Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

142 lines
5.3 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: Medical1.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
//
// This example reads a volume dataset, extracts an isosurface that
// represents the skin and displays it.
//
#include "vtkRenderer.h"
#include "vtkRenderWindow.h"
#include "vtkRenderWindowInteractor.h"
#include "vtkVolume16Reader.h"
#include "vtkPolyDataMapper.h"
#include "vtkActor.h"
#include "vtkOutlineFilter.h"
#include "vtkCamera.h"
#include "vtkProperty.h"
#include "vtkPolyDataNormals.h"
#include "vtkContourFilter.h"
int main (int argc, char **argv)
{
if (argc < 2)
{
cout << "Usage: " << argv[0] << " DATADIR/headsq/quarter" << endl;
return 1;
}
// Create the renderer, the render window, and the interactor. The renderer
// draws into the render window, the interactor enables mouse- and
// keyboard-based interaction with the data within the render window.
//
vtkRenderer *aRenderer = vtkRenderer::New();
vtkRenderWindow *renWin = vtkRenderWindow::New();
renWin->AddRenderer(aRenderer);
vtkRenderWindowInteractor *iren = vtkRenderWindowInteractor::New();
iren->SetRenderWindow(renWin);
// The following reader is used to read a series of 2D slices (images)
// that compose the volume. The slice dimensions are set, and the
// pixel spacing. The data Endianness must also be specified. The reader
// usese the FilePrefix in combination with the slice number to construct
// filenames using the format FilePrefix.%d. (In this case the FilePrefix
// is the root name of the file: quarter.)
vtkVolume16Reader *v16 = vtkVolume16Reader::New();
v16->SetDataDimensions (64,64);
v16->SetImageRange (1,93);
v16->SetDataByteOrderToLittleEndian();
v16->SetFilePrefix (argv[1]);
v16->SetDataSpacing (3.2, 3.2, 1.5);
// An isosurface, or contour value of 500 is known to correspond to the
// skin of the patient. Once generated, a vtkPolyDataNormals filter is
// is used to create normals for smooth surface shading during rendering.
vtkContourFilter *skinExtractor = vtkContourFilter::New();
skinExtractor->SetInputConnection(v16->GetOutputPort());
skinExtractor->SetValue(0, 500);
vtkPolyDataNormals *skinNormals = vtkPolyDataNormals::New();
skinNormals->SetInputConnection(skinExtractor->GetOutputPort());
skinNormals->SetFeatureAngle(60.0);
vtkPolyDataMapper *skinMapper = vtkPolyDataMapper::New();
skinMapper->SetInputConnection(skinNormals->GetOutputPort());
skinMapper->ScalarVisibilityOff();
vtkActor *skin = vtkActor::New();
skin->SetMapper(skinMapper);
// An outline provides context around the data.
//
vtkOutlineFilter *outlineData = vtkOutlineFilter::New();
outlineData->SetInputConnection(v16->GetOutputPort());
vtkPolyDataMapper *mapOutline = vtkPolyDataMapper::New();
mapOutline->SetInputConnection(outlineData->GetOutputPort());
vtkActor *outline = vtkActor::New();
outline->SetMapper(mapOutline);
outline->GetProperty()->SetColor(0,0,0);
// It is convenient to create an initial view of the data. The FocalPoint
// and Position form a vector direction. Later on (ResetCamera() method)
// this vector is used to position the camera to look at the data in
// this direction.
vtkCamera *aCamera = vtkCamera::New();
aCamera->SetViewUp (0, 0, -1);
aCamera->SetPosition (0, 1, 0);
aCamera->SetFocalPoint (0, 0, 0);
aCamera->ComputeViewPlaneNormal();
// Actors are added to the renderer. An initial camera view is created.
// The Dolly() method moves the camera towards the FocalPoint,
// thereby enlarging the image.
aRenderer->AddActor(outline);
aRenderer->AddActor(skin);
aRenderer->SetActiveCamera(aCamera);
aRenderer->ResetCamera ();
aCamera->Dolly(1.5);
// Set a background color for the renderer and set the size of the
// render window (expressed in pixels).
aRenderer->SetBackground(1,1,1);
renWin->SetSize(640, 480);
// Note that when camera movement occurs (as it does in the Dolly()
// method), the clipping planes often need adjusting. Clipping planes
// consist of two planes: near and far along the view direction. The
// near plane clips out objects in front of the plane; the far plane
// clips out objects behind the plane. This way only what is drawn
// between the planes is actually rendered.
aRenderer->ResetCameraClippingRange ();
// Initialize the event loop and then start it.
iren->Initialize();
iren->Start();
// It is important to delete all objects created previously to prevent
// memory leaks. In this case, since the program is on its way to
// exiting, it is not so important. But in applications it is
// essential.
v16->Delete();
skinExtractor->Delete();
skinNormals->Delete();
skinMapper->Delete();
skin->Delete();
outlineData->Delete();
mapOutline->Delete();
outline->Delete();
aCamera->Delete();
iren->Delete();
renWin->Delete();
aRenderer->Delete();
return 0;
}