Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1238 lines
37 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkGridTransform.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkGridTransform.h"
#include "vtkImageData.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "math.h"
vtkCxxRevisionMacro(vtkGridTransform, "$Revision: 1.30 $");
vtkStandardNewMacro(vtkGridTransform);
vtkCxxSetObjectMacro(vtkGridTransform,DisplacementGrid,vtkImageData);
//--------------------------------------------------------------------------
// The 'floor' function on x86 and mips is many times slower than these
// and is used a lot in this code, optimize for different CPU architectures
template<class F>
inline int vtkGridFloor(double x, F &f)
{
#if defined mips || defined sparc || defined __ppc__
x += 2147483648.0;
unsigned int i = (unsigned int)(x);
f = x - i;
return (int)(i - 2147483648U);
#elif defined i386 || defined _M_IX86
union { double d; unsigned short s[4]; unsigned int i[2]; } dual;
dual.d = x + 103079215104.0; // (2**(52-16))*1.5
f = dual.s[0]*0.0000152587890625; // 2**(-16)
return (int)((dual.i[1]<<16)|((dual.i[0])>>16));
#elif defined ia64 || defined __ia64__ || defined IA64
x += 103079215104.0;
long long i = (long long)(x);
f = x - i;
return (int)(i - 103079215104LL);
#else
double y = floor(x);
f = x - y;
return (int)(y);
#endif
}
inline int vtkGridRound(double x)
{
#if defined mips || defined sparc || defined __ppc__
return (int)((unsigned int)(x + 2147483648.5) - 2147483648U);
#elif defined i386 || defined _M_IX86
union { double d; unsigned int i[2]; } dual;
dual.d = x + 103079215104.5; // (2**(52-16))*1.5
return (int)((dual.i[1]<<16)|((dual.i[0])>>16));
#elif defined ia64 || defined __ia64__ || defined IA64
x += 103079215104.5;
long long i = (long long)(x);
return (int)(i - 103079215104LL);
#else
return (int)(floor(x+0.5));
#endif
}
//----------------------------------------------------------------------------
// Nearest-neighbor interpolation of a displacement grid.
// The displacement as well as the derivatives are returned.
// There are two versions: one which computes the derivatives,
// and one which doesn't.
template <class T>
inline void vtkNearestHelper(double displacement[3], T *gridPtr, int increment)
{
gridPtr += increment;
displacement[0] = gridPtr[0];
displacement[1] = gridPtr[1];
displacement[2] = gridPtr[2];
}
inline void vtkNearestNeighborInterpolation(double point[3],
double displacement[3],
void *gridPtr, int gridType,
int gridExt[6],
vtkIdType gridInc[3])
{
int gridId[3];
gridId[0] = vtkGridRound(point[0])-gridExt[0];
gridId[1] = vtkGridRound(point[1])-gridExt[2];
gridId[2] = vtkGridRound(point[2])-gridExt[4];
int ext[3];
ext[0] = gridExt[1]-gridExt[0];
ext[1] = gridExt[3]-gridExt[2];
ext[2] = gridExt[5]-gridExt[4];
// do bounds check, most points will be inside so optimize for that
if ((gridId[0] | (ext[0] - gridId[0]) |
gridId[1] | (ext[1] - gridId[1]) |
gridId[2] | (ext[2] - gridId[2])) < 0)
{
for (int i = 0; i < 3; i++)
{
if (gridId[i] < 0)
{
gridId[i] = 0;
}
else if (gridId[i] > ext[i])
{
gridId[i] = ext[i];
}
}
}
// do nearest-neighbor interpolation
vtkIdType increment = gridId[0]*gridInc[0] +
gridId[1]*gridInc[1] +
gridId[2]*gridInc[2];
switch (gridType)
{
vtkTemplateMacro(
vtkNearestHelper(displacement, static_cast<VTK_TT*>(gridPtr), increment));
}
}
template <class T>
inline void vtkNearestHelper(double displacement[3], double derivatives[3][3],
T *gridPtr, int gridId[3], int gridId0[3],
int gridId1[3], vtkIdType gridInc[3])
{
vtkIdType incX = gridId[0]*gridInc[0];
vtkIdType incY = gridId[1]*gridInc[1];
vtkIdType incZ = gridId[2]*gridInc[2];
T *gridPtr0;
T *gridPtr1 = gridPtr + incX + incY + incZ;
displacement[0] = gridPtr1[0];
displacement[1] = gridPtr1[1];
displacement[2] = gridPtr1[2];
vtkIdType incX0 = gridId0[0]*gridInc[0];
vtkIdType incX1 = gridId1[0]*gridInc[0];
vtkIdType incY0 = gridId0[1]*gridInc[1];
vtkIdType incY1 = gridId1[1]*gridInc[1];
vtkIdType incZ0 = gridId0[2]*gridInc[2];
vtkIdType incZ1 = gridId1[2]*gridInc[2];
gridPtr0 = gridPtr + incX0 + incY + incZ;
gridPtr1 = gridPtr + incX1 + incY + incZ;
derivatives[0][0] = gridPtr1[0] - gridPtr0[0];
derivatives[1][0] = gridPtr1[1] - gridPtr0[1];
derivatives[2][0] = gridPtr1[2] - gridPtr0[2];
gridPtr0 = gridPtr + incX + incY0 + incZ;
gridPtr1 = gridPtr + incX + incY1 + incZ;
derivatives[0][1] = gridPtr1[0] - gridPtr0[0];
derivatives[1][1] = gridPtr1[1] - gridPtr0[1];
derivatives[2][1] = gridPtr1[2] - gridPtr0[2];
gridPtr0 = gridPtr + incX + incY + incZ0;
gridPtr1 = gridPtr + incX + incY + incZ1;
derivatives[0][2] = gridPtr1[0] - gridPtr0[0];
derivatives[1][2] = gridPtr1[1] - gridPtr0[1];
derivatives[2][2] = gridPtr1[2] - gridPtr0[2];
}
void vtkNearestNeighborInterpolation(double point[3], double displacement[3],
double derivatives[3][3], void *gridPtr,
int gridType, int gridExt[6],
vtkIdType gridInc[3])
{
if (derivatives == NULL)
{
vtkNearestNeighborInterpolation(point,displacement,gridPtr,gridType,
gridExt,gridInc);
return;
}
double f[3];
int gridId0[3];
gridId0[0] = vtkGridFloor(point[0],f[0])-gridExt[0];
gridId0[1] = vtkGridFloor(point[1],f[1])-gridExt[2];
gridId0[2] = vtkGridFloor(point[2],f[2])-gridExt[4];
int gridId[3], gridId1[3];
gridId[0] = gridId1[0] = gridId0[0] + 1;
gridId[1] = gridId1[1] = gridId0[1] + 1;
gridId[2] = gridId1[2] = gridId0[2] + 1;
if (f[0] < 0.5)
{
gridId[0] = gridId0[0];
}
if (f[1] < 0.5)
{
gridId[1] = gridId0[1];
}
if (f[2] < 0.5)
{
gridId[2] = gridId0[2];
}
int ext[3];
ext[0] = gridExt[1] - gridExt[0];
ext[1] = gridExt[3] - gridExt[2];
ext[2] = gridExt[5] - gridExt[4];
// do bounds check, most points will be inside so optimize for that
if ((gridId0[0] | (ext[0] - gridId1[0]) |
gridId0[1] | (ext[1] - gridId1[1]) |
gridId0[2] | (ext[2] - gridId1[2])) < 0)
{
for (int i = 0; i < 3; i++)
{
if (gridId0[i] < 0)
{
gridId[i] = 0;
gridId0[i] = 0;
gridId1[i] = 0;
}
else if (gridId1[i] > ext[i])
{
gridId[i] = ext[i];
gridId0[i] = ext[i];
gridId1[i] = ext[i];
}
}
}
// do nearest-neighbor interpolation
switch (gridType)
{
vtkTemplateMacro(
vtkNearestHelper(displacement, derivatives, static_cast<VTK_TT*>(gridPtr),
gridId, gridId0, gridId1, gridInc));
}
}
//----------------------------------------------------------------------------
// Trilinear interpolation of a displacement grid.
// The displacement as well as the derivatives are returned.
template <class T>
inline void vtkLinearHelper(double displacement[3], double derivatives[3][3],
double fx, double fy, double fz, T *gridPtr,
int i000, int i001, int i010, int i011,
int i100, int i101, int i110, int i111)
{
double rx = 1 - fx;
double ry = 1 - fy;
double rz = 1 - fz;
double ryrz = ry*rz;
double ryfz = ry*fz;
double fyrz = fy*rz;
double fyfz = fy*fz;
double rxryrz = rx*ryrz;
double rxryfz = rx*ryfz;
double rxfyrz = rx*fyrz;
double rxfyfz = rx*fyfz;
double fxryrz = fx*ryrz;
double fxryfz = fx*ryfz;
double fxfyrz = fx*fyrz;
double fxfyfz = fx*fyfz;
if (!derivatives)
{
int i = 3;
do
{
*displacement++ = (rxryrz*gridPtr[i000] + rxryfz*gridPtr[i001] +
rxfyrz*gridPtr[i010] + rxfyfz*gridPtr[i011] +
fxryrz*gridPtr[i100] + fxryfz*gridPtr[i101] +
fxfyrz*gridPtr[i110] + fxfyfz*gridPtr[i111]);
gridPtr++;
}
while (--i);
}
else
{
double rxrz = rx*rz;
double rxfz = rx*fz;
double fxrz = fx*rz;
double fxfz = fx*fz;
double rxry = rx*ry;
double rxfy = rx*fy;
double fxry = fx*ry;
double fxfy = fx*fy;
double *derivative = *derivatives;
int i = 3;
do
{
*displacement++ = (rxryrz*gridPtr[i000] + rxryfz*gridPtr[i001] +
rxfyrz*gridPtr[i010] + rxfyfz*gridPtr[i011] +
fxryrz*gridPtr[i100] + fxryfz*gridPtr[i101] +
fxfyrz*gridPtr[i110] + fxfyfz*gridPtr[i111]);
*derivative++ = (ryrz*(gridPtr[i100] - gridPtr[i000]) +
ryfz*(gridPtr[i101] - gridPtr[i001]) +
fyrz*(gridPtr[i110] - gridPtr[i010]) +
fyfz*(gridPtr[i111] - gridPtr[i011]));
*derivative++ = (rxrz*(gridPtr[i010] - gridPtr[i000]) +
rxfz*(gridPtr[i011] - gridPtr[i001]) +
fxrz*(gridPtr[i110] - gridPtr[i100]) +
fxfz*(gridPtr[i111] - gridPtr[i101]));
*derivative++ = (rxry*(gridPtr[i001] - gridPtr[i000]) +
rxfy*(gridPtr[i011] - gridPtr[i010]) +
fxry*(gridPtr[i101] - gridPtr[i100]) +
fxfy*(gridPtr[i111] - gridPtr[i110]));
gridPtr++;
}
while (--i);
}
}
void vtkTrilinearInterpolation(double point[3], double displacement[3],
double derivatives[3][3], void *gridPtr, int gridType,
int gridExt[6], vtkIdType gridInc[3])
{
// change point into integer plus fraction
double f[3];
int floorX = vtkGridFloor(point[0],f[0]);
int floorY = vtkGridFloor(point[1],f[1]);
int floorZ = vtkGridFloor(point[2],f[2]);
int gridId0[3];
gridId0[0] = floorX - gridExt[0];
gridId0[1] = floorY - gridExt[2];
gridId0[2] = floorZ - gridExt[4];
int gridId1[3];
gridId1[0] = gridId0[0] + 1;
gridId1[1] = gridId0[1] + 1;
gridId1[2] = gridId0[2] + 1;
int ext[3];
ext[0] = gridExt[1] - gridExt[0];
ext[1] = gridExt[3] - gridExt[2];
ext[2] = gridExt[5] - gridExt[4];
// do bounds check, most points will be inside so optimize for that
if ((gridId0[0] | (ext[0] - gridId1[0]) |
gridId0[1] | (ext[1] - gridId1[1]) |
gridId0[2] | (ext[2] - gridId1[2])) < 0)
{
for (int i = 0; i < 3; i++)
{
if (gridId0[i] < 0)
{
gridId0[i] = 0;
gridId1[i] = 0;
f[i] = 0;
}
else if (gridId1[i] > ext[i])
{
gridId0[i] = ext[i];
gridId1[i] = ext[i];
f[i] = 0;
}
}
}
// do trilinear interpolation
vtkIdType factX0 = gridId0[0]*gridInc[0];
vtkIdType factY0 = gridId0[1]*gridInc[1];
vtkIdType factZ0 = gridId0[2]*gridInc[2];
vtkIdType factX1 = gridId1[0]*gridInc[0];
vtkIdType factY1 = gridId1[1]*gridInc[1];
vtkIdType factZ1 = gridId1[2]*gridInc[2];
vtkIdType i000 = factX0+factY0+factZ0;
vtkIdType i001 = factX0+factY0+factZ1;
vtkIdType i010 = factX0+factY1+factZ0;
vtkIdType i011 = factX0+factY1+factZ1;
vtkIdType i100 = factX1+factY0+factZ0;
vtkIdType i101 = factX1+factY0+factZ1;
vtkIdType i110 = factX1+factY1+factZ0;
vtkIdType i111 = factX1+factY1+factZ1;
switch (gridType)
{
vtkTemplateMacro(vtkLinearHelper(displacement, derivatives, f[0], f[1], f[2],
static_cast<VTK_TT*>(gridPtr),
i000, i001, i010, i011, i100, i101, i110, i111));
}
}
//----------------------------------------------------------------------------
// Do tricubic interpolation of the input data 'gridPtr' of extent 'gridExt'
// at the 'point'. The result is placed at 'outPtr'.
// The number of scalar components in the data is 'numscalars'
// The tricubic interpolation ensures that both the intensity and
// the first derivative of the intensity are smooth across the
// image. The first derivative is estimated using a
// centered-difference calculation.
// helper function: set up the lookup indices and the interpolation
// coefficients
void vtkSetTricubicInterpCoeffs(double F[4], int *l, int *m, double f,
int interpMode)
{
double fp1,fm1,fm2;
switch (interpMode)
{
case 7: // cubic interpolation
*l = 0; *m = 4;
fm1 = f-1;
F[0] = -f*fm1*fm1/2;
F[1] = ((3*f-2)*f-2)*fm1/2;
F[2] = -((3*f-4)*f-1)*f/2;
F[3] = f*f*fm1/2;
break;
case 0: // no interpolation
case 2:
case 4:
case 6:
*l = 1; *m = 2;
F[0] = 0;
F[1] = 1;
F[2] = 0;
F[3] = 0;
break;
case 1: // linear interpolation
*l = 1; *m = 3;
F[0] = 0;
F[1] = 1-f;
F[2] = f;
F[3] = 0;
break;
case 3: // quadratic interpolation
*l = 1; *m = 4;
fm1 = f-1; fm2 = fm1-1;
F[0] = 0;
F[1] = fm1*fm2/2;
F[2] = -f*fm2;
F[3] = f*fm1/2;
break;
case 5: // quadratic interpolation
*l = 0; *m = 3;
fp1 = f+1; fm1 = f-1;
F[0] = f*fm1/2;
F[1] = -fp1*fm1;
F[2] = fp1*f/2;
F[3] = 0;
break;
}
}
// set coefficients to be used to find the derivative of the cubic
void vtkSetTricubicDerivCoeffs(double F[4], double G[4], int *l, int *m,
double f, int interpMode)
{
double fp1,fm1,fm2;
switch (interpMode)
{
case 7: // cubic interpolation
*l = 0; *m = 4;
fm1 = f-1;
F[0] = -f*fm1*fm1/2;
F[1] = ((3*f-2)*f-2)*fm1/2;
F[2] = -((3*f-4)*f-1)*f/2;
F[3] = f*f*fm1/2;
G[0] = -((3*f-4)*f+1)/2;
G[1] = (9*f-10)*f/2;
G[2] = -((9*f-8)*f-1)/2;
G[3] = (3*f-2)*f/2;
break;
case 0: // no interpolation
case 2:
case 4:
case 6:
*l = 1; *m = 2;
F[0] = 0;
F[1] = 1;
F[2] = 0;
F[3] = 0;
G[0] = 0;
G[1] = 0;
G[2] = 0;
G[3] = 0;
break;
case 1: // linear interpolation
*l = 1; *m = 3;
F[0] = 0;
F[1] = 1-f;
F[2] = f;
F[3] = 0;
G[0] = 0;
G[1] = -1;
G[2] = 1;
G[3] = 0;
break;
case 3: // quadratic interpolation
*l = 1; *m = 4;
fm1 = f-1; fm2 = fm1-1;
F[0] = 0;
F[1] = fm1*fm2/2;
F[2] = -f*fm2;
F[3] = f*fm1/2;
G[0] = 0;
G[1] = f-1.5;
G[2] = 2-2*f;
G[3] = f-0.5;
break;
case 5: // quadratic interpolation
*l = 0; *m = 3;
fp1 = f+1; fm1 = f-1;
F[0] = f*fm1/2;
F[1] = -fp1*fm1;
F[2] = fp1*f/2;
F[3] = 0;
G[0] = f-0.5;
G[1] = -2*f;
G[2] = f+0.5;
G[3] = 0;
break;
}
}
// tricubic interpolation of a warp grid with derivatives
// (set derivatives to NULL to avoid computing them).
template <class T>
inline void vtkCubicHelper(double displacement[3], double derivatives[3][3],
double fx, double fy, double fz, T *gridPtr,
int interpModeX, int interpModeY, int interpModeZ,
vtkIdType factX[4], vtkIdType factY[4],
vtkIdType factZ[4])
{
double fX[4],fY[4],fZ[4];
double gX[4],gY[4],gZ[4];
int jl,jm,kl,km,ll,lm;
if (derivatives)
{
for (int i = 0; i < 3; i++)
{
derivatives[i][0] = 0.0;
derivatives[i][1] = 0.0;
derivatives[i][2] = 0.0;
}
vtkSetTricubicDerivCoeffs(fX,gX,&ll,&lm,fx,interpModeX);
vtkSetTricubicDerivCoeffs(fY,gY,&kl,&km,fy,interpModeY);
vtkSetTricubicDerivCoeffs(fZ,gZ,&jl,&jm,fz,interpModeZ);
}
else
{
vtkSetTricubicInterpCoeffs(fX,&ll,&lm,fx,interpModeX);
vtkSetTricubicInterpCoeffs(fY,&kl,&km,fy,interpModeY);
vtkSetTricubicInterpCoeffs(fZ,&jl,&jm,fz,interpModeZ);
}
// Here is the tricubic interpolation
// (or cubic-cubic-linear, or cubic-nearest-cubic, etc)
double vY[3],vZ[3];
displacement[0] = 0;
displacement[1] = 0;
displacement[2] = 0;
for (int j = jl; j < jm; j++)
{
T *gridPtr1 = gridPtr + factZ[j];
vZ[0] = 0;
vZ[1] = 0;
vZ[2] = 0;
for (int k = kl; k < km; k++)
{
T *gridPtr2 = gridPtr1 + factY[k];
vY[0] = 0;
vY[1] = 0;
vY[2] = 0;
if (!derivatives)
{
for (int l = ll; l < lm; l++)
{
T *gridPtr3 = gridPtr2 + factX[l];
double f = fX[l];
vY[0] += gridPtr3[0] * f;
vY[1] += gridPtr3[1] * f;
vY[2] += gridPtr3[2] * f;
}
}
else
{
for (int l = ll; l < lm; l++)
{
T *gridPtr3 = gridPtr2 + factX[l];
double f = fX[l];
double gff = gX[l]*fY[k]*fZ[j];
double fgf = fX[l]*gY[k]*fZ[j];
double ffg = fX[l]*fY[k]*gZ[j];
double inVal = gridPtr3[0];
vY[0] += inVal * f;
derivatives[0][0] += inVal * gff;
derivatives[0][1] += inVal * fgf;
derivatives[0][2] += inVal * ffg;
inVal = gridPtr3[1];
vY[1] += inVal * f;
derivatives[1][0] += inVal * gff;
derivatives[1][1] += inVal * fgf;
derivatives[1][2] += inVal * ffg;
inVal = gridPtr3[2];
vY[2] += inVal * f;
derivatives[2][0] += inVal * gff;
derivatives[2][1] += inVal * fgf;
derivatives[2][2] += inVal * ffg;
}
}
vZ[0] += vY[0]*fY[k];
vZ[1] += vY[1]*fY[k];
vZ[2] += vY[2]*fY[k];
}
displacement[0] += vZ[0]*fZ[j];
displacement[1] += vZ[1]*fZ[j];
displacement[2] += vZ[2]*fZ[j];
}
}
void vtkTricubicInterpolation(double point[3], double displacement[3],
double derivatives[3][3], void *gridPtr,
int gridType, int gridExt[6],
vtkIdType gridInc[3])
{
vtkIdType factX[4],factY[4],factZ[4];
// change point into integer plus fraction
double f[3];
int floorX = vtkGridFloor(point[0],f[0]);
int floorY = vtkGridFloor(point[1],f[1]);
int floorZ = vtkGridFloor(point[2],f[2]);
int gridId0[3];
gridId0[0] = floorX - gridExt[0];
gridId0[1] = floorY - gridExt[2];
gridId0[2] = floorZ - gridExt[4];
int gridId1[3];
gridId1[0] = gridId0[0] + 1;
gridId1[1] = gridId0[1] + 1;
gridId1[2] = gridId0[2] + 1;
int ext[3];
ext[0] = gridExt[1] - gridExt[0];
ext[1] = gridExt[3] - gridExt[2];
ext[2] = gridExt[5] - gridExt[4];
// the doInterpX,Y,Z variables are 0 if interpolation
// does not have to be done in the specified direction.
int doInterp[3];
doInterp[0] = 1;
doInterp[1] = 1;
doInterp[2] = 1;
// do bounds check, most points will be inside so optimize for that
if ((gridId0[0] | (ext[0] - gridId1[0]) |
gridId0[1] | (ext[1] - gridId1[1]) |
gridId0[2] | (ext[2] - gridId1[2])) < 0)
{
for (int i = 0; i < 3; i++)
{
if (gridId0[i] < 0)
{
gridId0[i] = 0;
gridId1[i] = 0;
doInterp[i] = 0;
f[i] = 0;
}
else if (gridId1[i] > ext[i])
{
gridId0[i] = ext[i];
gridId1[i] = ext[i];
doInterp[i] = 0;
f[i] = 0;
}
}
}
// do tricubic interpolation
for (int i = 0; i < 4; i++)
{
factX[i] = (gridId0[0]-1+i)*gridInc[0];
factY[i] = (gridId0[1]-1+i)*gridInc[1];
factZ[i] = (gridId0[2]-1+i)*gridInc[2];
}
// depending on whether we are at the edge of the
// input extent, choose the appropriate interpolation
// method to use
int interpModeX = ((gridId0[0] > 0) << 2) +
((gridId1[0] < ext[0]) << 1) +
doInterp[0];
int interpModeY = ((gridId0[1] > 0) << 2) +
((gridId1[1] < ext[1]) << 1) +
doInterp[1];
int interpModeZ = ((gridId0[2] > 0) << 2) +
((gridId1[2] < ext[2]) << 1) +
doInterp[2];
switch (gridType)
{
vtkTemplateMacro(
vtkCubicHelper(displacement, derivatives, f[0], f[1], f[2],
static_cast<VTK_TT*>(gridPtr),
interpModeX, interpModeY, interpModeZ,
factX, factY, factZ));
}
}
//----------------------------------------------------------------------------
vtkGridTransform::vtkGridTransform()
{
this->InterpolationMode = VTK_GRID_LINEAR;
this->InterpolationFunction = &vtkTrilinearInterpolation;
this->DisplacementGrid = NULL;
this->DisplacementScale = 1.0;
this->DisplacementShift = 0.0;
// the grid warp has a fairly large tolerance
this->InverseTolerance = 0.01;
}
//----------------------------------------------------------------------------
vtkGridTransform::~vtkGridTransform()
{
this->SetDisplacementGrid(NULL);
}
//----------------------------------------------------------------------------
void vtkGridTransform::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "InterpolationMode: "
<< this->GetInterpolationModeAsString() << "\n";
os << indent << "DisplacementScale: " << this->DisplacementScale << "\n";
os << indent << "DisplacementShift: " << this->DisplacementShift << "\n";
os << indent << "DisplacementGrid: " << this->DisplacementGrid << "\n";
if(this->DisplacementGrid)
{
this->DisplacementGrid->PrintSelf(os,indent.GetNextIndent());
}
}
//----------------------------------------------------------------------------
// need to check the input image data to determine MTime
unsigned long vtkGridTransform::GetMTime()
{
unsigned long mtime,result;
result = vtkWarpTransform::GetMTime();
if (this->DisplacementGrid)
{
this->DisplacementGrid->UpdateInformation();
mtime = this->DisplacementGrid->GetPipelineMTime();
result = ( mtime > result ? mtime : result );
mtime = this->DisplacementGrid->GetMTime();
result = ( mtime > result ? mtime : result );
}
return result;
}
//----------------------------------------------------------------------------
void vtkGridTransform::SetInterpolationMode(int mode)
{
if (mode == this->InterpolationMode)
{
return;
}
this->InterpolationMode = mode;
switch(mode)
{
case VTK_GRID_NEAREST:
this->InterpolationFunction = &vtkNearestNeighborInterpolation;
break;
case VTK_GRID_LINEAR:
this->InterpolationFunction = &vtkTrilinearInterpolation;
break;
case VTK_GRID_CUBIC:
this->InterpolationFunction = &vtkTricubicInterpolation;
break;
default:
vtkErrorMacro( << "SetInterpolationMode: Illegal interpolation mode");
}
this->Modified();
}
//----------------------------------------------------------------------------
void vtkGridTransform::ForwardTransformPoint(const double inPoint[3],
double outPoint[3])
{
if (this->DisplacementGrid == NULL)
{
outPoint[0] = inPoint[0];
outPoint[1] = inPoint[1];
outPoint[2] = inPoint[2];
return;
}
void *gridPtr = this->GridPointer;
int gridType = this->GridScalarType;
double *spacing = this->GridSpacing;
double *origin = this->GridOrigin;
int *extent = this->GridExtent;
vtkIdType *increments = this->GridIncrements;
double scale = this->DisplacementScale;
double shift = this->DisplacementShift;
double point[3];
double displacement[3];
// Convert the inPoint to i,j,k indices into the deformation grid
// plus fractions
point[0] = (inPoint[0] - origin[0])/spacing[0];
point[1] = (inPoint[1] - origin[1])/spacing[1];
point[2] = (inPoint[2] - origin[2])/spacing[2];
this->InterpolationFunction(point,displacement,NULL,
gridPtr,gridType,extent,increments);
outPoint[0] = inPoint[0] + (displacement[0]*scale + shift);
outPoint[1] = inPoint[1] + (displacement[1]*scale + shift);
outPoint[2] = inPoint[2] + (displacement[2]*scale + shift);
}
//----------------------------------------------------------------------------
// convert double to double
void vtkGridTransform::ForwardTransformPoint(const float point[3],
float output[3])
{
double fpoint[3];
fpoint[0] = point[0];
fpoint[1] = point[1];
fpoint[2] = point[2];
this->ForwardTransformPoint(fpoint,fpoint);
output[0] = static_cast<float>(fpoint[0]);
output[1] = static_cast<float>(fpoint[1]);
output[2] = static_cast<float>(fpoint[2]);
}
//----------------------------------------------------------------------------
// calculate the derivative of the grid transform: only cubic interpolation
// provides well-behaved derivative so we always use that.
void vtkGridTransform::ForwardTransformDerivative(const double inPoint[3],
double outPoint[3],
double derivative[3][3])
{
if (this->DisplacementGrid == NULL)
{
outPoint[0] = inPoint[0];
outPoint[1] = inPoint[1];
outPoint[2] = inPoint[2];
vtkMath::Identity3x3(derivative);
return;
}
void *gridPtr = this->GridPointer;
int gridType = this->GridScalarType;
double *spacing = this->GridSpacing;
double *origin = this->GridOrigin;
int *extent = this->GridExtent;
vtkIdType *increments = this->GridIncrements;
double scale = this->DisplacementScale;
double shift = this->DisplacementShift;
double point[3];
double displacement[3];
// convert the inPoint to i,j,k indices plus fractions
point[0] = (inPoint[0] - origin[0])/spacing[0];
point[1] = (inPoint[1] - origin[1])/spacing[1];
point[2] = (inPoint[2] - origin[2])/spacing[2];
this->InterpolationFunction(point,displacement,derivative,
gridPtr,gridType,extent,increments);
for (int i = 0; i < 3; i++)
{
derivative[i][0] = derivative[i][0]*scale/spacing[0];
derivative[i][1] = derivative[i][1]*scale/spacing[1];
derivative[i][2] = derivative[i][2]*scale/spacing[2];
derivative[i][i] += 1.0;
}
outPoint[0] = inPoint[0] + (displacement[0]*scale + shift);
outPoint[1] = inPoint[1] + (displacement[1]*scale + shift);
outPoint[2] = inPoint[2] + (displacement[2]*scale + shift);
}
//----------------------------------------------------------------------------
// convert double to double
void vtkGridTransform::ForwardTransformDerivative(const float point[3],
float output[3],
float derivative[3][3])
{
double fpoint[3];
double fderivative[3][3];
fpoint[0] = point[0];
fpoint[1] = point[1];
fpoint[2] = point[2];
this->ForwardTransformDerivative(fpoint,fpoint,fderivative);
for (int i = 0; i < 3; i++)
{
derivative[i][0] = static_cast<float>(fderivative[i][0]);
derivative[i][1] = static_cast<float>(fderivative[i][1]);
derivative[i][2] = static_cast<float>(fderivative[i][2]);
output[i] = static_cast<float>(fpoint[i]);
}
}
//----------------------------------------------------------------------------
// We use Newton's method to iteratively invert the transformation.
// This is actally quite robust as long as the Jacobian matrix is never
// singular.
// Note that this is similar to vtkWarpTransform::InverseTransformPoint()
// but has been optimized specifically for grid transforms.
void vtkGridTransform::InverseTransformDerivative(const double inPoint[3],
double outPoint[3],
double derivative[3][3])
{
if (this->DisplacementGrid == NULL)
{
outPoint[0] = inPoint[0];
outPoint[1] = inPoint[1];
outPoint[2] = inPoint[2];
return;
}
void *gridPtr = this->GridPointer;
int gridType = this->GridScalarType;
double *spacing = this->GridSpacing;
double *origin = this->GridOrigin;
int *extent = this->GridExtent;
vtkIdType *increments = this->GridIncrements;
double invSpacing[3];
invSpacing[0] = 1.0/spacing[0];
invSpacing[1] = 1.0/spacing[1];
invSpacing[2] = 1.0/spacing[2];
double shift = this->DisplacementShift;
double scale = this->DisplacementScale;
double point[3], inverse[3], lastInverse[3];
double deltaP[3], deltaI[3];
double functionValue = 0;
double functionDerivative = 0;
double lastFunctionValue = VTK_DOUBLE_MAX;
double errorSquared = 0.0;
double toleranceSquared = this->InverseTolerance;
toleranceSquared *= toleranceSquared;
double f = 1.0;
double a;
// convert the inPoint to i,j,k indices plus fractions
point[0] = (inPoint[0] - origin[0])*invSpacing[0];
point[1] = (inPoint[1] - origin[1])*invSpacing[1];
point[2] = (inPoint[2] - origin[2])*invSpacing[2];
// first guess at inverse point, just subtract displacement
// (the inverse point is given in i,j,k indices plus fractions)
this->InterpolationFunction(point, deltaP, NULL,
gridPtr, gridType, extent, increments);
inverse[0] = point[0] - (deltaP[0]*scale + shift)*invSpacing[0];
inverse[1] = point[1] - (deltaP[1]*scale + shift)*invSpacing[1];
inverse[2] = point[2] - (deltaP[2]*scale + shift)*invSpacing[2];
lastInverse[0] = inverse[0];
lastInverse[1] = inverse[1];
lastInverse[2] = inverse[2];
// do a maximum 500 iterations, usually less than 10 are required
int n = this->InverseIterations;
int i, j;
for (i = 0; i < n; i++)
{
this->InterpolationFunction(inverse, deltaP, derivative,
gridPtr, gridType, extent, increments);
// convert displacement
deltaP[0] = (inverse[0] - point[0])*spacing[0] + deltaP[0]*scale + shift;
deltaP[1] = (inverse[1] - point[1])*spacing[1] + deltaP[1]*scale + shift;
deltaP[2] = (inverse[2] - point[2])*spacing[2] + deltaP[2]*scale + shift;
// convert derivative
for (j = 0; j < 3; j++)
{
derivative[j][0] = derivative[j][0]*scale*invSpacing[0];
derivative[j][1] = derivative[j][1]*scale*invSpacing[1];
derivative[j][2] = derivative[j][2]*scale*invSpacing[2];
derivative[j][j] += 1.0;
}
// get the current function value
functionValue = (deltaP[0]*deltaP[0] +
deltaP[1]*deltaP[1] +
deltaP[2]*deltaP[2]);
// if the function value is decreasing, do next Newton step
// (the f < 1.0 is there because I found that convergence
// is more stable if only a single reduction step is done)
if (functionValue < lastFunctionValue || f < 1.0)
{
// here is the critical step in Newton's method
vtkMath::LinearSolve3x3(derivative,deltaP,deltaI);
// get the error value in the output coord space
errorSquared = (deltaI[0]*deltaI[0] +
deltaI[1]*deltaI[1] +
deltaI[2]*deltaI[2]);
// break if less than tolerance in both coordinate systems
if (errorSquared < toleranceSquared &&
functionValue < toleranceSquared)
{
break;
}
// save the last inverse point
lastInverse[0] = inverse[0];
lastInverse[1] = inverse[1];
lastInverse[2] = inverse[2];
// save error at last inverse point
lastFunctionValue = functionValue;
// derivative of functionValue at last inverse point
functionDerivative = (deltaP[0]*derivative[0][0]*deltaI[0] +
deltaP[1]*derivative[1][1]*deltaI[1] +
deltaP[2]*derivative[2][2]*deltaI[2])*2;
// calculate new inverse point
inverse[0] -= deltaI[0]*invSpacing[0];
inverse[1] -= deltaI[1]*invSpacing[1];
inverse[2] -= deltaI[2]*invSpacing[2];
// reset f to 1.0
f = 1.0;
continue;
}
// the error is increasing, so take a partial step
// (see Numerical Recipes 9.7 for rationale, this code
// is a simplification of the algorithm provided there)
// quadratic approximation to find best fractional distance
a = -functionDerivative/(2*(functionValue -
lastFunctionValue -
functionDerivative));
// clamp to range [0.1,0.5]
f *= (a < 0.1 ? 0.1 : (a > 0.5 ? 0.5 : a));
// re-calculate inverse using fractional distance
inverse[0] = lastInverse[0] - f*deltaI[0]*invSpacing[0];
inverse[1] = lastInverse[1] - f*deltaI[1]*invSpacing[1];
inverse[2] = lastInverse[2] - f*deltaI[2]*invSpacing[2];
}
vtkDebugMacro("Inverse Iterations: " << (i+1));
if (i >= n)
{
// didn't converge: back up to last good result
inverse[0] = lastInverse[0];
inverse[1] = lastInverse[1];
inverse[2] = lastInverse[2];
vtkWarningMacro("InverseTransformPoint: no convergence (" <<
inPoint[0] << ", " << inPoint[1] << ", " << inPoint[2] <<
") error = " << sqrt(errorSquared) << " after " <<
i << " iterations.");
}
// convert point
outPoint[0] = inverse[0]*spacing[0] + origin[0];
outPoint[1] = inverse[1]*spacing[1] + origin[1];
outPoint[2] = inverse[2]*spacing[2] + origin[2];
}
//----------------------------------------------------------------------------
// convert double to double and back again
void vtkGridTransform::InverseTransformDerivative(const float point[3],
float output[3],
float derivative[3][3])
{
double fpoint[3];
double fderivative[3][3];
fpoint[0] = point[0];
fpoint[1] = point[1];
fpoint[2] = point[2];
this->InverseTransformDerivative(fpoint,fpoint,fderivative);
for (int i = 0; i < 3; i++)
{
output[i] = static_cast<float>(fpoint[i]);
derivative[i][0] = static_cast<float>(fderivative[i][0]);
derivative[i][1] = static_cast<float>(fderivative[i][1]);
derivative[i][2] = static_cast<float>(fderivative[i][2]);
}
}
//----------------------------------------------------------------------------
void vtkGridTransform::InverseTransformPoint(const double point[3],
double output[3])
{
// the derivative won't be used, but it is required for Newton's method
double derivative[3][3];
this->InverseTransformDerivative(point,output,derivative);
}
//----------------------------------------------------------------------------
// convert double to double and back again
void vtkGridTransform::InverseTransformPoint(const float point[3],
float output[3])
{
double fpoint[3];
double fderivative[3][3];
fpoint[0] = point[0];
fpoint[1] = point[1];
fpoint[2] = point[2];
this->InverseTransformDerivative(fpoint,fpoint,fderivative);
output[0] = static_cast<float>(fpoint[0]);
output[1] = static_cast<float>(fpoint[1]);
output[2] = static_cast<float>(fpoint[2]);
}
//----------------------------------------------------------------------------
void vtkGridTransform::InternalDeepCopy(vtkAbstractTransform *transform)
{
vtkGridTransform *gridTransform = (vtkGridTransform *)transform;
this->SetInverseTolerance(gridTransform->InverseTolerance);
this->SetInverseIterations(gridTransform->InverseIterations);
this->SetInterpolationMode(gridTransform->InterpolationMode);
this->InterpolationFunction = gridTransform->InterpolationFunction;
this->SetDisplacementScale(gridTransform->DisplacementScale);
this->SetDisplacementGrid(gridTransform->DisplacementGrid);
this->SetDisplacementShift(gridTransform->DisplacementShift);
this->SetDisplacementScale(gridTransform->DisplacementScale);
if (this->InverseFlag != gridTransform->InverseFlag)
{
this->InverseFlag = gridTransform->InverseFlag;
this->Modified();
}
}
//----------------------------------------------------------------------------
void vtkGridTransform::InternalUpdate()
{
vtkImageData *grid = this->DisplacementGrid;
if (grid == 0)
{
return;
}
grid->UpdateInformation();
if (grid->GetNumberOfScalarComponents() != 3)
{
vtkErrorMacro(<< "TransformPoint: displacement grid must have 3 components");
return;
}
if (grid->GetScalarType() != VTK_CHAR &&
grid->GetScalarType() != VTK_UNSIGNED_CHAR &&
grid->GetScalarType() != VTK_SHORT &&
grid->GetScalarType() != VTK_UNSIGNED_SHORT &&
grid->GetScalarType() != VTK_FLOAT &&
grid->GetScalarType() != VTK_DOUBLE)
{
vtkErrorMacro(<< "TransformPoint: displacement grid is of unsupported numerical type");
return;
}
grid->SetUpdateExtent(grid->GetWholeExtent());
grid->Update();
this->GridPointer = grid->GetScalarPointer();
this->GridScalarType = grid->GetScalarType();
grid->GetSpacing(this->GridSpacing);
grid->GetOrigin(this->GridOrigin);
grid->GetExtent(this->GridExtent);
grid->GetIncrements(this->GridIncrements);
}
//----------------------------------------------------------------------------
vtkAbstractTransform *vtkGridTransform::MakeTransform()
{
return vtkGridTransform::New();
}