Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

466 lines
15 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkImageGaussianSmooth.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkImageGaussianSmooth.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include <math.h>
vtkCxxRevisionMacro(vtkImageGaussianSmooth, "$Revision: 1.46 $");
vtkStandardNewMacro(vtkImageGaussianSmooth);
//----------------------------------------------------------------------------
vtkImageGaussianSmooth::vtkImageGaussianSmooth()
{
this->Dimensionality = 3; // note: this overrides Standard deviation.
this->StandardDeviations[0] = 2.0;
this->StandardDeviations[1] = 2.0;
this->StandardDeviations[2] = 2.0;
this->RadiusFactors[0] = 1.5;
this->RadiusFactors[1] = 1.5;
this->RadiusFactors[2] = 1.5;
}
//----------------------------------------------------------------------------
vtkImageGaussianSmooth::~vtkImageGaussianSmooth()
{
}
//----------------------------------------------------------------------------
void vtkImageGaussianSmooth::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
// int idx;
//os << indent << "BoundaryRescale: " << this->BoundaryRescale << "\n";
os << indent << "Dimensionality: " << this->Dimensionality << "\n";
os << indent << "RadiusFactors: ( "
<< this->RadiusFactors[0] << ", "
<< this->RadiusFactors[1] << ", "
<< this->RadiusFactors[2] << " )\n";
os << indent << "StandardDeviations: ( "
<< this->StandardDeviations[0] << ", "
<< this->StandardDeviations[1] << ", "
<< this->StandardDeviations[2] << " )\n";
}
//----------------------------------------------------------------------------
void vtkImageGaussianSmooth::ComputeKernel(double *kernel, int min, int max,
double std)
{
int x;
double sum;
// handle special case
if (std == 0.0)
{
kernel[0] = 1.0;
return;
}
// fill in kernel
sum = 0.0;
for (x = min; x <= max; ++x)
{
sum += kernel[x-min] =
exp(- ((double)(x*x)) / (std * std * 2.0));
}
// normalize
for (x = min; x <= max; ++x)
{
kernel[x-min] /= sum;
}
}
//----------------------------------------------------------------------------
int vtkImageGaussianSmooth::RequestUpdateExtent (
vtkInformation * vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation *outInfo = outputVector->GetInformationObject(0);
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
int wholeExtent[6], inExt[6];
outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inExt);
// Expand filtered axes
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), wholeExtent);
this->InternalRequestUpdateExtent(inExt, wholeExtent);
inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inExt, 6);
return 1;
}
//----------------------------------------------------------------------------
void vtkImageGaussianSmooth::InternalRequestUpdateExtent(int *inExt,
int *wholeExtent)
{
int idx, radius;
// Expand filtered axes
for (idx = 0; idx < this->Dimensionality; ++idx)
{
radius = (int)(this->StandardDeviations[idx] * this->RadiusFactors[idx]);
inExt[idx*2] -= radius;
if (inExt[idx*2] < wholeExtent[idx*2])
{
inExt[idx*2] = wholeExtent[idx*2];
}
inExt[idx*2+1] += radius;
if (inExt[idx*2+1] > wholeExtent[idx*2+1])
{
inExt[idx*2+1] = wholeExtent[idx*2+1];
}
}
}
//----------------------------------------------------------------------------
// For a given position along the convolution axis, this method loops over
// all other axes, and performs the convolution. Boundary conditions handled
// previously.
template <class T>
void
vtkImageGaussianSmoothExecute(vtkImageGaussianSmooth *self, int axis,
double *kernel, int kernelSize,
vtkImageData *inData, T *inPtrC,
vtkImageData *outData, int outExt[6],
T *outPtrC, int *pcycle, int target,
int *pcount, int total)
{
int maxC, max0, max1;
int idxC, idx0, idx1, idxK;
vtkIdType *inIncs, *outIncs;
vtkIdType inInc0, inInc1, inIncK, outInc0, outInc1;
T *outPtr1, *outPtr0;
T *inPtr1, *inPtr0, *inPtrK;
double *ptrK, sum;
// avoid warnings
self = self;
max0 = max1 = inInc0 = inInc1 = outInc0 = outInc1 = 0;
// I am counting on the fact that tight loops (component on outside)
// is more important than cache misses from shuffled access.
// Do the correct shuffling of the axes (increments, extents)
inIncs = inData->GetIncrements();
outIncs = outData->GetIncrements();
inIncK = inIncs[axis];
maxC = outData->GetNumberOfScalarComponents();
switch (axis)
{
case 0:
inInc0 = inIncs[1]; inInc1 = inIncs[2];
outInc0 = outIncs[1]; outInc1 = outIncs[2];
max0 = outExt[3] - outExt[2] + 1; max1 = outExt[5] - outExt[4] + 1;
break;
case 1:
inInc0 = inIncs[0]; inInc1 = inIncs[2];
outInc0 = outIncs[0]; outInc1 = outIncs[2];
max0 = outExt[1] - outExt[0] + 1; max1 = outExt[5] - outExt[4] + 1;
break;
case 2:
inInc0 = inIncs[0]; inInc1 = inIncs[1];
outInc0 = outIncs[0]; outInc1 = outIncs[1];
max0 = outExt[1] - outExt[0] + 1; max1 = outExt[3] - outExt[2] + 1;
break;
}
for (idxC = 0; idxC < maxC; ++idxC)
{
inPtr1 = inPtrC;
outPtr1 = outPtrC;
for (idx1 = 0; !self->AbortExecute && idx1 < max1; ++idx1)
{
inPtr0 = inPtr1;
outPtr0 = outPtr1;
for (idx0 = 0; idx0 < max0; ++idx0)
{
inPtrK = inPtr0;
ptrK = kernel;
sum = 0.0;
// too bad this short loop has to be the inner most loop
for (idxK = 0; idxK < kernelSize; ++idxK)
{
sum += *ptrK * (double)(*inPtrK);
++ptrK;
inPtrK += inIncK;
}
*outPtr0 = (T)(sum);
inPtr0 += inInc0;
outPtr0 += outInc0;
}
inPtr1 += inInc1;
outPtr1 += outInc1;
// we finished a row ... do we update ???
if (total)
{ // yes this is the main thread
*pcycle += max0;
if (*pcycle > target)
{ // yes
*pcycle -= target;
*pcount += target;
self->UpdateProgress((double)(*pcount) / (double)total);
//fprintf(stderr, "count: %d, total: %d, progress: %f\n",
//*pcount, total, (double)(*pcount) / (double)total);
}
}
}
++inPtrC;
++outPtrC;
}
}
//----------------------------------------------------------------------------
template <class T>
size_t vtkImageGaussianSmoothGetTypeSize(T*)
{
return sizeof(T);
}
//----------------------------------------------------------------------------
// This method convolves over one axis. It loops over the convolved axis,
// and handles boundary conditions.
void vtkImageGaussianSmooth::ExecuteAxis(int axis,
vtkImageData *inData, int inExt[6],
vtkImageData *outData, int outExt[6],
int *pcycle, int target,
int *pcount, int total,
vtkInformation *inInfo)
{
int idxA, max;
int wholeExtent[6], wholeMax, wholeMin;
double *kernel;
// previousClip and currentClip rembers that the previous was not clipped
// keeps from recomputing kernels for center pixels.
int kernelSize = 0;
int kernelLeftClip, kernelRightClip;
int previousClipped, currentClipped;
int radius, size;
void *inPtr;
void *outPtr;
int coords[3];
vtkIdType *outIncs, outIncA;
// Get the correct starting pointer of the output
outPtr = outData->GetScalarPointerForExtent(outExt);
outIncs = outData->GetIncrements();
outIncA = outIncs[axis];
// trick to account for the scalar type of the output(used to be only float)
switch (outData->GetScalarType())
{
vtkTemplateMacro(
outIncA *= vtkImageGaussianSmoothGetTypeSize(static_cast<VTK_TT*>(0))
);
default:
vtkErrorMacro("Unknown scalar type");
return;
}
// Determine default starting position of input
coords[0] = inExt[0];
coords[1] = inExt[2];
coords[2] = inExt[4];
// get whole extent for boundary checking ...
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), wholeExtent);
wholeMin = wholeExtent[axis*2];
wholeMax = wholeExtent[axis*2+1];
// allocate memory for the kernel
radius = (int)(this->StandardDeviations[axis] * this->RadiusFactors[axis]);
size = 2*radius + 1;
kernel = new double[size];
// loop over the convolution axis
previousClipped = currentClipped = 1;
max = outExt[axis*2+1];
for (idxA = outExt[axis*2]; idxA <= max; ++idxA)
{
// left boundary condition
coords[axis] = idxA - radius;
kernelLeftClip = wholeMin - coords[axis];
if (kernelLeftClip > 0)
{ // front of kernel is cut off ("kernelStart" samples)
coords[axis] += kernelLeftClip;
}
else
{
kernelLeftClip = 0;
}
// Right boundary condition
kernelRightClip = (idxA + radius) - wholeMax;
if (kernelRightClip < 0)
{
kernelRightClip = 0;
}
// We can only use previous kernel if it is not clipped and new
// kernel is also not clipped.
currentClipped = kernelLeftClip + kernelRightClip;
if (currentClipped || previousClipped)
{
this->ComputeKernel(kernel, -radius+kernelLeftClip,
radius-kernelRightClip,
(double)(this->StandardDeviations[axis]));
kernelSize = size - kernelLeftClip - kernelRightClip;
}
previousClipped = currentClipped;
/* now do the convolution on the rest of the axes */
inPtr = inData->GetScalarPointer(coords);
switch (inData->GetScalarType())
{
vtkTemplateMacro(
vtkImageGaussianSmoothExecute(this, axis, kernel, kernelSize,
inData, (VTK_TT*)(inPtr),
outData, outExt, (VTK_TT*)(outPtr),
pcycle, target, pcount, total)
);
default:
vtkErrorMacro("Unknown scalar type");
return;
}
outPtr = (void *)((unsigned char *)outPtr + outIncA);
}
// get rid of temporary kernel
delete [] kernel;
}
//----------------------------------------------------------------------------
// This method decomposes the gaussian and smooths along each axis.
void vtkImageGaussianSmooth::ThreadedRequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector,
vtkImageData ***inData,
vtkImageData **outData,
int outExt[6], int id)
{
int inExt[6];
int target, count, total, cycle;
// for feed back, determine line target to get 50 progress update
// update is called every target lines. Progress is computed from
// the number of pixels processed so far.
count = 0; target = 0; total = 0; cycle = 0;
if (id == 0)
{
// determine the number of pixels.
total = this->Dimensionality * (outExt[1] - outExt[0] + 1)
* (outExt[3] - outExt[2] + 1) * (outExt[5] - outExt[4] + 1)
* inData[0][0]->GetNumberOfScalarComponents();
// pixels per update (50 updates)
target = total / 50;
}
// this filter expects that input is the same type as output.
if (inData[0][0]->GetScalarType() != outData[0]->GetScalarType())
{
vtkErrorMacro("Execute: input ScalarType, "
<< inData[0][0]->GetScalarType()
<< ", must match out ScalarType "
<< outData[0]->GetScalarType());
return;
}
// Decompose
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
int wholeExt[6];
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), wholeExt);
outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inExt);
this->InternalRequestUpdateExtent(inExt, wholeExt);
switch (this->Dimensionality)
{
case 1:
this->ExecuteAxis(0, inData[0][0], inExt, outData[0], outExt,
&cycle, target, &count, total, inInfo);
break;
case 2:
int tempExt[6];
vtkImageData *tempData;
// compute intermediate extent
tempExt[0] = inExt[0]; tempExt[1] = inExt[1];
tempExt[2] = outExt[2]; tempExt[3] = outExt[3];
tempExt[4] = inExt[4]; tempExt[5] = inExt[5];
// create a temp data for intermediate results
tempData = vtkImageData::New();
tempData->SetExtent(tempExt);
tempData->SetNumberOfScalarComponents(
inData[0][0]->GetNumberOfScalarComponents());
tempData->SetScalarType(inData[0][0]->GetScalarType());
this->ExecuteAxis(1, inData[0][0], inExt, tempData, tempExt,
&cycle, target, &count, total, inInfo);
this->ExecuteAxis(0, tempData, tempExt, outData[0], outExt,
&cycle, target, &count, total, inInfo);
// release temporary data
tempData->Delete();
break;
case 3:
// we do z first because it is most likely smallest
int temp0Ext[6], temp1Ext[6];
vtkImageData *temp0Data, *temp1Data;
// compute intermediate extents
temp0Ext[0] = inExt[0]; temp0Ext[1] = inExt[1];
temp0Ext[2] = inExt[2]; temp0Ext[3] = inExt[3];
temp0Ext[4] = outExt[4]; temp0Ext[5] = outExt[5];
temp1Ext[0] = inExt[0]; temp1Ext[1] = inExt[1];
temp1Ext[2] = outExt[2]; temp1Ext[3] = outExt[3];
temp1Ext[4] = outExt[4]; temp1Ext[5] = outExt[5];
// create a temp data for intermediate results
temp0Data = vtkImageData::New();
temp0Data->SetExtent(temp0Ext);
temp0Data->SetNumberOfScalarComponents(
inData[0][0]->GetNumberOfScalarComponents());
temp0Data->SetScalarType(inData[0][0]->GetScalarType());
temp1Data = vtkImageData::New();
temp1Data->SetExtent(temp1Ext);
temp1Data->SetNumberOfScalarComponents(
inData[0][0]->GetNumberOfScalarComponents());
temp1Data->SetScalarType(inData[0][0]->GetScalarType());
this->ExecuteAxis(2, inData[0][0], inExt, temp0Data, temp0Ext,
&cycle, target, &count, total, inInfo);
this->ExecuteAxis(1, temp0Data, temp0Ext, temp1Data, temp1Ext,
&cycle, target, &count, total, inInfo);
temp0Data->Delete();
this->ExecuteAxis(0, temp1Data, temp1Ext, outData[0], outExt,
&cycle, target, &count, total, inInfo);
temp1Data->Delete();
break;
}
}