0);
this->Mesh->GetCellPoints(nei, npts, pts);
for (i=0; i<2; i++)
{
if ( pts[i] != p1 && pts[i] != p2 )
{
break;
}
}
p3 = pts[i];
this->GetPoint(p3,x3);
// see whether point is in circumcircle
if ( this->InCircle (x3, x, x1, x2) )
{// swap diagonal
this->Mesh->RemoveReferenceToCell(p1,tri);
this->Mesh->RemoveReferenceToCell(p2,nei);
this->Mesh->ResizeCellList(ptId,1);
this->Mesh->AddReferenceToCell(ptId,nei);
this->Mesh->ResizeCellList(p3,1);
this->Mesh->AddReferenceToCell(p3,tri);
swapTri[0] = ptId; swapTri[1] = p3; swapTri[2] = p2;
this->Mesh->ReplaceCell(tri,3,swapTri);
swapTri[0] = ptId; swapTri[1] = p1; swapTri[2] = p3;
this->Mesh->ReplaceCell(nei,3,swapTri);
// two new edges become suspect
this->CheckEdge(ptId, x, p3, p2, tri, ++depth);
this->CheckEdge(ptId, x, p1, p3, nei, depth);
}//in circle
}//interior edge
neighbors->Delete();
}
vtkIdType vtkGreedyTerrainDecimation::AddPointToTriangulation(vtkIdType inputPtId)
{
vtkIdType ptId, nei[3], tri[4];
vtkIdType nodes[4][3], pts[3], numNeiPts, *neiPts;
vtkIdType i, p1=0, p2=0;
int ij[2];
double x[3];
int status;
//Make sure the point has not been previously inserted
if ( (*this->TerrainInfo)[inputPtId].TriangleId == VTK_VERTEX_INSERTED )
{
return -1;
}
//Start off by determining the image coordinates and the position
this->ComputeImageCoordinates(inputPtId, ij);
this->GetTerrainPoint(ij[0], ij[1], x);
x[2] = (double) this->Heights->GetTuple1(inputPtId);
//Seed the search
nei[0] = (*this->TerrainInfo)[inputPtId].TriangleId;
tri[0] = (nei[0] < 0 ? 0 : nei[0]);
tri[0] = this->FindTriangle(x,pts,tri[0],this->Tolerance,nei,this->Neighbors,status);
if ( tri[0] >= 0 ) //found a triangle
{
// Insert the point into the output
ptId = this->InsertNextPoint(inputPtId, x);
if (this->Normals)
{
float n[3];
this->ComputePointNormal(ij[0], ij[1], n);
this->Normals->InsertNextTuple(n);
}
if ( status == VTK_IN_TRIANGLE ) //in triangle
{
//delete this triangle; create three new triangles
//first triangle is replaced with one of the new ones
nodes[0][0] = ptId; nodes[0][1] = pts[0]; nodes[0][2] = pts[1];
this->Mesh->RemoveReferenceToCell(pts[2], tri[0]);
this->Mesh->ReplaceCell(tri[0], 3, nodes[0]);
this->Mesh->InsertNextLinkedPoint(3);
this->Mesh->AddReferenceToCell(ptId,tri[0]);
//create two new triangles
nodes[1][0] = ptId; nodes[1][1] = pts[1]; nodes[1][2] = pts[2];
tri[1] = this->Mesh->InsertNextLinkedCell(VTK_TRIANGLE, 3, nodes[1]);
nodes[2][0] = ptId; nodes[2][1] = pts[2]; nodes[2][2] = pts[0];
tri[2] = this->Mesh->InsertNextLinkedCell(VTK_TRIANGLE, 3, nodes[2]);
// Check edge neighbors for Delaunay criterion. If not satisfied, flip
// edge diagonal. (This is done recursively.)
this->CheckEdge(ptId, x, pts[0], pts[1], tri[0], 0);
this->CheckEdge(ptId, x, pts[1], pts[2], tri[1], 0);
this->CheckEdge(ptId, x, pts[2], pts[0], tri[2], 0);
}
else if ( status == VTK_INTERIOR_EDGE ) // on interior triangle edge; has a neighbor
{
//update cell list
this->Mesh->GetCellPoints(nei[0],numNeiPts,neiPts);
for (i=0; i<3; i++)
{
if ( neiPts[i] != nei[1] && neiPts[i] != nei[2] )
{
p1 = neiPts[i];
}
if ( pts[i] != nei[1] && pts[i] != nei[2] )
{
p2 = pts[i];
}
}
this->Mesh->ResizeCellList(p1,1);
this->Mesh->ResizeCellList(p2,1);
//replace two triangles
this->Mesh->RemoveReferenceToCell(nei[2],tri[0]);
this->Mesh->RemoveReferenceToCell(nei[2],nei[0]);
nodes[0][0] = ptId; nodes[0][1] = p2; nodes[0][2] = nei[1];
this->Mesh->ReplaceCell(tri[0], 3, nodes[0]);
nodes[1][0] = ptId; nodes[1][1] = nei[1]; nodes[1][2] = p1;
this->Mesh->ReplaceCell(nei[0], 3, nodes[1]);
this->Mesh->InsertNextLinkedPoint(4);
this->Mesh->AddReferenceToCell(ptId,tri[0]);
this->Mesh->AddReferenceToCell(ptId,nei[0]);
tri[1] = nei[0];
//create two new triangles
nodes[2][0] = ptId; nodes[2][1] = nei[2]; nodes[2][2] = p2;
tri[2] = this->Mesh->InsertNextLinkedCell(VTK_TRIANGLE, 3, nodes[2]);
nodes[3][0] = ptId; nodes[3][1] = p1; nodes[3][2] = nei[2];
tri[3] = this->Mesh->InsertNextLinkedCell(VTK_TRIANGLE, 3, nodes[3]);
// Check edge neighbors for Delaunay criterion.
for ( i=0; i<4; i++ )
{
this->CheckEdge (ptId, x, nodes[i][1], nodes[i][2], tri[i], 0);
}
}
else //if ( status == VTK_BOUNDARY_EDGE ) // on boundary triangle edge; no neighbor
{
//update cell list
for (i=0; i<3; i++)
{
if ( pts[i] != nei[1] && pts[i] != nei[2] )
{
p1 = pts[i];
}
}
this->Mesh->ResizeCellList(p1,1);
//replace one triangle
this->Mesh->RemoveReferenceToCell(nei[2],tri[0]);
nodes[0][0] = ptId; nodes[0][1] = p1; nodes[0][2] = nei[1];
this->Mesh->ReplaceCell(tri[0], 3, nodes[0]);
this->Mesh->InsertNextLinkedPoint(2);
this->Mesh->AddReferenceToCell(ptId,tri[0]);
//create one new triangles
nodes[1][0] = ptId; nodes[1][1] = nei[2]; nodes[1][2] = p1;
tri[1] = this->Mesh->InsertNextLinkedCell(VTK_TRIANGLE, 3, nodes[1]);
// Check edge neighbors for Delaunay criterion.
for ( i=0; i<2; i++ )
{
this->CheckEdge (ptId, x, nodes[i][1], nodes[i][2], tri[i], 0);
}
}
//Indicate that it is now inserted and reinsert errors
(*this->TerrainInfo)[inputPtId].TriangleId = VTK_VERTEX_INSERTED;
this->UpdateTriangles(ptId);
}//if triangle containing point found
return 0;
}
void vtkGreedyTerrainDecimation::ComputePointNormal(int i, int j, float n[3])
{
vtkDataArray* scalars;
double x0, x1, y0, y1, dx, dy;
float vx[3], vy[3];
scalars = this->InputPD->GetScalars();
dx = dy = 0;
// X
if (i > 0)
{
x0 = scalars->GetTuple1(j*this->Dimensions[0] + i - 1);
dx += this->Spacing[0];
}
else
{
x0 = scalars->GetTuple1(j*this->Dimensions[0] + i);
}
if (i < this->Dimensions[0]-1)
{
x1 = scalars->GetTuple1(j*this->Dimensions[0] + i + 1);
dx += this->Spacing[0];
}
else
{
x1 = scalars->GetTuple1(j*this->Dimensions[0] + i);
}
// Y
if (j > 0)
{
y0 = scalars->GetTuple1((j-1)*this->Dimensions[0] + i);
dy += this->Spacing[1];
}
else
{
y0 = scalars->GetTuple1(j*this->Dimensions[0] + i);
}
if (j < this->Dimensions[1]-1)
{
y1 = scalars->GetTuple1((j+1)*this->Dimensions[0] + i);
dy += this->Spacing[1];
}
else
{
y1 = scalars->GetTuple1(j*this->Dimensions[0] + i);
}
if (dx == 0.0 || dy == 0.0)
{
// This would only happen if the input was not an XY image.
vtkErrorMacro("Could not compute normal.");
return;
}
vx[0] = (float)(dx);
vx[1] = 0.0;
vx[2] = (float)(x1-x0);
vy[0] = 0.0;
vy[1] = (float)(dy);
vy[2] = (float)(y1-y0);
vtkMath::Cross(vx, vy, n);
vtkMath::Normalize(n);
}
int vtkGreedyTerrainDecimation::RequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
// get the input and ouptut
vtkImageData *input = vtkImageData::SafeDownCast(
inInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPolyData *output = vtkPolyData::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkIdType numInputPts=input->GetNumberOfPoints(), numPts, numTris;
vtkIdType inputPtId;
double error, bounds[6], center[3];
vtkCellArray *triangles;
this->Mesh = output;
this->InputPD = input->GetPointData();
this->OutputPD = this->Mesh->GetPointData();
// Check input and initialize the algorithm.
//
vtkDebugMacro(<<"Decimating terrain...");
if ( input->GetDataDimension() != 2 )
{
vtkWarningMacro(<<"This class treats 2D height fields only");
return 1;
}
if ( (this->Heights = this->InputPD->GetScalars()) == NULL )
{
vtkWarningMacro(<<"This class requires height scalars");
return 1;
}
input->GetBounds(bounds);
input->GetCenter(center);
input->GetDimensions(this->Dimensions);
double *origin = input->GetOrigin();
double *spacing = input->GetSpacing();
for (int ii=0; ii<3; ii++)
{
this->Origin[ii] = (double)origin[ii];
this->Spacing[ii] = (double)spacing[ii];
}
this->Length = input->GetLength();
this->MaximumNumberOfTriangles = 2 * (this->Dimensions[0]-1) * (this->Dimensions[1]-1);
this->NumberOfTriangles = (this->NumberOfTriangles < this->MaximumNumberOfTriangles ?
this->NumberOfTriangles : this->MaximumNumberOfTriangles);
// Points within this tolerance are considered coincident...should not happen
this->Tolerance = 0.01 * this->Spacing[0];
// Scratch data structures
this->Neighbors = vtkIdList::New(); this->Neighbors->Allocate(2);
// Top element of VTK's priority queue returns the minimum error value. Since we want the
// maximum error, we use 1/error relationship to insert errors.
this->TerrainError = vtkPriorityQueue::New();
this->TerrainError->Allocate(numInputPts, (vtkIdType)((double)0.25*numInputPts));
// Initialize the triangle mesh data structures. Double precision point coordinates
// are required because of the numerical requirements on the Delaunay algorithm.
//
this->EstimateOutputSize(numInputPts, numPts, numTris);
vtkPoints *newPts = vtkPoints::New();
newPts->SetDataTypeToDouble();
newPts->Allocate(numPts);
this->Points = static_cast<vtkDoubleArray *>(newPts->GetData());
// initailize the normals
if (this->ComputeNormals)
{
this->Normals = vtkFloatArray::New();
this->Normals->SetNumberOfComponents(3);
this->Normals->Allocate(numPts*3);
this->Normals->SetName("Normals");
}
// Supplemental arrays used to accelerate the algorithm.
// TerrainInfo contains the "containing" triangle for each point. PointInfo maps the
// triangle mesh point id to the input image point id.
this->TerrainInfo = new vtkGreedyTerrainDecimationTerrainInfoType(numInputPts,vtkTerrainInfo());
this->PointInfo = new vtkGreedyTerrainDecimationPointInfoType;
this->PointInfo->resize(numPts);
// Setup the point attributes
this->OutputPD->CopyAllocate(this->InputPD,numPts);
// Begin the algorithm proper. The image is initially triangulated with two triangles whose
// four vertices are located at the corners of the input image.
//
newPts->Allocate(numPts);
inputPtId = 0;
newPts->InsertPoint(0, bounds[0],bounds[2],
(double)this->Heights->GetTuple1(inputPtId)); //ptId=0
this->OutputPD->CopyData(this->InputPD,inputPtId,0);
(*this->PointInfo)[0] = inputPtId;
inputPtId = this->Dimensions[0] - 1;
newPts->InsertPoint(1, bounds[1],bounds[2],
(double)this->Heights->GetTuple1(inputPtId)); //ptId=1
this->OutputPD->CopyData(this->InputPD,inputPtId,1);
(*this->PointInfo)[1] = inputPtId;
inputPtId = this->Dimensions[0]*this->Dimensions[1] - 1;
newPts->InsertPoint(2, bounds[1],bounds[3],
(double)this->Heights->GetTuple1(inputPtId)); //ptId=2
this->OutputPD->CopyData(this->InputPD,inputPtId,2);
(*this->PointInfo)[2] = inputPtId;
inputPtId = this->Dimensions[0]*(this->Dimensions[1]-1);
newPts->InsertPoint(3, bounds[0],bounds[3],
(double)this->Heights->GetTuple1(inputPtId)); //ptId=3
this->OutputPD->CopyData(this->InputPD,inputPtId,3);
(*this->PointInfo)[3] = inputPtId;
this->CurrentPointId = 4;
// Handle normals of the four corners.
if (this->Normals)
{
float n[3];
this->ComputePointNormal(0, 0, n);
this->Normals->InsertNextTuple(n);
this->ComputePointNormal(this->Dimensions[0]-1, 0, n);
this->Normals->InsertNextTuple(n);
this->ComputePointNormal(this->Dimensions[0]-1, this->Dimensions[1]-1, n);
this->Normals->InsertNextTuple(n);
this->ComputePointNormal(0, this->Dimensions[1]-1, n);
this->Normals->InsertNextTuple(n);
}
// Insert initial triangles into output mesh
triangles = vtkCellArray::New();
triangles->Allocate(numTris,3);
triangles->InsertNextCell(3);
triangles->InsertCellPoint(0); triangles->InsertCellPoint(1); triangles->InsertCellPoint(3);
triangles->InsertNextCell(3);
triangles->InsertCellPoint(1); triangles->InsertCellPoint(2); triangles->InsertCellPoint(3);
// Construct the topological hierarchy for the output mesh. The alternative BuildLinks(num)
// call reallocates the links from the points to the using triangles.
this->Mesh->SetPoints(newPts);
this->Mesh->SetPolys(triangles);
this->Mesh->BuildLinks(numPts); //build cell structure; give it initial size
// Update all (two) triangles connected to this mesh point. The single point
// in each triangle with maximum error are inserted into the error queue.
//
this->UpdateTriangles(3);
// If boundary vertex deletion is not allowed, insert the boundary
// points first.
if ( ! this->BoundaryVertexDeletion )
{
this->InsertBoundaryVertices();
}
// While the error metric is not satisfied, add point with greatest error.
// Note that this algorithm can terminate "prematurely" (e.g. compared to
// the number of triangles) if the maximum error in the queue becomes zero.
//
int abortExecute=0;
vtkIdType numInsertedPoints=0;
int tenth=numPts/10+1;
while ( !abortExecute && (inputPtId = this->TerrainError->Pop(0, error)) >= 0 )
{
if ( this->SatisfiesErrorMeasure((1.0/error)) )
{
break;
}
else
{
this->AddPointToTriangulation(inputPtId);
if ( ! (++numInsertedPoints % tenth) )
{
this->UpdateProgress( (double)(numInsertedPoints>numPts?numPts:numInsertedPoints)/numPts);
abortExecute = this->GetAbortExecute();
}
}
}
if (this->Normals)
{
this->OutputPD->SetNormals(this->Normals);
this->Normals->Delete();
this->Normals = 0;
}
vtkDebugMacro(<<"Output TIN contains: " << this->Mesh->GetNumberOfPoints() << " points"
<<"and " << this->Mesh->GetNumberOfPolys() << " triangles");
// The output triangle data was created incrementally by the Delaunay algorithm.
// Here we just clean up the data structures.
//
this->Neighbors->Delete();
this->TerrainError->Delete();
delete this->TerrainInfo;
delete this->PointInfo;
newPts->Delete();
triangles->Delete();
return 1;
}
/*----------------------------------------------------------------------
"Scan conversion" routines to update all points lying in a triangle.
Divide a triangle into two subtriangles as shown.
o max
/ \
| \
/ \
| \
midL o..........o midR
| _/
/ _/
| _/
/ _/
| _/
/_/
o min
This way we can scan the two subtriangles independently without worrying about
the transistion in interpolation that occurs at the vertices.
A triangle may be characterized in one of four ways:
VTK_TWO_TRIANGLES: We can create a two triangle representation
VTK_BOTTOM_TRIANGLE: We should only scan the lower triangle
VTK_TOP_TRIANGLE: We should only scan the upper triangle
VTK_DEGENERATE: The points are colinear (not scan converted)
Configuration of the two triangles
--------------------------------------------------------------------------*/
#define VTK_TWO_TRIANGLES 0 //most often
#define VTK_BOTTOM_TRIANGLE 1
#define VTK_TOP_TRIANGLE 2
#define VTK_DEGENERATE 3 //should never happen in this application
//---------------------------------------------------------------------------
// Update all points lying in the given triangle. This means indicating the triangle
// that the point is in, plus computing the error in the height field.
//
void vtkGreedyTerrainDecimation::UpdateTriangle(vtkIdType tri, int ij1[2], int ij2[2], int ij3[2],
double h[3])
{
int *min, *max, *midL, *midR, *mid, mid2[2];
double t, tt;
int i, j, xL, xR;
double hMin, hMax, hMidL, hMidR, hL, hR;
vtkIdType idx, inputPtId, maxInputPtId=0;
double error, maxError=0.0;
int type = this->CharacterizeTriangle(ij1, ij2, ij3, min, max, midL, midR, mid, mid2,
h, hMin, hMax, hMidL, hMidR);
switch(type)
{
case VTK_BOTTOM_TRIANGLE:
case VTK_TWO_TRIANGLES:
for (j=min[1]+1; j<midL[1]; j++) //for all scan lines; skip vertices
{
idx = j*this->Dimensions[0];
t = (double)(j - min[1]) / (midL[1] - min[1]);
xL = (int)((1.0-t)*min[0] + t*midL[0]);
xR = (int)((1.0-t)*min[0] + t*midR[0]);
hL = (1.0-t)*hMin + t*hMidL;
hR = (1.0-t)*hMin + t*hMidR;
for (i=xL; i<=xR; i++)
{
inputPtId = i + idx;
if ( (*this->TerrainInfo)[inputPtId].TriangleId != VTK_VERTEX_INSERTED )
{
(*this->TerrainInfo)[inputPtId].TriangleId = tri;
if ( (xR-xL) > 0 )
{
tt = (double)(i-xL) / (xR-xL);
error = (1.0-tt)*hL + tt*hR;
}
else
{
error = hL;
}
error = fabs( (double)this->Heights->GetTuple1(inputPtId) - error );
if ( error > maxError )
{
maxError = error;
maxInputPtId = inputPtId;
}
} //if vertex not inserted
} //for this scanline
} //for all scanlines in this triangle
if ( type == VTK_BOTTOM_TRIANGLE )
{
break;
}
case VTK_TOP_TRIANGLE:
//Start scanning the upper triangle
for (j=max[1]-1; j>midL[1]; j--) //for all scan lines; skip vertices
{
idx = j*this->Dimensions[0];
t = (double)(j - midL[1]) / (max[1] - midL[1]);
xL = (int) (t*max[0] + (1.0-t)*midL[0]);
xR = (int) (t*max[0] + (1.0-t)*midR[0]);
hL = t*hMax + (1.0-t)*hMidL;
hR = t*hMax + (1.0-t)*hMidR;
for (i=xL; i<=xR; i++)
{
inputPtId = i + idx;
if ( (*this->TerrainInfo)[inputPtId].TriangleId != VTK_VERTEX_INSERTED )
{
(*this->TerrainInfo)[inputPtId].TriangleId = tri;
if ( (xR-xL) > 0 )
{
tt = (double)(i-xL) / (xR-xL);
error = (1.0-tt)*hL + tt*hR;
}
else
{
error = hL;
}
error = fabs( (double)this->Heights->GetTuple1(inputPtId) - error );
if ( error > maxError )
{
maxError = error;
maxInputPtId = inputPtId;
}
}
}
}
break;
default:
return;
}
//The maximum error in the triangle has been found. Insert it into the queue.
if ( maxError > 0.0 )
{
this->TerrainError->DeleteId(maxInputPtId); //if previously inserted
this->TerrainError->Insert((1.0/maxError),maxInputPtId);
}
}
// Characterize the configuration of the triangle based on image coordinates
// (All points in triangulation are from an image).
//
int vtkGreedyTerrainDecimation::CharacterizeTriangle(int ij1[2], int ij2[2], int ij3[3],
int* &min, int* &max, int* &midL, int* &midR,
int* &mid, int mid2[2], double h[3],
double &hMin, double &hMax, double &hL,
double &hR)
{
// Check for situations where one edge of triangle is horizontal
//
if ( ij1[1] == ij2[1] )
{
if ( ij1[0] < ij2[0] )
{
midL = ij1;
midR = ij2;
hL = h[0];
hR = h[1];
}
else
{
midL = ij2;
midR = ij1;
hL = h[1];
hR = h[0];
}
if( ij3[1] < ij1[1])
{
min = ij3;
hMin = h[2];
return VTK_BOTTOM_TRIANGLE;
}
else
{
max = ij3;
hMax = h[2];
return VTK_TOP_TRIANGLE;
}
}
else if ( ij2[1] == ij3[1] )
{
if ( ij2[0] < ij3[0] )
{
midL = ij2;
midR = ij3;
hL = h[1];
hR = h[2];
}
else
{
midL = ij3;
midR = ij2;
hL = h[2];
hR = h[1];
}
if( ij1[1] < ij2[1])
{
min = ij1;
hMin = h[0];
return VTK_BOTTOM_TRIANGLE;
}
else
{
max = ij1;
hMax = h[0];
return VTK_TOP_TRIANGLE;
}
}
else if ( ij3[1] == ij1[1] )
{
if ( ij3[0] < ij1[0] )
{
midL = ij3;
midR = ij1;
hL = h[2];
hR = h[0];
}
else
{
midL = ij1;
midR = ij3;
hL = h[0];
hR = h[2];
}
if( ij2[1] < ij3[1])
{
min = ij2;
hMin = h[1];
return VTK_BOTTOM_TRIANGLE;
}
else
{
max = ij2;
hMax = h[1];
return VTK_TOP_TRIANGLE;
}
}
// Default situation (two triangles with no horizontal edges).
// Determine max, min and mid vertices.
//
// Find minimum
if ( ij1[1] < ij2[1] )
{
if ( ij1[1] < ij3[1] )
{
min = ij1;
hMin = h[0];
}
else
{
min = ij3;
hMin = h[2];
}
}
else
{
if ( ij2[1] < ij3[1] )
{
min = ij2;
hMin = h[1];
}
else
{
min = ij3;
hMin = h[2];
}
}
// Find maximum
if ( ij1[1] > ij2[1] )
{
if ( ij1[1] > ij3[1] )
{
max = ij1;
hMax = h[0];
}
else
{
max = ij3;
hMax = h[2];
}
}
else
{
if ( ij2[1] > ij3[1] )
{
max = ij2;
hMax = h[1];
}
else
{
max = ij3;
hMax = h[2];
}
}
// Find the midL and midR
double hMid, hMid2;
if ( ij1 != min && ij1 != max)
{
mid = ij1;
hMid = h[0];
}
else if ( ij2 != min && ij2 != max)
{
mid = ij2;
hMid = h[1];
}
else //if ( ij3 != min && ij2 != max)
{
mid = ij3;
hMid = h[2];
}
// Computation of the intersection
//
mid2[1] = mid[1];
double t = (double) (mid2[1] - min[1]) / (max[1] - min[1]);
mid2[0] = (int) ((1.0-t)*min[0] + t*max[0] + 0.5); //rounding
hMid2 = (1.0-t)*hMin + t*hMax;
if ( mid[0] < mid2[0] )
{
midL = mid;
midR = mid2;
hL = hMid;
hR = hMid2;
}
else
{
midL = mid2;
midR = mid;
hL = hMid2;
hR = hMid;
}
return VTK_TWO_TRIANGLES;
}
int vtkGreedyTerrainDecimation::FillInputPortInformation(int, vtkInformation *info)
{
info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkImageData");
return 1;
}
void vtkGreedyTerrainDecimation::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Error Measure: ";
if ( this->ErrorMeasure == VTK_ERROR_NUMBER_OF_TRIANGLES )
{
os << "Number of triangles\n";
os << indent << "Number of triangles: " << this->NumberOfTriangles << "\n";
}
else if ( this->ErrorMeasure == VTK_ERROR_SPECIFIED_REDUCTION )
{
os << "Specified reduction\n";
os << indent << "Reduction: " << this->Reduction << "\n";
}
else if ( this->ErrorMeasure == VTK_ERROR_ABSOLUTE )
{
os << "Absolute\n";
os << indent << "Absolute Error: " << this->AbsoluteError << "\n";
}
else // this->ErrorMeasure == VTK_ERROR_RELATIVE
{
os << "Relative\n";
os << indent << "Relative Error: " << this->RelativeError << "\n";
}
os << indent << "BoundaryVertexDeletion: "
<< (this->BoundaryVertexDeletion ? "On\n" : "Off\n");
os << indent << "ComputeNormals: "
<< (this->ComputeNormals ? "On\n" : "Off\n");
}