Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

499 lines
13 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkPCAAnalysisFilter.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkPCAAnalysisFilter.h"
#include "vtkExecutive.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkTransformPolyDataFilter.h"
#include "vtkPolyData.h"
#include "vtkMath.h"
#include "vtkFloatArray.h"
vtkCxxRevisionMacro(vtkPCAAnalysisFilter, "$Revision: 1.13 $");
vtkStandardNewMacro(vtkPCAAnalysisFilter);
//------------------------------------------------------------------------
// Matrix ops. Some taken from vtkThinPlateSplineTransform.cxx
static inline double** NewMatrix(int rows, int cols)
{
double *matrix = new double[rows*cols];
double **m = new double *[rows];
for(int i = 0; i < rows; i++) {
m[i] = &matrix[i*cols];
}
return m;
}
//------------------------------------------------------------------------
static inline void DeleteMatrix(double **m)
{
delete [] *m;
delete [] m;
}
//------------------------------------------------------------------------
static inline void MatrixMultiply(double **a, double **b, double **c,
int arows, int acols,
int brows, int bcols)
{
if(acols != brows) {
return; // acols must equal br otherwise we can't proceed
}
// c must have size arows*bcols (we assume this)
for(int i = 0; i < arows; i++) {
for(int j = 0; j < bcols; j++) {
c[i][j] = 0.0;
for(int k = 0; k < acols; k++) {
c[i][j] += a[i][k]*b[k][j];
}
}
}
}
//------------------------------------------------------------------------
// Subtracting the mean column from the observation matrix is equal
// to subtracting the mean shape from all shapes.
// The mean column is equal to the Procrustes mean (it is also returned)
static inline void SubtractMeanColumn(double **m, double *mean, int rows, int cols)
{
int r,c;
double csum;
for (r = 0; r < rows; r++) {
csum = 0.0F;
for (c = 0; c < cols; c++) {
csum += m[r][c];
}
// calculate average value of row
csum /= cols;
// Mean shape vector is updated
mean[r] = csum;
// average value is subtracted from all elements in the row
for (c = 0; c < cols; c++) {
m[r][c] -= csum;
}
}
}
//------------------------------------------------------------------------
// Normalise all columns to have length 1
// meaning that all eigenvectors are normalised
static inline void NormaliseColumns(double **m, int rows, int cols)
{
for (int c = 0; c < cols; c++) {
double cl = 0;
for (int r = 0; r < rows; r++) {
cl += m[r][c] * m[r][c];
}
cl = sqrt(cl);
// If cl == 0 something is rotten, dont do anything now
if (cl != 0) {
for (int r = 0; r < rows; r++) {
m[r][c] /= cl;
}
}
}
}
//------------------------------------------------------------------------
// Here it is assumed that a rows >> a cols
// Output matrix is [a cols X a cols]
static inline void SmallCovarianceMatrix(double **a, double **c,
int arows, int acols)
{
const int s = acols;
// c must have size acols*acols (we assume this)
for(int i = 0; i < acols; i++) {
for(int j = 0; j < acols; j++) {
// Use symmetry
if (i <= j) {
c[i][j] = 0.0;
for(int k = 0; k < arows; k++) {
c[i][j] += a[k][i]*a[k][j];
}
c[i][j] /= (s-1);
c[j][i] = c[i][j];
}
}
}
}
//------------------------------------------------------------------------
static inline double* NewVector(int length)
{
double *vec = new double[length];
return vec;
}
//------------------------------------------------------------------------
static inline void DeleteVector(double *v)
{
delete [] v;
}
//----------------------------------------------------------------------------
// protected
vtkPCAAnalysisFilter::vtkPCAAnalysisFilter()
{
this->Evals = vtkFloatArray::New();
this->evecMat2 = NULL;
this->meanshape = NULL;
}
//----------------------------------------------------------------------------
// protected
vtkPCAAnalysisFilter::~vtkPCAAnalysisFilter()
{
if (this->Evals) {
this->Evals->Delete();
}
if (this->evecMat2) {
DeleteMatrix(this->evecMat2);
this->evecMat2 = NULL;
}
if (this->meanshape) {
DeleteVector(this->meanshape);
this->meanshape = NULL;
}
}
//----------------------------------------------------------------------------
// protected
int vtkPCAAnalysisFilter::RequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
// get the input and ouptut
vtkPointSet *input = vtkPointSet::SafeDownCast(
inInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPointSet *output = vtkPointSet::SafeDownCast(
outInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkDebugMacro(<<"Execute()");
int i;
// Clean up from previous computation
if (this->evecMat2) {
DeleteMatrix(this->evecMat2);
this->evecMat2 = NULL;
}
if (this->meanshape) {
DeleteVector(this->meanshape);
this->meanshape = NULL;
}
const int N_SETS = this->GetNumberOfInputConnections(0);
vtkInformation *tmpInfo;
vtkPointSet *tmpInput;
// copy the inputs across
output->DeepCopy(input);
for(i=1;i<N_SETS;i++)
{
tmpInfo = inputVector[0]->GetInformationObject(i);
tmpInput = 0;
if (tmpInfo)
{
tmpInput =
vtkPointSet::SafeDownCast(tmpInfo->Get(vtkDataObject::DATA_OBJECT()));
}
this->GetOutput(i)->DeepCopy(tmpInput);
}
// the number of points is determined by the first input (they must all be the same)
const int N_POINTS = input->GetNumberOfPoints();
vtkDebugMacro(<<"N_POINTS is " <<N_POINTS);
if(N_POINTS == 0) {
vtkErrorMacro(<<"No points!");
return 1;
}
// all the inputs must have the same number of points to consider executing
for(i=1;i<N_SETS;i++)
{
tmpInfo = inputVector[0]->GetInformationObject(i);
tmpInput = 0;
if (tmpInfo)
{
tmpInput =
vtkPointSet::SafeDownCast(tmpInfo->Get(vtkDataObject::DATA_OBJECT()));
}
else
{
continue;
}
if(tmpInput->GetNumberOfPoints() != N_POINTS) {
vtkErrorMacro(<<"The inputs have different numbers of points!");
return 1;
}
}
// Number of shapes
const int s = N_SETS;
// Number of points in a shape
const int n = N_POINTS;
// Observation Matrix [number of points * 3 X number of shapes]
double **D = NewMatrix(3*n, s);
for (i = 0; i < n; i++)
{
for (int j = 0; j < s; j++)
{
tmpInfo = inputVector[0]->GetInformationObject(j);
tmpInput = 0;
if (tmpInfo)
{
tmpInput = vtkPointSet::SafeDownCast(
tmpInfo->Get(vtkDataObject::DATA_OBJECT()));
}
else
{
continue;
}
double p[3];
tmpInput->GetPoint(i, p);
D[i*3 ][j] = p[0];
D[i*3+1][j] = p[1];
D[i*3+2][j] = p[2];
}
}
// The mean shape is also calculated
meanshape = NewVector(3*n);
SubtractMeanColumn(D, meanshape, 3*n, s);
// Covariance matrix of dim [s x s]
double **T = NewMatrix(s, s);
SmallCovarianceMatrix(D, T, 3*n, s);
double *ev = NewVector(s);
double **evecMat = NewMatrix(s, s);
vtkMath::JacobiN(T, s, ev, evecMat);
// Compute eigenvecs of DD' instead of T which is D'D
// evecMat2 of dim [3*n x s]
evecMat2 = NewMatrix(3*n, s);
MatrixMultiply(D, evecMat, evecMat2, 3*n, s, s, s);
// Normalise eigenvectors
NormaliseColumns(evecMat2, 3*n, s);
this->Evals->SetNumberOfValues(s);
// Copy data to output structures
for (int j = 0; j < s; j++) {
this->Evals->SetValue(j, ev[j]);
for (i = 0; i < n; i++) {
double x = evecMat2[i*3 ][j];
double y = evecMat2[i*3+1][j];
double z = evecMat2[i*3+2][j];
this->GetOutput(j)->GetPoints()->SetPoint(i, x, y, z);
}
}
DeleteMatrix(evecMat);
DeleteVector(ev);
DeleteMatrix(T);
DeleteMatrix(D);
return 1;
}
//----------------------------------------------------------------------------
// public
void vtkPCAAnalysisFilter::GetParameterisedShape(vtkFloatArray *b, vtkPointSet* shape)
{
const int bsize = b->GetNumberOfTuples();
const int n = this->GetOutput(0)->GetNumberOfPoints();
if(shape->GetNumberOfPoints() != n) {
vtkErrorMacro(<<"Input shape does not have the correct number of points");
return;
}
double *shapevec = NewVector(n*3);
int i,j;
// b is weighted by the eigenvals
// make weigth vector for speed reasons
double *w = NewVector(bsize);
for (i = 0; i < bsize; i++) {
w[i] =sqrt(this->Evals->GetValue(i)) * b->GetValue(i);
}
for (j = 0; j < n*3; j++) {
shapevec[j] = meanshape[j];
for (i = 0; i < bsize; i++) {
shapevec[j] += w[i] * evecMat2[j][i];
}
}
// Copy shape
for (i = 0; i < n; i++) {
shape->GetPoints()->SetPoint(i,shapevec[i*3 ], shapevec[i*3+1], shapevec[i*3+2]);
}
DeleteVector(shapevec);
DeleteVector(w);
}
//----------------------------------------------------------------------------
// public
void vtkPCAAnalysisFilter::GetShapeParameters(vtkPointSet *shape, vtkFloatArray *b, int bsize)
{
// Local variant of b for fast access.
double *bloc = NewVector(bsize);
const int n = this->GetOutput(0)->GetNumberOfPoints();
int i,j;
if(shape->GetNumberOfPoints() != n) {
vtkErrorMacro(<<"Input shape does not have the correct number of points");
return;
}
double *shapevec = NewVector(n*3);
// Copy shape and subtract mean shape
for (i = 0; i < n; i++) {
double p[3];
shape->GetPoint(i, p);
shapevec[i*3 ] = p[0] - meanshape[i*3];
shapevec[i*3+1] = p[1] - meanshape[i*3+1];
shapevec[i*3+2] = p[2] - meanshape[i*3+2];
}
for (i = 0; i < bsize; i++) {
bloc[i] = 0;
// Project the shape onto eigenvector i
for (j = 0; j < n*3; j++) {
bloc[i] += shapevec[j] * evecMat2[j][i];
}
}
// Return b in number of standard deviations
b->SetNumberOfValues(bsize);
for (i = 0; i < bsize; i++) {
if (this->Evals->GetValue(i))
b->SetValue(i, bloc[i]/sqrt(this->Evals->GetValue(i)));
else
b->SetValue(i, 0);
}
DeleteVector(shapevec);
DeleteVector(bloc);
}
//----------------------------------------------------------------------------
// public
void vtkPCAAnalysisFilter::SetNumberOfInputs(int n)
{
this->SetNumberOfInputConnections(0, n);
this->SetNumberOfOutputPorts(n);
// initialise the outputs
for(int i=0;i<n;i++)
{
vtkPoints *points = vtkPoints::New();
vtkPolyData *ps = vtkPolyData::New();
ps->SetPoints(points);
points->Delete();
this->GetExecutive()->SetOutputData(i,ps);
ps->Delete();
}
// is this the right thing to be doing here? if we don't initialise the outputs here
// then the filter crashes but vtkPolyData may not be the type of the inputs
}
//----------------------------------------------------------------------------
void vtkPCAAnalysisFilter::SetInput(int idx, vtkPointSet *p)
{
this->SetNthInputConnection(0, idx, p ? p->GetProducerPort() : 0);
}
//----------------------------------------------------------------------------
vtkPointSet* vtkPCAAnalysisFilter::GetInput(int idx)
{
return vtkPointSet::SafeDownCast(
this->GetExecutive()->GetInputData(0, idx));
}
//----------------------------------------------------------------------------
int vtkPCAAnalysisFilter::FillInputPortInformation(int port,
vtkInformation *info)
{
int retval = this->Superclass::FillInputPortInformation(port, info);
info->Set(vtkAlgorithm::INPUT_IS_REPEATABLE(), 1);
return retval;
}
//----------------------------------------------------------------------------
// public
void vtkPCAAnalysisFilter::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
this->Evals->PrintSelf(os,indent.GetNextIndent());
}
//----------------------------------------------------------------------------
// public
int vtkPCAAnalysisFilter::GetModesRequiredFor(double proportion)
{
int i;
double eigen_total = 0.0F;
for(i=0;i<this->Evals->GetNumberOfTuples();i++)
{
eigen_total += this->Evals->GetValue(i);
}
double running_total = 0.0F;
for(i=0;i<this->Evals->GetNumberOfTuples();i++)
{
running_total += this->Evals->GetValue(i)/eigen_total;
if(running_total>=proportion)
{
return i+1;
}
}
return Evals->GetNumberOfTuples();
}