Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

796 lines
21 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkThinPlateSplineTransform.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkThinPlateSplineTransform.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPoints.h"
vtkCxxRevisionMacro(vtkThinPlateSplineTransform, "$Revision: 1.33 $");
vtkStandardNewMacro(vtkThinPlateSplineTransform);
//------------------------------------------------------------------------
// some dull matrix things
inline double** vtkNewMatrix(int rows, int cols)
{
double *matrix = new double[rows*cols];
double **m = new double *[rows];
for(int i = 0; i < rows; i++)
{
m[i] = &matrix[i*cols];
}
return m;
}
//------------------------------------------------------------------------
inline void vtkDeleteMatrix(double **m)
{
delete [] *m;
delete [] m;
}
//------------------------------------------------------------------------
inline void vtkZeroMatrix(double **m, int rows, int cols)
{
for(int i = 0; i < rows; i++)
{
for(int j = 0; j < cols; j++)
{
m[i][j] = 0.0;
}
}
}
//------------------------------------------------------------------------
inline void vtkMatrixMultiply(double **a, double **b, double **c,
int arows, int acols, int brows, int bcols)
{
if(acols != brows)
{
return; // acols must equal br otherwise we can't proceed
}
// c must have size arows*bcols (we assume this)
for(int i = 0; i < arows; i++)
{
for(int j = 0; j < bcols; j++)
{
c[i][j] = 0.0;
for(int k = 0; k < acols; k++)
{
c[i][j] += a[i][k]*b[k][j];
}
}
}
}
//------------------------------------------------------------------------
inline void vtkMatrixTranspose(double **a, double **b, int rows, int cols)
{
for(int i = 0; i < rows; i++)
{
for(int j = 0; j < cols; j++)
{
double tmp = a[i][j];
b[i][j] = a[j][i];
b[j][i] = tmp;
}
}
}
//------------------------------------------------------------------------
vtkThinPlateSplineTransform::vtkThinPlateSplineTransform()
{
this->SourceLandmarks=NULL;
this->TargetLandmarks=NULL;
this->Sigma = 1.0;
// If the InverseFlag is set, then we use an iterative
// method to invert the transformation.
// The InverseTolerance sets the precision to which we want to
// calculate the inverse.
this->InverseTolerance = 0.001;
this->InverseIterations = 500;
this->Basis = -1;
this->SetBasisToR2LogR();
this->NumberOfPoints = 0;
this->MatrixW = NULL;
}
//------------------------------------------------------------------------
vtkThinPlateSplineTransform::~vtkThinPlateSplineTransform()
{
if (this->SourceLandmarks)
{
this->SourceLandmarks->Delete();
}
if (this->TargetLandmarks)
{
this->TargetLandmarks->Delete();
}
if (this->MatrixW)
{
vtkDeleteMatrix(this->MatrixW);
this->MatrixW = NULL;
}
}
//------------------------------------------------------------------------
void vtkThinPlateSplineTransform::SetSourceLandmarks(vtkPoints *source)
{
if (this->SourceLandmarks == source)
{
return;
}
if (this->SourceLandmarks)
{
this->SourceLandmarks->Delete();
}
source->Register(this);
this->SourceLandmarks = source;
this->Modified();
}
//------------------------------------------------------------------------
void vtkThinPlateSplineTransform::SetTargetLandmarks(vtkPoints *target)
{
if (this->TargetLandmarks == target)
{
return;
}
if (this->TargetLandmarks)
{
this->TargetLandmarks->Delete();
}
target->Register(this);
this->TargetLandmarks = target;
this->Modified();
}
//------------------------------------------------------------------------
unsigned long vtkThinPlateSplineTransform::GetMTime()
{
unsigned long result = this->vtkWarpTransform::GetMTime();
unsigned long mtime;
if (this->SourceLandmarks)
{
mtime = this->SourceLandmarks->GetMTime();
if (mtime > result)
{
result = mtime;
}
}
if (this->TargetLandmarks)
{
mtime = this->TargetLandmarks->GetMTime();
if (mtime > result)
{
result = mtime;
}
}
return result;
}
//------------------------------------------------------------------------
void vtkThinPlateSplineTransform::InternalUpdate()
{
if (this->SourceLandmarks == NULL || this->TargetLandmarks == NULL)
{
if (this->MatrixW)
{
vtkDeleteMatrix(this->MatrixW);
}
this->MatrixW = NULL;
this->NumberOfPoints = 0;
return;
}
if (this->SourceLandmarks->GetNumberOfPoints() !=
this->TargetLandmarks->GetNumberOfPoints())
{
vtkErrorMacro("Update: Source and Target Landmarks contain a different number of points");
return;
}
const vtkIdType N = this->SourceLandmarks->GetNumberOfPoints();
const int D = 3; // dimensions
// the output weights matrix
double **W = vtkNewMatrix(N+D+1,D);
double **A = &W[N+1]; // the linear rotation + scale matrix
double *C = W[N]; // the linear translation
if (N >= 3)
{
// Notation and inspiration from:
// Fred L. Bookstein (1997) "Shape and the Information in Medical Images:
// A Decade of the Morphometric Synthesis" Computer Vision and Image
// Understanding 66(2):97-118
// and online work published by Tim Cootes (http://www.wiau.man.ac.uk/~bim)
// the input matrices
double **L = vtkNewMatrix(N+D+1,N+D+1);
double **X = vtkNewMatrix(N+D+1,D);
// build L
// will leave the bottom-right corner with zeros
vtkZeroMatrix(L,N+D+1,N+D+1);
int q,c;
double p[3],p2[3];
double dx,dy,dz;
double r;
double (*phi)(double) = this->BasisFunction;
for(q = 0; q < N; q++)
{
this->SourceLandmarks->GetPoint(q,p);
// fill in the top-right and bottom-left corners of L (Q)
L[N][q] = L[q][N] = 1.0;
L[N+1][q] = L[q][N+1] = p[0];
L[N+2][q] = L[q][N+2] = p[1];
L[N+3][q] = L[q][N+3] = p[2];
// fill in the top-left corner of L (K), using symmetry
for(c = 0; c < q; c++)
{
this->SourceLandmarks->GetPoint(c,p2);
dx = p[0]-p2[0]; dy = p[1]-p2[1]; dz = p[2]-p2[2];
r = sqrt(dx*dx + dy*dy + dz*dz);
L[q][c] = L[c][q] = phi(r/this->Sigma);
}
}
// build X
vtkZeroMatrix(X,N+D+1,D);
for (q = 0; q < N; q++)
{
this->TargetLandmarks->GetPoint(q,p);
X[q][0] = p[0];
X[q][1] = p[1];
X[q][2] = p[2];
}
// solve for W, where W = Inverse(L)*X;
// this is done via eigenvector decomposition so
// that we can avoid singular values
// W = V*Inverse(w)*U*X
double *values = new double[N+D+1];
double **V = vtkNewMatrix(N+D+1,N+D+1);
double **w = vtkNewMatrix(N+D+1,N+D+1);
double **U = L; // reuse the space
vtkMath::JacobiN(L,N+D+1,values,V);
vtkMatrixTranspose(V,U,N+D+1,N+D+1);
vtkIdType i, j;
double maxValue = 0.0; // maximum eigenvalue
for (i = 0; i < N+D+1; i++)
{
double tmp = fabs(values[i]);
if (tmp > maxValue)
{
maxValue = tmp;
}
}
for (i = 0; i < N+D+1; i++)
{
for (j = 0; j < N+D+1; j++)
{
w[i][j] = 0.0;
}
// here's the trick: don't invert the singular values
if (fabs(values[i]/maxValue) > 1e-16)
{
w[i][i] = 1.0/values[i];
}
}
delete [] values;
vtkMatrixMultiply(U,X,W,N+D+1,N+D+1,N+D+1,D);
vtkMatrixMultiply(w,W,X,N+D+1,N+D+1,N+D+1,D);
vtkMatrixMultiply(V,X,W,N+D+1,N+D+1,N+D+1,D);
vtkDeleteMatrix(V);
vtkDeleteMatrix(w);
vtkDeleteMatrix(U);
vtkDeleteMatrix(X);
// now the linear portion of the warp must be checked
// (this is a very poor check for now)
if (fabs(vtkMath::Determinant3x3((double (*)[3]) *A)) < 1e-16)
{
for (i = 0; i < 3; i++)
{
if (sqrt(A[0][i]*A[0][i] + A[1][i]*A[1][i] + A[2][i]*A[2][i])
< 1e-16)
{
A[0][i] = A[1][i] = A[2][i] = A[i][0] = A[i][1] = A[i][2] = 0;
A[i][i] = 1.0;
}
}
}
}
// special cases, I added these to ensure that this class doesn't
// misbehave if the user supplied fewer than 3 landmarks
else // (N < 3)
{
vtkIdType i,j;
// set nonlinear portion of transformation to zero
for (i = 0; i < N; i++)
{
for (j = 0; j < D; j++)
{
W[i][j] = 0;
}
}
if (N == 2)
{ // two landmarks, construct a similarity transformation
double s0[3],t0[3],s1[3],t1[3];
this->SourceLandmarks->GetPoint(0,s0);
this->TargetLandmarks->GetPoint(0,t0);
this->SourceLandmarks->GetPoint(1,s1);
this->TargetLandmarks->GetPoint(1,t1);
double ds[3],dt[3],as[3],at[3];
double rs = 0, rt = 0;
for (i = 0; i < 3; i++)
{
as[i] = (s0[i] + s1[i])/2; // average of endpoints
ds[i] = s1[i] - s0[i]; // vector between points
rs += ds[i]*ds[i];
at[i] = (t0[i] + t1[i])/2;
dt[i] = t1[i] - t0[i];
rt += dt[i]*dt[i];
}
// normalize the two vectors
rs = sqrt(rs);
ds[0] /= rs; ds[1] /= rs; ds[2] /= rs;
rt = sqrt(rt);
dt[0] /= rt; dt[1] /= rt; dt[2] /= rt;
double w,x,y,z;
// take dot & cross product
w = ds[0]*dt[0] + ds[1]*dt[1] + ds[2]*dt[2];
x = ds[1]*dt[2] - ds[2]*dt[1];
y = ds[2]*dt[0] - ds[0]*dt[2];
z = ds[0]*dt[1] - ds[1]*dt[0];
double r = sqrt(x*x + y*y + z*z);
double theta = atan2(r,w);
// construct quaternion
w = cos(theta/2);
if (r != 0)
{
r = sin(theta/2)/r;
x = x*r;
y = y*r;
z = z*r;
}
else // rotation by 180 degrees
{
// rotate around a vector perpendicular to ds
vtkMath::Perpendiculars(ds,dt,0,0);
r = sin(theta/2);
x = dt[0]*r;
y = dt[1]*r;
z = dt[2]*r;
}
// now r is scale factor for matrix
r = rt/rs;
// build a rotation + scale matrix
A[0][0] = (w*w + x*x - y*y - z*z)*r;
A[0][1] = (x*y + w*z)*2*r;
A[0][2] = (x*z - w*y)*2*r;
A[1][0] = (x*y - w*z)*2*r;
A[1][1] = (w*w - x*x + y*y - z*z)*r;
A[1][2] = (y*z + w*x)*2*r;
A[2][0] = (x*z + w*y)*2*r;
A[2][1] = (y*z - w*x)*2*r;
A[2][2] = (w*w - x*x - y*y + z*z)*r;
// include the translation
C[0] = at[0] - as[0]*A[0][0] - as[1]*A[1][0] - as[2]*A[2][0];
C[1] = at[1] - as[0]*A[0][1] - as[1]*A[1][1] - as[2]*A[2][1];
C[2] = at[2] - as[0]*A[0][2] - as[1]*A[1][2] - as[2]*A[2][2];
}
else if (N == 1) // one landmark, translation only
{
double p[3],p2[3];
this->SourceLandmarks->GetPoint(0,p);
this->TargetLandmarks->GetPoint(0,p2);
for (i = 0; i < D; i++)
{
for (j = 0; j < D; j++)
{
A[i][j] = 0;
}
A[i][i] = 1;
C[i] = p2[i] - p[i];
}
}
else // if no landmarks, set to identity
{
for (i = 0; i < D; i++)
{
for (j = 0; j < D; j++)
{
A[i][j] = 0;
}
A[i][i] = 1;
C[i] = 0;
}
}
}
// left in for debug purposes
/*
cerr << "W =\n";
for (int i = 0; i < N+1+D; i++)
{
cerr << W[i][0] << ' ' << W[i][1] << ' ' << W[i][2] << '\n';
}
cerr << "\n";
*/
if (this->MatrixW)
{
vtkDeleteMatrix(this->MatrixW);
}
this->MatrixW = W;
this->NumberOfPoints = N;
}
//------------------------------------------------------------------------
// The matrix W was created by Update. Not much has to be done to
// apply the transform: do an affine transformation, then do
// perturbations based on the landmarks.
template<class T>
inline void vtkThinPlateSplineForwardTransformPoint(vtkThinPlateSplineTransform *self,
double **W, int N,
double (*phi)(double),
const T point[3], T output[3])
{
if (N == 0)
{
output[0] = point[0];
output[1] = point[1];
output[2] = point[2];
return;
}
double *C = W[N];
double **A = &W[N+1];
double dx,dy,dz;
double p[3];
double U,r;
double invSigma = 1.0/self->GetSigma();
double x = 0, y = 0, z = 0;
vtkPoints *sourceLandmarks = self->GetSourceLandmarks();
// do the nonlinear stuff
for(vtkIdType i = 0; i < N; i++)
{
sourceLandmarks->GetPoint(i,p);
dx = point[0]-p[0]; dy = point[1]-p[1]; dz = point[2]-p[2];
r = sqrt(dx*dx + dy*dy + dz*dz);
U = phi(r*invSigma);
x += U*W[i][0];
y += U*W[i][1];
z += U*W[i][2];
}
// finish off with the affine transformation
x += C[0] + point[0]*A[0][0] + point[1]*A[1][0] + point[2]*A[2][0];
y += C[1] + point[0]*A[0][1] + point[1]*A[1][1] + point[2]*A[2][1];
z += C[2] + point[0]*A[0][2] + point[1]*A[1][2] + point[2]*A[2][2];
output[0] = x;
output[1] = y;
output[2] = z;
}
void vtkThinPlateSplineTransform::ForwardTransformPoint(const double point[3],
double output[3])
{
vtkThinPlateSplineForwardTransformPoint(this, this->MatrixW,
this->NumberOfPoints,
this->BasisFunction,
point, output);
}
void vtkThinPlateSplineTransform::ForwardTransformPoint(const float point[3],
float output[3])
{
vtkThinPlateSplineForwardTransformPoint(this, this->MatrixW,
this->NumberOfPoints,
this->BasisFunction,
point, output);
}
//----------------------------------------------------------------------------
// calculate the thin plate spline as well as the jacobian
template<class T>
inline void vtkThinPlateSplineForwardTransformDerivative(
vtkThinPlateSplineTransform *self,
double **W, int N,
double (*phi)(double, double&),
const T point[3], T output[3],
T derivative[3][3])
{
if (N == 0)
{
for (int i = 0; i < 3; i++)
{
output[i] = point[i];
derivative[i][0] = derivative[i][1] = derivative[i][2] = 0.0;
derivative[i][i] = 1.0;
}
return;
}
double *C = W[N];
double **A = &W[N+1];
double dx,dy,dz;
double p[3];
double r, U, f, Ux, Uy, Uz;
double x = 0, y = 0, z = 0;
double invSigma = 1.0/self->GetSigma();
derivative[0][0] = derivative[0][1] = derivative[0][2] = 0;
derivative[1][0] = derivative[1][1] = derivative[1][2] = 0;
derivative[2][0] = derivative[2][1] = derivative[2][2] = 0;
vtkPoints *sourceLandmarks = self->GetSourceLandmarks();
// do the nonlinear stuff
for(vtkIdType i = 0; i < N; i++)
{
sourceLandmarks->GetPoint(i,p);
dx = point[0]-p[0]; dy = point[1]-p[1]; dz = point[2]-p[2];
r = sqrt(dx*dx + dy*dy + dz*dz);
// get both U and its derivative and do the sigma-mangling
U = 0;
f = 0;
if (r != 0)
{
U = phi(r*invSigma,f);
f *= invSigma/r;
}
Ux = f*dx;
Uy = f*dy;
Uz = f*dz;
x += U*W[i][0];
y += U*W[i][1];
z += U*W[i][2];
derivative[0][0] += Ux*W[i][0];
derivative[0][1] += Uy*W[i][0];
derivative[0][2] += Uz*W[i][0];
derivative[1][0] += Ux*W[i][1];
derivative[1][1] += Uy*W[i][1];
derivative[1][2] += Uz*W[i][1];
derivative[2][0] += Ux*W[i][2];
derivative[2][1] += Uy*W[i][2];
derivative[2][2] += Uz*W[i][2];
}
// finish with the affine transformation
x += C[0] + point[0]*A[0][0] + point[1]*A[1][0] + point[2]*A[2][0];
y += C[1] + point[0]*A[0][1] + point[1]*A[1][1] + point[2]*A[2][1];
z += C[2] + point[0]*A[0][2] + point[1]*A[1][2] + point[2]*A[2][2];
output[0] = x;
output[1] = y;
output[2] = z;
derivative[0][0] += A[0][0];
derivative[0][1] += A[1][0];
derivative[0][2] += A[2][0];
derivative[1][0] += A[0][1];
derivative[1][1] += A[1][1];
derivative[1][2] += A[2][1];
derivative[2][0] += A[0][2];
derivative[2][1] += A[1][2];
derivative[2][2] += A[2][2];
}
void vtkThinPlateSplineTransform::ForwardTransformDerivative(
const double point[3],
double output[3],
double derivative[3][3])
{
vtkThinPlateSplineForwardTransformDerivative(this, this->MatrixW,
this->NumberOfPoints,
this->BasisDerivative,
point, output, derivative);
}
void vtkThinPlateSplineTransform::ForwardTransformDerivative(
const float point[3],
float output[3],
float derivative[3][3])
{
vtkThinPlateSplineForwardTransformDerivative(this, this->MatrixW,
this->NumberOfPoints,
this->BasisDerivative,
point, output, derivative);
}
//------------------------------------------------------------------------
void vtkThinPlateSplineTransform::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Sigma: " << this->Sigma << "\n";
os << indent << "Basis: " << this->GetBasisAsString() << "\n";
os << indent << "Source Landmarks: " << this->SourceLandmarks << "\n";
if (this->SourceLandmarks)
{
this->SourceLandmarks->PrintSelf(os,indent.GetNextIndent());
}
os << indent << "Target Landmarks: " << this->TargetLandmarks << "\n";
if (this->TargetLandmarks)
{
this->TargetLandmarks->PrintSelf(os,indent.GetNextIndent());
}
}
//----------------------------------------------------------------------------
vtkAbstractTransform *vtkThinPlateSplineTransform::MakeTransform()
{
return vtkThinPlateSplineTransform::New();
}
//----------------------------------------------------------------------------
void vtkThinPlateSplineTransform::InternalDeepCopy(
vtkAbstractTransform *transform)
{
vtkThinPlateSplineTransform *t = (vtkThinPlateSplineTransform *)transform;
this->SetInverseTolerance(t->InverseTolerance);
this->SetInverseIterations(t->InverseIterations);
this->SetSigma(t->Sigma);
this->SetBasis(t->GetBasis());
this->SetSourceLandmarks(t->SourceLandmarks);
this->SetTargetLandmarks(t->TargetLandmarks);
if (this->InverseFlag != t->InverseFlag)
{
this->InverseFlag = t->InverseFlag;
this->Modified();
}
}
//------------------------------------------------------------------------
// a very basic radial basis function
double vtkRBFr(double r)
{
return r;
}
// calculate both phi(r) its derivative wrt r
double vtkRBFDRr(double r, double &dUdr)
{
dUdr = 1;
return r;
}
//------------------------------------------------------------------------
// the standard 2D thin plate spline basis function
double vtkRBFr2logr(double r)
{
if (r)
{
return r*r*log(r);
}
else
{
return 0;
}
}
// calculate both phi(r) its derivative wrt r
double vtkRBFDRr2logr(double r, double &dUdr)
{
if (r)
{
double tmp = log(r);
dUdr = r*(1+2*tmp);
return r*r*tmp;
}
else
{
dUdr = 0;
return 0;
}
}
//------------------------------------------------------------------------
void vtkThinPlateSplineTransform::SetBasis(int basis)
{
if (basis == this->Basis)
{
return;
}
switch (basis)
{
case VTK_RBF_CUSTOM:
break;
case VTK_RBF_R:
this->BasisFunction = &vtkRBFr;
this->BasisDerivative = &vtkRBFDRr;
break;
case VTK_RBF_R2LOGR:
this->BasisFunction = &vtkRBFr2logr;
this->BasisDerivative = &vtkRBFDRr2logr;
break;
default:
vtkErrorMacro(<< "SetBasisFunction: Unrecognized basis function");
break;
}
this->Basis = basis;
this->Modified();
}
//------------------------------------------------------------------------
const char *vtkThinPlateSplineTransform::GetBasisAsString()
{
switch (this->Basis)
{
case VTK_RBF_CUSTOM:
return "Custom";
case VTK_RBF_R:
return "R";
case VTK_RBF_R2LOGR:
return "R2LogR";
}
return "Unknown";
}