Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1226 lines
33 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkVideoSource.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkVideoSource.h"
#include "vtkCriticalSection.h"
#include "vtkDataArray.h"
#include "vtkImageData.h"
#include "vtkMultiThreader.h"
#include "vtkMutexLock.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include "vtkTimerLog.h"
#include "vtkUnsignedCharArray.h"
#include "vtkWindows.h"
#include <ctype.h>
#include <time.h>
//---------------------------------------------------------------
// Important FrameBufferMutex rules:
//
// The frame grabs are generally done asynchronously, and it is necessary
// to ensure that when the frame buffer is valid when it is being written
// to or read from
//
// The following information can only be changed within a mutex lock,
// and the lock must not be released until the frame buffer agrees with the
// information.
//
// FrameBuffer
// FrameBufferTimeStamps
// FrameBufferSize
// FrameBufferIndex
// FrameBufferExtent
// FrameBufferBitsPerPixel
// FrameBufferRowAlignment
//
// After one of the above has been changed, and before the mutex is released,
// the following must be called to update the frame buffer:
//
// UpdateFrameBuffer()
//
// Likewise, the following function must only be called from within a
// mutex lock because it modifies FrameBufferIndex:
//
// AdvanceFrameBuffer()
//
// Any methods which might be called asynchronously must lock the
// mutex before reading the above information, and you must be very
// careful when accessing any information except for the above.
// These methods include the following:
//
// InternalGrab()
//
// Finally, when Execute() is reading from the FrameBuffer it must do
// so from within a mutex lock. Otherwise tearing artifacts might result.
vtkCxxRevisionMacro(vtkVideoSource, "$Revision: 1.43 $");
vtkStandardNewMacro(vtkVideoSource);
#if ( _MSC_VER >= 1300 ) // Visual studio .NET
#pragma warning ( disable : 4311 )
#pragma warning ( disable : 4312 )
#endif
//----------------------------------------------------------------------------
vtkVideoSource::vtkVideoSource()
{
int i;
this->Initialized = 0;
this->AutoAdvance = 1;
this->FrameSize[0] = 320;
this->FrameSize[1] = 240;
this->FrameSize[2] = 1;
for (i = 0; i < 6; i++)
{
this->FrameBufferExtent[i] = 0;
}
this->Playing = 0;
this->Recording = 0;
this->FrameRate = 30;
this->FrameCount = 0;
this->FrameIndex = -1;
this->StartTimeStamp = 0;
this->FrameTimeStamp = 0;
this->OutputNeedsInitialization = 1;
this->OutputFormat = VTK_LUMINANCE;
this->NumberOfScalarComponents = 1;
this->NumberOfOutputFrames = 1;
this->Opacity = 1.0;
for (i = 0; i < 3; i++)
{
this->ClipRegion[i*2] = 0;
this->ClipRegion[i*2+1] = VTK_INT_MAX;
this->OutputWholeExtent[i*2] = 0;
this->OutputWholeExtent[i*2+1] = -1;
this->DataSpacing[i] = 1.0;
this->DataOrigin[i] = 0.0;
}
for (i = 0; i < 6; i++)
{
this->LastOutputExtent[i] = 0;
}
this->LastNumberOfScalarComponents = 0;
this->FlipFrames = 0;
this->PlayerThreader = vtkMultiThreader::New();
this->PlayerThreadId = -1;
this->FrameBufferMutex = vtkCriticalSection::New();
this->FrameBufferSize = 0;
this->FrameBuffer = NULL;
this->FrameBufferTimeStamps = NULL;
this->FrameBufferIndex = 0;
this->SetFrameBufferSize(1);
this->FrameBufferBitsPerPixel = 8;
this->FrameBufferRowAlignment = 1;
this->SetNumberOfInputPorts(0);
}
//----------------------------------------------------------------------------
vtkVideoSource::~vtkVideoSource()
{
// we certainly don't want to access a virtual
// function after the subclass has destructed!!
this->vtkVideoSource::ReleaseSystemResources();
this->SetFrameBufferSize(0);
this->FrameBufferMutex->Delete();
this->PlayerThreader->Delete();
}
//----------------------------------------------------------------------------
void vtkVideoSource::PrintSelf(ostream& os, vtkIndent indent)
{
int idx;
this->Superclass::PrintSelf(os,indent);
os << indent << "FrameSize: (" << this->FrameSize[0] << ", "
<< this->FrameSize[1] << ", " << this->FrameSize[2] << ")\n";
os << indent << "ClipRegion: (" << this->ClipRegion[0];
for (idx = 1; idx < 6; ++idx)
{
os << ", " << this->ClipRegion[idx];
}
os << ")\n";
os << indent << "DataSpacing: (" << this->DataSpacing[0];
for (idx = 1; idx < 3; ++idx)
{
os << ", " << this->DataSpacing[idx];
}
os << ")\n";
os << indent << "DataOrigin: (" << this->DataOrigin[0];
for (idx = 1; idx < 3; ++idx)
{
os << ", " << this->DataOrigin[idx];
}
os << ")\n";
os << indent << "OutputFormat: " <<
(this->OutputFormat == VTK_RGBA ? "RGBA" :
(this->OutputFormat == VTK_RGB ? "RGB" :
(this->OutputFormat == VTK_LUMINANCE_ALPHA ? "LuminanceAlpha" :
(this->OutputFormat == VTK_LUMINANCE ? "Luminance" : "Unknown"))))
<< "\n";
os << indent << "OutputWholeExtent: (" << this->OutputWholeExtent[0];
for (idx = 1; idx < 6; ++idx)
{
os << ", " << this->OutputWholeExtent[idx];
}
os << ")\n";
os << indent << "FrameRate: " << this->FrameRate << "\n";
os << indent << "FrameCount: " << this->FrameCount << "\n";
os << indent << "FrameIndex: " << this->FrameIndex << "\n";
os << indent << "Recording: " << (this->Recording ? "On\n" : "Off\n");
os << indent << "Playing: " << (this->Playing ? "On\n" : "Off\n");
os << indent << "FrameBufferSize: " << this->FrameBufferSize << "\n";
os << indent << "NumberOfOutputFrames: " << this->NumberOfOutputFrames << "\n";
os << indent << "AutoAdvance: " << (this->AutoAdvance ? "On\n" : "Off\n");
os << indent << "Opacity: " << this->Opacity << "\n";
os << indent << "FlipFrames: " << this->FlipFrames << "\n";
os << indent << "FrameBufferBitsPerPixel: " << this->FrameBufferBitsPerPixel << "\n";
os << indent << "FrameBufferRowAlignment: " << this->FrameBufferRowAlignment << "\n";
}
//----------------------------------------------------------------------------
// Update the FrameBuffers according to any changes in the FrameBuffer*
// information.
// This function should always be called from within a FrameBufferMutex lock
// and should never be called asynchronously.
// It sets up the FrameBufferExtent
void vtkVideoSource::UpdateFrameBuffer()
{
int i, oldExt;
int ext[3];
vtkDataArray *buffer;
// clip the ClipRegion with the FrameSize
for (i = 0; i < 3; i++)
{
oldExt = this->FrameBufferExtent[2*i+1] - this->FrameBufferExtent[2*i] + 1;
this->FrameBufferExtent[2*i] = ((this->ClipRegion[2*i] > 0)
? this->ClipRegion[2*i] : 0);
this->FrameBufferExtent[2*i+1] = ((this->ClipRegion[2*i+1] <
this->FrameSize[i]-1)
? this->ClipRegion[2*i+1] : this->FrameSize[i]-1);
ext[i] = this->FrameBufferExtent[2*i+1] - this->FrameBufferExtent[2*i] + 1;
if (ext[i] < 0)
{
this->FrameBufferExtent[2*i] = 0;
this->FrameBufferExtent[2*i+1] = -1;
ext[i] = 0;
}
if (oldExt > ext[i])
{ // dimensions of framebuffer changed
this->OutputNeedsInitialization = 1;
}
}
// total number of bytes required for the framebuffer
int bytesPerRow = (ext[0]*this->FrameBufferBitsPerPixel+7)/8;
bytesPerRow = ((bytesPerRow + this->FrameBufferRowAlignment - 1) /
this->FrameBufferRowAlignment)*this->FrameBufferRowAlignment;
int totalSize = bytesPerRow * ext[1] * ext[2];
i = this->FrameBufferSize;
while (--i >= 0)
{
buffer = reinterpret_cast<vtkDataArray *>(this->FrameBuffer[i]);
if (buffer->GetDataType() != VTK_UNSIGNED_CHAR ||
buffer->GetNumberOfComponents() != 1 ||
buffer->GetNumberOfTuples() != totalSize)
{
buffer->Delete();
buffer = vtkUnsignedCharArray::New();
this->FrameBuffer[i] = buffer;
buffer->SetNumberOfComponents(1);
buffer->SetNumberOfTuples(totalSize);
}
}
}
//----------------------------------------------------------------------------
// Initialize() should be overridden to initialize the hardware frame grabber
void vtkVideoSource::Initialize()
{
if (this->Initialized)
{
return;
}
this->Initialized = 1;
this->UpdateFrameBuffer();
}
//----------------------------------------------------------------------------
// ReleaseSystemResources() should be overridden to release the hardware
void vtkVideoSource::ReleaseSystemResources()
{
if (this->Playing || this->Recording)
{
this->Stop();
}
this->Initialized = 0;
}
//----------------------------------------------------------------------------
void vtkVideoSource::SetFrameSize(int x, int y, int z)
{
if (x == this->FrameSize[0] &&
y == this->FrameSize[1] &&
z == this->FrameSize[2])
{
return;
}
if (x < 1 || y < 1 || z < 1)
{
vtkErrorMacro(<< "SetFrameSize: Illegal frame size");
return;
}
if (this->Initialized)
{
this->FrameBufferMutex->Lock();
this->FrameSize[0] = x;
this->FrameSize[1] = y;
this->FrameSize[2] = z;
this->UpdateFrameBuffer();
this->FrameBufferMutex->Unlock();
}
else
{
this->FrameSize[0] = x;
this->FrameSize[1] = y;
this->FrameSize[2] = z;
}
this->Modified();
}
//----------------------------------------------------------------------------
void vtkVideoSource::SetFrameRate(float rate)
{
if (this->FrameRate == rate)
{
return;
}
this->FrameRate = rate;
this->Modified();
}
//----------------------------------------------------------------------------
void vtkVideoSource::SetClipRegion(int x0, int x1, int y0, int y1,
int z0, int z1)
{
if (this->ClipRegion[0] != x0 || this->ClipRegion[1] != x1 ||
this->ClipRegion[2] != y0 || this->ClipRegion[3] != y1 ||
this->ClipRegion[4] != z0 || this->ClipRegion[5] != z1)
{
this->Modified();
if (this->Initialized)
{ // modify the FrameBufferExtent
this->FrameBufferMutex->Lock();
this->ClipRegion[0] = x0; this->ClipRegion[1] = x1;
this->ClipRegion[2] = y0; this->ClipRegion[3] = y1;
this->ClipRegion[4] = z0; this->ClipRegion[5] = z1;
this->UpdateFrameBuffer();
this->FrameBufferMutex->Unlock();
}
else
{
this->ClipRegion[0] = x0; this->ClipRegion[1] = x1;
this->ClipRegion[2] = y0; this->ClipRegion[3] = y1;
this->ClipRegion[4] = z0; this->ClipRegion[5] = z1;
}
}
}
//----------------------------------------------------------------------------
// Copy pseudo-random noise into the frames. This function may be called
// asynchronously.
void vtkVideoSource::InternalGrab()
{
int i,index;
static int randsave = 0;
int randNum;
unsigned char *ptr;
int *lptr;
// get a thread lock on the frame buffer
this->FrameBufferMutex->Lock();
if (this->AutoAdvance)
{
this->AdvanceFrameBuffer(1);
if (this->FrameIndex + 1 < this->FrameBufferSize)
{
this->FrameIndex++;
}
}
index = this->FrameBufferIndex % this->FrameBufferSize;
while (index < 0)
{
index += this->FrameBufferSize;
}
int bytesPerRow = ((this->FrameBufferExtent[1]-this->FrameBufferExtent[0]+1)*
this->FrameBufferBitsPerPixel + 7)/8;
bytesPerRow = ((bytesPerRow + this->FrameBufferRowAlignment - 1) /
this->FrameBufferRowAlignment)*this->FrameBufferRowAlignment;
int totalSize = bytesPerRow *
(this->FrameBufferExtent[3]-this->FrameBufferExtent[2]+1) *
(this->FrameBufferExtent[5]-this->FrameBufferExtent[4]+1);
randNum = randsave;
// copy 'noise' into the frame buffer
ptr = reinterpret_cast<vtkUnsignedCharArray *>(this->FrameBuffer[index])->GetPointer(0);
// Somebody should check this:
lptr = (int *)(((((long)ptr) + 3)/4)*4);
i = totalSize/4;
while (--i >= 0)
{
randNum = 1664525*randNum + 1013904223;
*lptr++ = randNum;
}
unsigned char *ptr1 = ptr + 4;
i = (totalSize-4)/16;
while (--i >= 0)
{
randNum = 1664525*randNum + 1013904223;
*ptr1 = randNum;
ptr1 += 16;
}
randsave = randNum;
this->FrameBufferTimeStamps[index] = vtkTimerLog::GetUniversalTime();
if (this->FrameCount++ == 0)
{
this->StartTimeStamp = this->FrameBufferTimeStamps[index];
}
this->Modified();
this->FrameBufferMutex->Unlock();
}
//----------------------------------------------------------------------------
// platform-independent sleep function
static inline void vtkSleep(double duration)
{
duration = duration; // avoid warnings
// sleep according to OS preference
#ifdef _WIN32
Sleep((int)(1000*duration));
#elif defined(__FreeBSD__) || defined(__linux__) || defined(sgi)
struct timespec sleep_time, dummy;
sleep_time.tv_sec = (int)duration;
sleep_time.tv_nsec = (int)(1000000000*(duration-sleep_time.tv_sec));
nanosleep(&sleep_time,&dummy);
#endif
}
//----------------------------------------------------------------------------
// Sleep until the specified absolute time has arrived.
// You must pass a handle to the current thread.
// If '0' is returned, then the thread was aborted before or during the wait.
static int vtkThreadSleep(vtkMultiThreader::ThreadInfo *data, double time)
{
for (int i = 0;; i++)
{
double remaining = time - vtkTimerLog::GetUniversalTime();
// check to see if we have reached the specified time
if (remaining <= 0)
{
if (i == 0)
{
vtkGenericWarningMacro("Dropped a video frame.");
}
return 1;
}
// check the ActiveFlag at least every 0.1 seconds
if (remaining > 0.1)
{
remaining = 0.1;
}
// check to see if we are being told to quit
data->ActiveFlagLock->Lock();
int activeFlag = *(data->ActiveFlag);
data->ActiveFlagLock->Unlock();
if (activeFlag == 0)
{
return 0;
}
vtkSleep(remaining);
}
}
//----------------------------------------------------------------------------
// this function runs in an alternate thread to asyncronously grab frames
static void *vtkVideoSourceRecordThread(vtkMultiThreader::ThreadInfo *data)
{
vtkVideoSource *self = (vtkVideoSource *)(data->UserData);
double startTime = vtkTimerLog::GetUniversalTime();
double rate = self->GetFrameRate();
int frame = 0;
do
{
self->InternalGrab();
frame++;
}
while (vtkThreadSleep(data, startTime + frame/rate));
return NULL;
}
//----------------------------------------------------------------------------
// Set the source to grab frames continuously.
// You should override this as appropriate for your device.
void vtkVideoSource::Record()
{
if (this->Playing)
{
this->Stop();
}
if (!this->Recording)
{
this->Initialize();
this->Recording = 1;
this->FrameCount = 0;
this->Modified();
this->PlayerThreadId =
this->PlayerThreader->SpawnThread((vtkThreadFunctionType)\
&vtkVideoSourceRecordThread,this);
}
}
//----------------------------------------------------------------------------
// this function runs in an alternate thread to 'play the tape' at the
// specified frame rate.
static void *vtkVideoSourcePlayThread(vtkMultiThreader::ThreadInfo *data)
{
vtkVideoSource *self = (vtkVideoSource *)(data->UserData);
double startTime = vtkTimerLog::GetUniversalTime();
double rate = self->GetFrameRate();
int frame = 0;
do
{
self->Seek(1);
frame++;
}
while (vtkThreadSleep(data, startTime + frame/rate));
return NULL;
}
//----------------------------------------------------------------------------
// Set the source to play back recorded frames.
// You should override this as appropriate for your device.
void vtkVideoSource::Play()
{
if (this->Recording)
{
this->Stop();
}
if (!this->Playing)
{
this->Initialize();
this->Playing = 1;
this->Modified();
this->PlayerThreadId =
this->PlayerThreader->SpawnThread((vtkThreadFunctionType)\
&vtkVideoSourcePlayThread,this);
}
}
//----------------------------------------------------------------------------
// Stop continuous grabbing or playback. You will have to override this
// if your class overrides Play() and Record()
void vtkVideoSource::Stop()
{
if (this->Playing || this->Recording)
{
this->PlayerThreader->TerminateThread(this->PlayerThreadId);
this->PlayerThreadId = -1;
this->Playing = 0;
this->Recording = 0;
this->Modified();
}
}
//----------------------------------------------------------------------------
// Rewind back to the frame with the earliest timestamp.
void vtkVideoSource::Rewind()
{
this->FrameBufferMutex->Lock();
double *stamp = this->FrameBufferTimeStamps;
double lowest = 0;
int i, j;
if (this->FrameBufferSize)
{
lowest = stamp[this->FrameBufferIndex];
}
for (i = 0; i < this->FrameBufferSize; i++)
{
j = (this->FrameBufferIndex + i + 1) % this->FrameBufferSize;
if (stamp[j] != 0.0 && stamp[j] <= lowest)
{
lowest = stamp[j];
}
else
{
break;
}
}
j = (this->FrameBufferIndex + i) % this->FrameBufferSize;
if (stamp[j] != 0.0 && stamp[j] < 980000000.0)
{
vtkWarningMacro("Rewind: bogus time stamp!");
}
else
{
this->AdvanceFrameBuffer(-i);
this->FrameIndex = (this->FrameIndex - i) % this->FrameBufferSize;
while (this->FrameIndex < 0)
{
this->FrameIndex += this->FrameBufferSize;
}
}
this->FrameBufferMutex->Unlock();
}
//----------------------------------------------------------------------------
// Fast-forward to the frame with the latest timestamp.
void vtkVideoSource::FastForward()
{
this->FrameBufferMutex->Lock();
double *stamp = this->FrameBufferTimeStamps;
double highest = 0;
int i, j;
if (this->FrameBufferSize)
{
highest = stamp[this->FrameBufferIndex];
}
for (i = 0; i < this->FrameBufferSize; i++)
{
j = (this->FrameBufferIndex - i - 1) % this->FrameBufferSize;
while (j < 0)
{
j += this->FrameBufferSize;
}
if (stamp[j] != 0.0 && stamp[j] >= highest)
{
highest = stamp[j];
}
else
{
break;
}
}
j = (this->FrameBufferIndex - i) % this->FrameBufferSize;
while (j < 0)
{
j += this->FrameBufferSize;
}
if (stamp[j] != 0.0 && stamp[j] < 980000000.0)
{
vtkWarningMacro("FastForward: bogus time stamp!");
}
else
{
this->AdvanceFrameBuffer(i);
this->FrameIndex = (this->FrameIndex + i) % this->FrameBufferSize;
while (this->FrameIndex < 0)
{
this->FrameIndex += this->FrameBufferSize;
}
}
this->FrameBufferMutex->Unlock();
}
//----------------------------------------------------------------------------
// Rotate the buffers
void vtkVideoSource::Seek(int n)
{
this->FrameBufferMutex->Lock();
this->AdvanceFrameBuffer(n);
this->FrameIndex = (this->FrameIndex + n) % this->FrameBufferSize;
while (this->FrameIndex < 0)
{
this->FrameIndex += this->FrameBufferSize;
}
this->FrameBufferMutex->Unlock();
this->Modified();
}
//----------------------------------------------------------------------------
// The grab function, which should (of course) be overridden to do
// the appropriate hardware stuff. This function should never be
// called asynchronously.
void vtkVideoSource::Grab()
{
// ensure that the hardware is initialized.
this->Initialize();
this->InternalGrab();
}
//----------------------------------------------------------------------------
// Override this and provide checks to ensure an appropriate number
// of components was asked for (i.e. 1 for greyscale, 3 for RGB,
// or 4 for RGBA)
void vtkVideoSource::SetOutputFormat(int format)
{
if (format == this->OutputFormat)
{
return;
}
this->OutputFormat = format;
// convert color format to number of scalar components
int numComponents = 1;
switch (this->OutputFormat)
{
case VTK_RGBA:
numComponents = 4;
break;
case VTK_RGB:
numComponents = 3;
break;
case VTK_LUMINANCE_ALPHA:
numComponents = 2;
break;
case VTK_LUMINANCE:
numComponents = 1;
break;
default:
vtkErrorMacro(<< "SetOutputFormat: Unrecognized color format.");
break;
}
this->NumberOfScalarComponents = numComponents;
if (this->FrameBufferBitsPerPixel != numComponents*8)
{
this->FrameBufferMutex->Lock();
this->FrameBufferBitsPerPixel = numComponents*8;
if (this->Initialized)
{
this->UpdateFrameBuffer();
}
this->FrameBufferMutex->Unlock();
}
this->Modified();
}
//----------------------------------------------------------------------------
// set or change the circular buffer size
// you will have to override this if you want the buffers
// to be device-specific (i.e. something other than vtkDataArray)
void vtkVideoSource::SetFrameBufferSize(int bufsize)
{
int i;
void **framebuffer;
double *timestamps;
if (bufsize < 0)
{
vtkErrorMacro(<< "SetFrameBufferSize: There must be at least one framebuffer");
}
if (bufsize == this->FrameBufferSize && bufsize != 0)
{
return;
}
this->FrameBufferMutex->Lock();
if (this->FrameBuffer == 0)
{
if (bufsize > 0)
{
this->FrameBufferIndex = 0;
this->FrameIndex = -1;
this->FrameBuffer = new void *[bufsize];
this->FrameBufferTimeStamps = new double[bufsize];
for (i = 0; i < bufsize; i++)
{
this->FrameBuffer[i] = vtkUnsignedCharArray::New();
this->FrameBufferTimeStamps[i] = 0.0;
}
this->FrameBufferSize = bufsize;
this->Modified();
}
}
else
{
if (bufsize > 0)
{
framebuffer = new void *[bufsize];
timestamps = new double[bufsize];
}
else
{
framebuffer = NULL;
timestamps = NULL;
}
// create new image buffers if necessary
for (i = 0; i < bufsize - this->FrameBufferSize; i++)
{
framebuffer[i] = vtkUnsignedCharArray::New();
timestamps[i] = 0.0;
}
// copy over old image buffers
for (; i < bufsize; i++)
{
framebuffer[i] = this->FrameBuffer[i-(bufsize-this->FrameBufferSize)];
}
// delete image buffers we no longer need
for (i = 0; i < this->FrameBufferSize-bufsize; i++)
{
reinterpret_cast<vtkDataArray *>(this->FrameBuffer[i])->Delete();
}
if (this->FrameBuffer)
{
delete [] this->FrameBuffer;
}
this->FrameBuffer = framebuffer;
if (this->FrameBufferTimeStamps)
{
delete [] this->FrameBufferTimeStamps;
}
this->FrameBufferTimeStamps = timestamps;
// make sure that frame buffer index is within the buffer
if (bufsize > 0)
{
this->FrameBufferIndex = this->FrameBufferIndex % bufsize;
if (this->FrameIndex >= bufsize)
{
this->FrameIndex = bufsize - 1;
}
}
else
{
this->FrameBufferIndex = 0;
this->FrameIndex = -1;
}
this->FrameBufferSize = bufsize;
this->Modified();
}
if (this->Initialized)
{
this->UpdateFrameBuffer();
}
this->FrameBufferMutex->Unlock();
}
//----------------------------------------------------------------------------
// This function MUST be called only from within a FrameBufferMutex->Lock()
void vtkVideoSource::AdvanceFrameBuffer(int n)
{
int i = (this->FrameBufferIndex - n) % this->FrameBufferSize;
while (i < 0)
{
i += this->FrameBufferSize;
}
this->FrameBufferIndex = i;
}
//----------------------------------------------------------------------------
double vtkVideoSource::GetFrameTimeStamp(int frame)
{
double timeStamp;
this->FrameBufferMutex->Lock();
if (this->FrameBufferSize <= 0)
{
return 0.0;
}
timeStamp = this->FrameBufferTimeStamps[(this->FrameBufferIndex + frame) \
% this->FrameBufferSize];
this->FrameBufferMutex->Unlock();
return timeStamp;
}
//----------------------------------------------------------------------------
// This method returns the largest data that can be generated.
int vtkVideoSource::RequestInformation(
vtkInformation * vtkNotUsed(request),
vtkInformationVector **vtkNotUsed(inputVector),
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation* outInfo = outputVector->GetInformationObject(0);
int i;
int extent[6];
// ensure that the hardware is initialized.
this->Initialize();
for (i = 0; i < 3; i++)
{
// initially set extent to the OutputWholeExtent
extent[2*i] = this->OutputWholeExtent[2*i];
extent[2*i+1] = this->OutputWholeExtent[2*i+1];
// if 'flag' is set in output extent, use the FrameBufferExtent instead
if (extent[2*i+1] < extent[2*i])
{
extent[2*i] = 0;
extent[2*i+1] = \
this->FrameBufferExtent[2*i+1] - this->FrameBufferExtent[2*i];
}
this->FrameOutputExtent[2*i] = extent[2*i];
this->FrameOutputExtent[2*i+1] = extent[2*i+1];
}
int numFrames = this->NumberOfOutputFrames;
if (numFrames < 1)
{
numFrames = 1;
}
if (numFrames > this->FrameBufferSize)
{
numFrames = this->FrameBufferSize;
}
// multiply Z extent by number of frames to output
extent[5] = extent[4] + (extent[5]-extent[4]+1) * numFrames - 1;
outInfo->Set(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),extent,6);
// set the spacing
outInfo->Set(vtkDataObject::SPACING(),this->DataSpacing,3);
// set the origin.
outInfo->Set(vtkDataObject::ORIGIN(),this->DataOrigin,3);
// set default data type (8 bit greyscale)
vtkDataObject::SetPointDataActiveScalarInfo(outInfo, VTK_UNSIGNED_CHAR,
this->NumberOfScalarComponents);
return 1;
}
//----------------------------------------------------------------------------
// The UnpackRasterLine method should be overridden if the framebuffer uses
// unusual pixel packing formats, such as XRGB XBRG BGRX BGR etc.
// The version below assumes that the packing of the framebuffer is
// identical to that of the output.
void vtkVideoSource::UnpackRasterLine(char *outPtr, char *rowPtr,
int start, int count)
{
char *inPtr = rowPtr + start*this->NumberOfScalarComponents;
memcpy(outPtr,inPtr,count*this->NumberOfScalarComponents);
if (this->OutputFormat == VTK_RGBA)
{ // RGBA image: need to copy in the opacity
unsigned char alpha = (unsigned char)(this->Opacity*255);
int k;
outPtr += 3;
for (k = 0; k < count; k++)
{
outPtr[4*k] = alpha;
}
}
}
//----------------------------------------------------------------------------
// The Execute method is fairly complex, so I would not recommend overriding
// it unless you have to. Override the UnpackRasterLine() method instead.
// You should only have to override it if you are using something other
// than 8-bit vtkUnsignedCharArray for the frame buffer.
int vtkVideoSource::RequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **vtkNotUsed(inputVector),
vtkInformationVector *vtkNotUsed(outputVector))
{
vtkImageData *data = this->AllocateOutputData(this->GetOutput());
int i,j;
int outputExtent[6]; // will later be clipped in Z to a single frame
int saveOutputExtent[6]; // will possibly contain multiple frames
data->GetExtent(outputExtent);
for (i = 0; i < 6; i++)
{
saveOutputExtent[i] = outputExtent[i];
}
// clip to extent to the Z size of one frame
outputExtent[4] = this->FrameOutputExtent[4];
outputExtent[5] = this->FrameOutputExtent[5];
int frameExtentX = this->FrameBufferExtent[1]-this->FrameBufferExtent[0]+1;
int frameExtentY = this->FrameBufferExtent[3]-this->FrameBufferExtent[2]+1;
int frameExtentZ = this->FrameBufferExtent[5]-this->FrameBufferExtent[4]+1;
int extentX = outputExtent[1]-outputExtent[0]+1;
int extentY = outputExtent[3]-outputExtent[2]+1;
int extentZ = outputExtent[5]-outputExtent[4]+1;
// if the output is more than a single frame,
// then the output will cover a partial or full first frame,
// several full frames, and a partial or full last frame
// index and Z size of the first frame in the output extent
int firstFrame = (saveOutputExtent[4]-outputExtent[4])/extentZ;
int firstOutputExtent4 = saveOutputExtent[4] - extentZ*firstFrame;
// index and Z size of the final frame in the output extent
int finalFrame = (saveOutputExtent[5]-outputExtent[4])/extentZ;
int finalOutputExtent5 = saveOutputExtent[5] - extentZ*finalFrame;
char *outPtr = (char *)data->GetScalarPointer();
char *outPtrTmp;
int inIncY = (frameExtentX*this->FrameBufferBitsPerPixel + 7)/8;
inIncY = ((inIncY + this->FrameBufferRowAlignment - 1)/
this->FrameBufferRowAlignment)*this->FrameBufferRowAlignment;
int inIncZ = inIncY*frameExtentY;
int outIncX = this->NumberOfScalarComponents;
int outIncY = outIncX*extentX;
int outIncZ = outIncY*extentY;
int inPadX = 0;
int inPadY = 0;
int inPadZ; // do inPadZ later
int outPadX = -outputExtent[0];
int outPadY = -outputExtent[2];
int outPadZ; // do outPadZ later
if (outPadX < 0)
{
inPadX -= outPadX;
outPadX = 0;
}
if (outPadY < 0)
{
inPadY -= outPadY;
outPadY = 0;
}
int outX = frameExtentX - inPadX;
int outY = frameExtentY - inPadY;
int outZ; // do outZ later
if (outX > extentX - outPadX)
{
outX = extentX - outPadX;
}
if (outY > extentY - outPadY)
{
outY = extentY - outPadY;
}
// if output extent has changed, need to initialize output to black
for (i = 0; i < 3; i++)
{
if (saveOutputExtent[i] != this->LastOutputExtent[i])
{
this->LastOutputExtent[i] = saveOutputExtent[i];
this->OutputNeedsInitialization = 1;
}
}
// ditto for number of scalar components
if (data->GetNumberOfScalarComponents() !=
this->LastNumberOfScalarComponents)
{
this->LastNumberOfScalarComponents = data->GetNumberOfScalarComponents();
this->OutputNeedsInitialization = 1;
}
// initialize output to zero only when necessary
if (this->OutputNeedsInitialization)
{
memset(outPtr,0,
(saveOutputExtent[1]-saveOutputExtent[0]+1)*
(saveOutputExtent[3]-saveOutputExtent[2]+1)*
(saveOutputExtent[5]-saveOutputExtent[4]+1)*outIncX);
this->OutputNeedsInitialization = 0;
}
// we have to modify the outputExtent of the first frame,
// because it might be complete (it will be restored after
// the first frame has been copied to the output)
int saveOutputExtent4 = outputExtent[4];
outputExtent[4] = firstOutputExtent4;
this->FrameBufferMutex->Lock();
int index = this->FrameBufferIndex;
this->FrameTimeStamp =
this->FrameBufferTimeStamps[index % this->FrameBufferSize];
int frame;
for (frame = firstFrame; frame <= finalFrame; frame++)
{
if (frame == finalFrame)
{
outputExtent[5] = finalOutputExtent5;
}
vtkDataArray *frameBuffer = reinterpret_cast<vtkDataArray *>(this->FrameBuffer[(index + frame) % this->FrameBufferSize]);
char *inPtr = reinterpret_cast<char*>(frameBuffer->GetVoidPointer(0));
char *inPtrTmp ;
extentZ = outputExtent[5]-outputExtent[4]+1;
inPadZ = 0;
outPadZ = -outputExtent[4];
if (outPadZ < 0)
{
inPadZ -= outPadZ;
outPadZ = 0;
}
outZ = frameExtentZ - inPadZ;
if (outZ > extentZ - outPadZ)
{
outZ = extentZ - outPadZ;
}
if (this->FlipFrames)
{ // apply a vertical flip while copying to output
outPtr += outIncZ*outPadZ+outIncY*outPadY+outIncX*outPadX;
inPtr += inIncZ*inPadZ+inIncY*(frameExtentY-inPadY-outY);
for (i = 0; i < outZ; i++)
{
inPtrTmp = inPtr;
outPtrTmp = outPtr + outIncY*outY;
for (j = 0; j < outY; j++)
{
outPtrTmp -= outIncY;
if (outX > 0)
{
this->UnpackRasterLine(outPtrTmp,inPtrTmp,inPadX,outX);
}
inPtrTmp += inIncY;
}
outPtr += outIncZ;
inPtr += inIncZ;
}
}
else
{ // don't apply a vertical flip
outPtr += outIncZ*outPadZ+outIncY*outPadY+outIncX*outPadX;
inPtr += inIncZ*inPadZ+inIncY*inPadY;
for (i = 0; i < outZ; i++)
{
inPtrTmp = inPtr;
outPtrTmp = outPtr;
for (j = 0; j < outY; j++)
{
if (outX > 0)
{
this->UnpackRasterLine(outPtrTmp,inPtrTmp,inPadX,outX);
}
outPtrTmp += outIncY;
inPtrTmp += inIncY;
}
outPtr += outIncZ;
inPtr += inIncZ;
}
}
// restore the output extent once the first frame is done
outputExtent[4] = saveOutputExtent4;
}
this->FrameBufferMutex->Unlock();
return 1;
}