Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

430 lines
13 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkQuaternionInterpolator.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkQuaternionInterpolator.h"
#include "vtkObjectFactory.h"
#include "vtkMath.h"
#include <vtkstd/vector>
vtkCxxRevisionMacro(vtkQuaternionInterpolator, "$Revision: 1.5 $");
vtkStandardNewMacro(vtkQuaternionInterpolator);
//----------------------------------------------------------------------------
// PIMPL STL encapsulation for list of quaternions. The list is sorted on
// the spline paramter T (or Time) using a STL list.
// Here we define a quaternion class that includes extra information including
// a unit quaternion representation.
struct vtkQuaternion
{
double Time;
double Q[4]; //VTK's quaternion: unit rotation axis with angles in degrees
double QUnit[4]; //Unit quaternion (i.e., normalized)
vtkQuaternion()
{
this->Time = 0.0;
this->Q[0] = this->Q[1] = this->Q[2] = this->Q[3] = 0.0;
this->QUnit[0] = this->QUnit[1] = this->QUnit[2] = this->QUnit[3] = 0.0;
}
vtkQuaternion(double t, double q[4])
{
this->Time = t;
this->Q[0] = this->QUnit[0] = q[0];
this->Q[1] = this->QUnit[1] = q[1];
this->Q[2] = this->QUnit[2] = q[2];
this->Q[3] = this->QUnit[3] = q[3];
// determine theta, sin(theta), cos(theta) for unit quaternion
this->QUnit[0] *= vtkMath::DegreesToRadians(); //convert to radians
vtkQuaternion::Normalize(this->QUnit);
}
static void Add(double q0[4], double q1[4], double q[4])
{
q[0] = q0[0] + q1[0];
q[1] = q0[1] + q1[1];
q[2] = q0[2] + q1[2];
q[3] = q0[3] + q1[3];
}
static void Product(double q0[4], double q1[4], double q[4])
{
q[0] = q0[0]*q1[0] - q0[1]*q1[1] - q0[2]*q1[2] - q0[3]*q1[3];
q[1] = q0[0]*q1[1] + q0[1]*q1[0] + q0[2]*q1[3] - q0[3]*q1[2];
q[2] = q0[0]*q1[2] - q0[1]*q1[3] + q0[2]*q1[0] + q0[3]*q1[1];
q[3] = q0[0]*q1[3] + q0[1]*q1[2] - q0[2]*q1[1] + q0[3]*q1[0];
}
static void Conjugate(double q[4], double qConj[4])
{
qConj[0] = q[0];
qConj[1] = -q[1];
qConj[2] = -q[2];
qConj[3] = -q[3];
}
static void Inverse(double q[4], double qInv[4])
{
vtkQuaternion::Conjugate(q,qInv);
double norm2 = vtkQuaternion::Norm2(q);
if ( norm2 != 0.0 )
{
qInv[0] /= norm2;
qInv[1] /= norm2;
qInv[2] /= norm2;
qInv[3] /= norm2;
}
}
static double Norm2(double q[4])
{
return (q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
}
static double Normalize(double q[4])
{
double norm = sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
if ( norm != 0.0 )
{
q[0] /= norm;
q[1] /= norm;
q[2] /= norm;
q[3] /= norm;
}
return norm;
}
// convert a unit quaternion to a VTK quaternion (angle in degrees;unit axis)
static void UnitToVTK(double q[4])
{
double vNorm = sqrt(q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
if ( vNorm != 0.0 )
{
q[0] /= vNorm;
q[1] /= vNorm;
q[2] /= vNorm;
q[3] /= vNorm;
}
q[0] *= vtkMath::RadiansToDegrees();
}
// compute unit vector where q is a unit quaternion
static void UnitVector(double q[4], double &theta, double &sinTheta,
double &cosTheta, double v[3])
{
double norm = sqrt(q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
v[0] = q[1]/norm;
v[1] = q[2]/norm;
v[2] = q[3]/norm;
int maxI = (q[1] > q[2] ? (q[1] > q[3] ? 1 : 3) : (q[2] > q[3] ? 2 : 3));
if (q[maxI] != 0.0 )
{
sinTheta = q[maxI] / v[maxI-1];
theta = asin(sinTheta);
cosTheta = cos(theta);
}
}
// log(q) where q is a unit (normalized) quaternion
static void UnitLog(double q[4], double qLog[4])
{
double theta, sinTheta, cosTheta, v[3];
vtkQuaternion::UnitVector(q,theta,sinTheta,cosTheta,v);
qLog[0] = 0.0;
qLog[1] = theta * v[0];
qLog[2] = theta * v[1];
qLog[3] = theta * v[2];
}
// exp(q) where q is a unit quaternion
static void UnitExp(double q[4], double qExp[4])
{
double theta, sinTheta, cosTheta, v[3];
vtkQuaternion::UnitVector(q,theta,sinTheta,cosTheta,v);
qExp[0] = cosTheta;
qExp[1] = sinTheta * v[0];
qExp[2] = sinTheta * v[1];
qExp[3] = sinTheta * v[2];
}
};
// The list is arranged in increasing order in T
class vtkQuaternionList : public vtkstd::vector<vtkQuaternion> {};
typedef vtkQuaternionList::iterator QuaternionListIterator;
//----------------------------------------------------------------------------
vtkQuaternionInterpolator::vtkQuaternionInterpolator()
{
// Set up the interpolation
this->QuaternionList = new vtkQuaternionList;
this->InterpolationType = INTERPOLATION_TYPE_SPLINE;
}
//----------------------------------------------------------------------------
vtkQuaternionInterpolator::~vtkQuaternionInterpolator()
{
this->Initialize();
delete this->QuaternionList;
}
//----------------------------------------------------------------------------
int vtkQuaternionInterpolator::GetNumberOfQuaternions()
{
return this->QuaternionList->size();
}
//----------------------------------------------------------------------------
double vtkQuaternionInterpolator::GetMinimumT()
{
if (this->QuaternionList->size() > 0)
{
return this->QuaternionList->front().Time;
}
else
{
return 0.0;
}
}
//----------------------------------------------------------------------------
double vtkQuaternionInterpolator::GetMaximumT()
{
if (this->QuaternionList->size() > 0)
{
return this->QuaternionList->back().Time;
}
else
{
return 0.0;
}
}
//----------------------------------------------------------------------------
void vtkQuaternionInterpolator::Initialize()
{
// Wipe out old data
this->QuaternionList->clear();
}
//----------------------------------------------------------------------------
void vtkQuaternionInterpolator::AddQuaternion(double t, double q[4])
{
int size = this->QuaternionList->size();
// Check special cases: t at beginning or end of list
if ( size <= 0 || t < this->QuaternionList->front().Time )
{
this->QuaternionList->insert(this->QuaternionList->begin(),vtkQuaternion(t,q));
return;
}
else if ( t > this->QuaternionList->back().Time )
{
this->QuaternionList->push_back(vtkQuaternion(t,q));
return;
}
else if ( size == 1 && t == this->QuaternionList->front().Time )
{
this->QuaternionList->front() = vtkQuaternion(t,q);
return;
}
// Okay, insert in sorted order
QuaternionListIterator iter = this->QuaternionList->begin();
QuaternionListIterator nextIter = iter + 1;
for (int i=0; i < (size-1); i++, ++iter, ++nextIter)
{
if ( t == iter->Time )
{
(*iter) = vtkQuaternion(t,q); //overwrite
break;
}
else if ( t > iter->Time && t < nextIter->Time )
{
this->QuaternionList->insert(nextIter, vtkQuaternion(t,q));
break;
}
}//for not in the right spot
this->Modified();
}
//----------------------------------------------------------------------------
void vtkQuaternionInterpolator::RemoveQuaternion(double t)
{
if ( t < this->QuaternionList->front().Time ||
t > this->QuaternionList->back().Time )
{
return;
}
QuaternionListIterator iter = this->QuaternionList->begin();
for ( ; iter->Time != t && iter != this->QuaternionList->end(); ++iter )
{
}
if ( iter != this->QuaternionList->end() )
{
this->QuaternionList->erase(iter);
}
this->Modified();
}
//----------------------------------------------------------------------------
//Interpolate using spherical linear interpolation between the quaternions q0
//and q1 to produce the output q. The parametric coordinate t is [0,1] and
//lies between (q0,q1).
void vtkQuaternionInterpolator::Slerp(double t, double q0[4], double q1[4],
double q[4])
{
double theta = acos( vtkMath::Dot(q0+1,q1+1) );
double t1 = sin((1.0-t)*theta)/sin(theta);
double t2 = sin(t*theta)/sin(theta);
q[0] = q0[0]*t1 + q1[0]*t2;
q[1] = q0[1]*t1 + q1[1]*t2;
q[2] = q0[2]*t1 + q1[2]*t2;
q[3] = q0[3]*t1 + q1[3]*t2;
}
//----------------------------------------------------------------------------
void vtkQuaternionInterpolator::InnerPoint(double q0[4], double q1[4],
double q2[4], double q[4])
{
double qInv[4], qL[4], qR[4];
vtkQuaternion::Inverse(q1,qInv);
vtkQuaternion::Product(qInv,q2,qL);
vtkQuaternion::Product(qInv,q0,qR);
double qLLog[4], qRLog[4], qSum[4], qExp[4];
vtkQuaternion::UnitLog(qL, qLLog);
vtkQuaternion::UnitLog(qR, qRLog);
vtkQuaternion::Add(qLLog,qRLog,qSum);
qSum[1] /= -4.0;
qSum[2] /= -4.0;
qSum[3] /= -4.0;
vtkQuaternion::UnitExp(qSum,qExp);
vtkQuaternion::Product(q1,qExp,q);
}
//----------------------------------------------------------------------------
void vtkQuaternionInterpolator::InterpolateQuaternion(double t, double q[4])
{
// The quaternion may be clamped if it is outside the range specified
if ( t <= this->QuaternionList->front().Time )
{
vtkQuaternion &Q = this->QuaternionList->front();
q[0] = Q.Q[0]; q[1] = Q.Q[1]; q[2] = Q.Q[2]; q[3] = Q.Q[3];
return;
}
else if ( t >= this->QuaternionList->back().Time )
{
vtkQuaternion &Q = this->QuaternionList->back();
q[0] = Q.Q[0]; q[1] = Q.Q[1]; q[2] = Q.Q[2]; q[3] = Q.Q[3];
return;
}
// Depending on the interpolation type we do the right thing.
// The code above guarantees that there are at least two quaternions defined.
int numQuats = this->GetNumberOfQuaternions();
if ( this->InterpolationType == INTERPOLATION_TYPE_LINEAR || numQuats < 3 )
{
QuaternionListIterator iter = this->QuaternionList->begin();
QuaternionListIterator nextIter = iter + 1;
for ( ; nextIter != this->QuaternionList->end(); ++iter, ++nextIter)
{
if ( iter->Time <= t && t <= nextIter->Time )
{
double T = (t - iter->Time) / (nextIter->Time - iter->Time);
this->Slerp(T,iter->Q,nextIter->Q,q);
break;
}
}
}//if linear quaternion interpolation
else // this->InterpolationType == INTERPOLATION_TYPE_SPLINE
{
QuaternionListIterator iter = this->QuaternionList->begin();
QuaternionListIterator nextIter = iter + 1;
QuaternionListIterator iter0, iter1, iter2, iter3;
//find the interval
double T=0.0;
int i;
for (i=0; nextIter != this->QuaternionList->end(); ++iter, ++nextIter, ++i)
{
if ( iter->Time <= t && t <= nextIter->Time )
{
T = (t - iter->Time) / (nextIter->Time - iter->Time);
break;
}
}
double ai[4], bi[4], qc[4], qd[4];
if ( i == 0 ) //initial interval
{
iter1 = iter;
iter2 = nextIter;
iter3 = nextIter + 1;
ai[0] = iter1->QUnit[0]; //just duplicate first quaternion
ai[1] = iter1->QUnit[1];
ai[2] = iter1->QUnit[2];
ai[3] = iter1->QUnit[3];
this->InnerPoint(iter1->QUnit, iter2->QUnit, iter3->QUnit, bi);
}
else if ( i == (numQuats-2) ) //final interval
{
iter0 = iter - 1;
iter1 = iter;
iter2 = nextIter;
this->InnerPoint(iter0->QUnit, iter1->QUnit, iter2->QUnit, ai);
bi[0] = iter2->QUnit[0]; //just duplicate last quaternion
bi[1] = iter2->QUnit[1];
bi[2] = iter2->QUnit[2];
bi[3] = iter2->QUnit[3];
}
else //in a middle interval somewhere
{
iter0 = iter - 1;
iter1 = iter;
iter2 = nextIter;
iter3 = nextIter + 1;
this->InnerPoint(iter0->QUnit, iter1->QUnit, iter2->QUnit, ai);
this->InnerPoint(iter1->QUnit, iter2->QUnit, iter3->QUnit, bi);
}
// These three Slerp operations implement a Squad interpolation
this->Slerp(T,iter1->QUnit,iter2->QUnit,qc);
this->Slerp(T,ai,bi,qd);
this->Slerp(2.0*T*(1.0-T),qc,qd,q);
vtkQuaternion::UnitToVTK(q);
}
return;
}
//----------------------------------------------------------------------------
void vtkQuaternionInterpolator::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "There are " << this->GetNumberOfQuaternions()
<< " quaternions to be interpolated\n";
os << indent << "Interpolation Type: "
<< (this->InterpolationType == INTERPOLATION_TYPE_LINEAR ?
"Linear\n" : "Spline\n");
}