Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

239 lines
7.2 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkImageLaplacian.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkImageLaplacian.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include <math.h>
vtkCxxRevisionMacro(vtkImageLaplacian, "$Revision: 1.33 $");
vtkStandardNewMacro(vtkImageLaplacian);
//----------------------------------------------------------------------------
// Construct an instance of vtkImageLaplacian fitler.
vtkImageLaplacian::vtkImageLaplacian()
{
this->Dimensionality = 2;
}
//----------------------------------------------------------------------------
void vtkImageLaplacian::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Dimensionality: " << this->Dimensionality;
}
//----------------------------------------------------------------------------
// Just clip the request. The subclass may need to overwrite this method.
int vtkImageLaplacian::RequestUpdateExtent (
vtkInformation * vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
// get the info objects
vtkInformation* outInfo = outputVector->GetInformationObject(0);
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
int idx;
int wholeExtent[6], inUExt[6];
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), wholeExtent);
outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inUExt);
// update and Clip
for (idx = 0; idx < 3; ++idx)
{
--inUExt[idx*2];
++inUExt[idx*2+1];
if (inUExt[idx*2] < wholeExtent[idx*2])
{
inUExt[idx*2] = wholeExtent[idx*2];
}
if (inUExt[idx*2] > wholeExtent[idx*2 + 1])
{
inUExt[idx*2] = wholeExtent[idx*2 + 1];
}
if (inUExt[idx*2+1] < wholeExtent[idx*2])
{
inUExt[idx*2+1] = wholeExtent[idx*2];
}
if (inUExt[idx*2 + 1] > wholeExtent[idx*2 + 1])
{
inUExt[idx*2 + 1] = wholeExtent[idx*2 + 1];
}
}
inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), inUExt, 6);
return 1;
}
//----------------------------------------------------------------------------
// This execute method handles boundaries.
// it handles boundaries. Pixels are just replicated to get values
// out of extent.
template <class T>
void vtkImageLaplacianExecute(vtkImageLaplacian *self,
vtkImageData *inData, T *inPtr,
vtkImageData *outData, T *outPtr,
int outExt[6], int id)
{
int idxC, idxX, idxY, idxZ;
int maxC, maxX, maxY, maxZ;
vtkIdType inIncX, inIncY, inIncZ;
vtkIdType outIncX, outIncY, outIncZ;
unsigned long count = 0;
unsigned long target;
int axesNum;
int *wholeExtent;
vtkIdType *inIncs;
double r[3], d, sum;
int useZMin, useZMax, useYMin, useYMax, useXMin, useXMax;
// find the region to loop over
maxC = inData->GetNumberOfScalarComponents();
maxX = outExt[1] - outExt[0];
maxY = outExt[3] - outExt[2];
maxZ = outExt[5] - outExt[4];
target = (unsigned long)((maxZ+1)*(maxY+1)/50.0);
target++;
// Get the dimensionality of the gradient.
axesNum = self->GetDimensionality();
// Get increments to march through data
inData->GetContinuousIncrements(outExt, inIncX, inIncY, inIncZ);
outData->GetContinuousIncrements(outExt, outIncX, outIncY, outIncZ);
// The data spacing is important for computing the Laplacian.
// Divided by dx twice (second derivative).
inData->GetSpacing(r);
r[0] = 1.0 / (r[0] * r[0]);
r[1] = 1.0 / (r[1] * r[1]);
r[2] = 1.0 / (r[2] * r[2]);
// get some other info we need
inIncs = inData->GetIncrements();
wholeExtent = inData->GetExtent();
// Loop through ouput pixels
for (idxZ = 0; idxZ <= maxZ; idxZ++)
{
useZMin = ((idxZ + outExt[4]) <= wholeExtent[4]) ? 0 : -inIncs[2];
useZMax = ((idxZ + outExt[4]) >= wholeExtent[5]) ? 0 : inIncs[2];
for (idxY = 0; !self->AbortExecute && idxY <= maxY; idxY++)
{
if (!id)
{
if (!(count%target))
{
self->UpdateProgress(count/(50.0*target));
}
count++;
}
useYMin = ((idxY + outExt[2]) <= wholeExtent[2]) ? 0 : -inIncs[1];
useYMax = ((idxY + outExt[2]) >= wholeExtent[3]) ? 0 : inIncs[1];
for (idxX = 0; idxX <= maxX; idxX++)
{
useXMin = ((idxX + outExt[0]) <= wholeExtent[0]) ? 0 : -inIncs[0];
useXMax = ((idxX + outExt[0]) >= wholeExtent[1]) ? 0 : inIncs[0];
for (idxC = 0; idxC < maxC; idxC++)
{
// do X axis
d = -2.0*(*inPtr);
d += (double)(inPtr[useXMin]);
d += (double)(inPtr[useXMax]);
sum = d * r[0];
// do y axis
d = -2.0*(*inPtr);
d += (double)(inPtr[useYMin]);
d += (double)(inPtr[useYMax]);
sum = sum + d * r[1];
if (axesNum == 3)
{
// do z axis
d = -2.0*(*inPtr);
d += (double)(inPtr[useZMin]);
d += (double)(inPtr[useZMax]);
sum = sum + d * r[2];
}
*outPtr = (T)sum;
inPtr++;
outPtr++;
}
}
outPtr += outIncY;
inPtr += inIncY;
}
outPtr += outIncZ;
inPtr += inIncZ;
}
}
//----------------------------------------------------------------------------
// This method contains a switch statement that calls the correct
// templated function for the input data type. The output data
// must match input type. This method does handle boundary conditions.
void vtkImageLaplacian::ThreadedRequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **vtkNotUsed(inputVector),
vtkInformationVector *vtkNotUsed(outputVector),
vtkImageData ***inData,
vtkImageData **outData,
int outExt[6], int id)
{
void *inPtr = inData[0][0]->GetScalarPointerForExtent(outExt);
void *outPtr = outData[0]->GetScalarPointerForExtent(outExt);
// this filter expects that input is the same type as output.
if (inData[0][0]->GetScalarType() !=
outData[0]->GetScalarType())
{
vtkErrorMacro(<< "Execute: input ScalarType, "
<< inData[0][0]->GetScalarType() << ", must match out ScalarType "
<< outData[0]->GetScalarType());
return;
}
switch (inData[0][0]->GetScalarType())
{
vtkTemplateMacro(
vtkImageLaplacianExecute( this, inData[0][0],
(VTK_TT *)(inPtr), outData[0],
(VTK_TT *)(outPtr),
outExt, id));
default:
vtkErrorMacro(<< "Execute: Unknown ScalarType");
return;
}
}