You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
392 lines
10 KiB
392 lines
10 KiB
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: $RCSfile: vtkShepardMethod.cxx,v $
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
#include "vtkShepardMethod.h"
|
|
|
|
#include "vtkFloatArray.h"
|
|
#include "vtkImageData.h"
|
|
#include "vtkMath.h"
|
|
#include "vtkInformation.h"
|
|
#include "vtkInformationVector.h"
|
|
#include "vtkObjectFactory.h"
|
|
#include "vtkStreamingDemandDrivenPipeline.h"
|
|
#include "vtkPointData.h"
|
|
|
|
vtkCxxRevisionMacro(vtkShepardMethod, "$Revision: 1.47 $");
|
|
vtkStandardNewMacro(vtkShepardMethod);
|
|
|
|
// Construct with sample dimensions=(50,50,50) and so that model bounds are
|
|
// automatically computed from input. Null value for each unvisited output
|
|
// point is 0.0. Maximum distance is 0.25.
|
|
vtkShepardMethod::vtkShepardMethod()
|
|
{
|
|
this->MaximumDistance = 0.25;
|
|
|
|
this->ModelBounds[0] = 0.0;
|
|
this->ModelBounds[1] = 0.0;
|
|
this->ModelBounds[2] = 0.0;
|
|
this->ModelBounds[3] = 0.0;
|
|
this->ModelBounds[4] = 0.0;
|
|
this->ModelBounds[5] = 0.0;
|
|
|
|
this->SampleDimensions[0] = 50;
|
|
this->SampleDimensions[1] = 50;
|
|
this->SampleDimensions[2] = 50;
|
|
|
|
this->NullValue = 0.0;
|
|
}
|
|
|
|
// Compute ModelBounds from input geometry.
|
|
double vtkShepardMethod::ComputeModelBounds(double origin[3],
|
|
double spacing[3])
|
|
{
|
|
double *bounds, maxDist;
|
|
int i, adjustBounds=0;
|
|
|
|
// compute model bounds if not set previously
|
|
if ( this->ModelBounds[0] >= this->ModelBounds[1] ||
|
|
this->ModelBounds[2] >= this->ModelBounds[3] ||
|
|
this->ModelBounds[4] >= this->ModelBounds[5] )
|
|
{
|
|
adjustBounds = 1;
|
|
vtkDataSet *ds = vtkDataSet::SafeDownCast(this->GetInput());
|
|
// ds better be non null otherwise something is very wrong here
|
|
bounds = ds->GetBounds();
|
|
}
|
|
else
|
|
{
|
|
bounds = this->ModelBounds;
|
|
}
|
|
|
|
for (maxDist=0.0, i=0; i<3; i++)
|
|
{
|
|
if ( (bounds[2*i+1] - bounds[2*i]) > maxDist )
|
|
{
|
|
maxDist = bounds[2*i+1] - bounds[2*i];
|
|
}
|
|
}
|
|
maxDist *= this->MaximumDistance;
|
|
|
|
// adjust bounds so model fits strictly inside (only if not set previously)
|
|
if ( adjustBounds )
|
|
{
|
|
for (i=0; i<3; i++)
|
|
{
|
|
this->ModelBounds[2*i] = bounds[2*i] - maxDist;
|
|
this->ModelBounds[2*i+1] = bounds[2*i+1] + maxDist;
|
|
}
|
|
}
|
|
|
|
// Set volume origin and data spacing
|
|
for (i=0; i<3; i++)
|
|
{
|
|
origin[i] = this->ModelBounds[2*i];
|
|
spacing[i] = (this->ModelBounds[2*i+1] - this->ModelBounds[2*i])
|
|
/ (this->SampleDimensions[i] - 1);
|
|
}
|
|
|
|
return maxDist;
|
|
}
|
|
|
|
int vtkShepardMethod::RequestInformation (
|
|
vtkInformation * vtkNotUsed(request),
|
|
vtkInformationVector ** vtkNotUsed( inputVector ),
|
|
vtkInformationVector *outputVector)
|
|
{
|
|
// get the info objects
|
|
vtkInformation* outInfo = outputVector->GetInformationObject(0);
|
|
|
|
int i;
|
|
double ar[3], origin[3];
|
|
|
|
outInfo->Set(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),
|
|
0, this->SampleDimensions[0]-1,
|
|
0, this->SampleDimensions[1]-1,
|
|
0, this->SampleDimensions[2]-1);
|
|
|
|
for (i=0; i < 3; i++)
|
|
{
|
|
origin[i] = this->ModelBounds[2*i];
|
|
if ( this->SampleDimensions[i] <= 1 )
|
|
{
|
|
ar[i] = 1;
|
|
}
|
|
else
|
|
{
|
|
ar[i] = (this->ModelBounds[2*i+1] - this->ModelBounds[2*i])
|
|
/ (this->SampleDimensions[i] - 1);
|
|
}
|
|
}
|
|
outInfo->Set(vtkDataObject::ORIGIN(),origin,3);
|
|
outInfo->Set(vtkDataObject::SPACING(),ar,3);
|
|
|
|
vtkDataObject::SetPointDataActiveScalarInfo(outInfo, VTK_FLOAT, 1);
|
|
return 1;
|
|
}
|
|
|
|
int vtkShepardMethod::RequestData(
|
|
vtkInformation* vtkNotUsed( request ),
|
|
vtkInformationVector** inputVector,
|
|
vtkInformationVector* outputVector)
|
|
{
|
|
// get the input
|
|
vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);
|
|
vtkDataSet *input = vtkDataSet::SafeDownCast(
|
|
inInfo->Get(vtkDataObject::DATA_OBJECT()));
|
|
|
|
// get the output
|
|
vtkInformation *outInfo = outputVector->GetInformationObject(0);
|
|
vtkImageData *output = vtkImageData::SafeDownCast(
|
|
outInfo->Get(vtkDataObject::DATA_OBJECT()));
|
|
|
|
// We need to allocate our own scalars since we are overriding
|
|
// the superclasses "Execute()" method.
|
|
output->SetExtent(output->GetWholeExtent());
|
|
output->AllocateScalars();
|
|
|
|
vtkIdType ptId, i;
|
|
int j, k;
|
|
double *px, x[3], s, *sum, spacing[3], origin[3];
|
|
|
|
double maxDistance, distance2, inScalar;
|
|
vtkDataArray *inScalars;
|
|
vtkIdType numPts, numNewPts, idx;
|
|
int min[3], max[3];
|
|
int jkFactor;
|
|
vtkFloatArray *newScalars =
|
|
vtkFloatArray::SafeDownCast(output->GetPointData()->GetScalars());
|
|
|
|
vtkDebugMacro(<< "Executing Shepard method");
|
|
|
|
// Check input
|
|
//
|
|
if ( (numPts=input->GetNumberOfPoints()) < 1 )
|
|
{
|
|
vtkErrorMacro(<<"Points must be defined!");
|
|
return 1;
|
|
}
|
|
|
|
if ( (inScalars = input->GetPointData()->GetScalars()) == NULL )
|
|
{
|
|
vtkErrorMacro(<<"Scalars must be defined!");
|
|
return 1;
|
|
}
|
|
|
|
// Allocate
|
|
//
|
|
numNewPts = this->SampleDimensions[0] * this->SampleDimensions[1]
|
|
* this->SampleDimensions[2];
|
|
|
|
sum = new double[numNewPts];
|
|
for (i=0; i<numNewPts; i++)
|
|
{
|
|
newScalars->SetComponent(i,0,0.0);
|
|
sum[i] = 0.0;
|
|
}
|
|
|
|
maxDistance = this->ComputeModelBounds(origin,spacing);
|
|
outInfo->Set(vtkDataObject::ORIGIN(),origin,3);
|
|
outInfo->Set(vtkDataObject::SPACING(),spacing,3);
|
|
|
|
|
|
// Traverse all input points.
|
|
// Each input point affects voxels within maxDistance.
|
|
//
|
|
int abortExecute=0;
|
|
for (ptId=0; ptId < numPts && !abortExecute; ptId++)
|
|
{
|
|
if ( ! (ptId % 1000) )
|
|
{
|
|
vtkDebugMacro(<<"Inserting point #" << ptId);
|
|
this->UpdateProgress (ptId/numPts);
|
|
if (this->GetAbortExecute())
|
|
{
|
|
abortExecute = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
px = input->GetPoint(ptId);
|
|
inScalar = inScalars->GetComponent(ptId,0);
|
|
|
|
for (i=0; i<3; i++) //compute dimensional bounds in data set
|
|
{
|
|
double amin = (double)((px[i] - maxDistance) - origin[i]) / spacing[i];
|
|
double amax = (double)((px[i] + maxDistance) - origin[i]) / spacing[i];
|
|
min[i] = (int) amin;
|
|
max[i] = (int) amax;
|
|
|
|
if (min[i] < amin)
|
|
{
|
|
min[i]++; // round upward to nearest integer to get min[i]
|
|
}
|
|
if (max[i] > amax)
|
|
{
|
|
max[i]--; // round downward to nearest integer to get max[i]
|
|
}
|
|
|
|
if (min[i] < 0)
|
|
{
|
|
min[i] = 0; // valid range check
|
|
}
|
|
if (max[i] >= this->SampleDimensions[i])
|
|
{
|
|
max[i] = this->SampleDimensions[i] - 1;
|
|
}
|
|
}
|
|
|
|
for (i=0; i<3; i++) //compute dimensional bounds in data set
|
|
{
|
|
min[i] = (int) ((double)((px[i] - maxDistance) - origin[i]) / spacing[i]);
|
|
max[i] = (int) ((double)((px[i] + maxDistance) - origin[i]) / spacing[i]);
|
|
if (min[i] < 0)
|
|
{
|
|
min[i] = 0;
|
|
}
|
|
if (max[i] >= this->SampleDimensions[i])
|
|
{
|
|
max[i] = this->SampleDimensions[i] - 1;
|
|
}
|
|
}
|
|
|
|
jkFactor = this->SampleDimensions[0]*this->SampleDimensions[1];
|
|
for (k = min[2]; k <= max[2]; k++)
|
|
{
|
|
x[2] = spacing[2] * k + origin[2];
|
|
for (j = min[1]; j <= max[1]; j++)
|
|
{
|
|
x[1] = spacing[1] * j + origin[1];
|
|
for (i = min[0]; i <= max[0]; i++)
|
|
{
|
|
x[0] = spacing[0] * i + origin[0];
|
|
idx = jkFactor*k + this->SampleDimensions[0]*j + i;
|
|
|
|
distance2 = vtkMath::Distance2BetweenPoints(x,px);
|
|
|
|
if ( distance2 == 0.0 )
|
|
{
|
|
sum[idx] = VTK_FLOAT_MAX;
|
|
newScalars->SetComponent(idx,0,VTK_FLOAT_MAX);
|
|
}
|
|
else
|
|
{
|
|
s = newScalars->GetComponent(idx,0);
|
|
sum[idx] += 1.0 / distance2;
|
|
newScalars->SetComponent(idx,0,s+(inScalar/distance2));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Run through scalars and compute final values
|
|
//
|
|
for (ptId=0; ptId<numNewPts; ptId++)
|
|
{
|
|
s = newScalars->GetComponent(ptId,0);
|
|
if ( sum[ptId] != 0.0 )
|
|
{
|
|
newScalars->SetComponent(ptId,0,s/sum[ptId]);
|
|
}
|
|
else
|
|
{
|
|
newScalars->SetComponent(ptId,0,this->NullValue);
|
|
}
|
|
}
|
|
|
|
// Update self
|
|
//
|
|
delete [] sum;
|
|
|
|
return 1;
|
|
}
|
|
|
|
// Set the i-j-k dimensions on which to sample the distance function.
|
|
void vtkShepardMethod::SetSampleDimensions(int i, int j, int k)
|
|
{
|
|
int dim[3];
|
|
|
|
dim[0] = i;
|
|
dim[1] = j;
|
|
dim[2] = k;
|
|
|
|
this->SetSampleDimensions(dim);
|
|
}
|
|
|
|
// Set the i-j-k dimensions on which to sample the distance function.
|
|
void vtkShepardMethod::SetSampleDimensions(int dim[3])
|
|
{
|
|
int dataDim, i;
|
|
|
|
vtkDebugMacro(<< " setting SampleDimensions to (" << dim[0] << ","
|
|
<< dim[1] << "," << dim[2] << ")");
|
|
|
|
if ( dim[0] != this->SampleDimensions[0] ||
|
|
dim[1] != this->SampleDimensions[1] ||
|
|
dim[2] != this->SampleDimensions[2] )
|
|
{
|
|
if ( dim[0]<1 || dim[1]<1 || dim[2]<1 )
|
|
{
|
|
vtkErrorMacro (<< "Bad Sample Dimensions, retaining previous values");
|
|
return;
|
|
}
|
|
|
|
for (dataDim=0, i=0; i<3 ; i++)
|
|
{
|
|
if (dim[i] > 1)
|
|
{
|
|
dataDim++;
|
|
}
|
|
}
|
|
|
|
if ( dataDim < 3 )
|
|
{
|
|
vtkErrorMacro(<<"Sample dimensions must define a volume!");
|
|
return;
|
|
}
|
|
|
|
for ( i=0; i<3; i++)
|
|
{
|
|
this->SampleDimensions[i] = dim[i];
|
|
}
|
|
|
|
this->Modified();
|
|
}
|
|
}
|
|
|
|
int vtkShepardMethod::FillInputPortInformation(
|
|
int vtkNotUsed(port), vtkInformation* info)
|
|
{
|
|
info->Set(vtkAlgorithm::INPUT_REQUIRED_DATA_TYPE(), "vtkDataSet");
|
|
return 1;
|
|
}
|
|
|
|
void vtkShepardMethod::PrintSelf(ostream& os, vtkIndent indent)
|
|
{
|
|
this->Superclass::PrintSelf(os,indent);
|
|
|
|
os << indent << "Maximum Distance: " << this->MaximumDistance << "\n";
|
|
|
|
os << indent << "Sample Dimensions: (" << this->SampleDimensions[0] << ", "
|
|
<< this->SampleDimensions[1] << ", "
|
|
<< this->SampleDimensions[2] << ")\n";
|
|
|
|
os << indent << "ModelBounds: \n";
|
|
os << indent << " Xmin,Xmax: (" << this->ModelBounds[0] << ", " << this->ModelBounds[1] << ")\n";
|
|
os << indent << " Ymin,Ymax: (" << this->ModelBounds[2] << ", " << this->ModelBounds[3] << ")\n";
|
|
os << indent << " Zmin,Zmax: (" << this->ModelBounds[4] << ", " << this->ModelBounds[5] << ")\n";
|
|
|
|
os << indent << "Null Value: " << this->NullValue << "\n";
|
|
|
|
}
|
|
|