Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

308 lines
13 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkCell.h,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkCell - abstract class to specify cell behavior
// .SECTION Description
// vtkCell is an abstract class that specifies the interfaces for data cells.
// Data cells are simple topological elements like points, lines, polygons,
// and tetrahedra of which visualization datasets are composed. In some
// cases visualization datasets may explicitly represent cells (e.g.,
// vtkPolyData, vtkUnstructuredGrid), and in some cases, the datasets are
// implicitly composed of cells (e.g., vtkStructuredPoints).
//
// .SECTION Caveats
// The #define VTK_CELL_SIZE is a parameter used to construct cells and provide
// a general guideline for controlling object execution. This parameter is
// not a hard boundary: you can create cells with more points.
// .SECTION See Also
// vtkHexahedron vtkLine vtkPixel vtkPolyLine vtkPolyVertex
// vtkPolygon vtkQuad vtkTetra vtkTriangle
// vtkTriangleStrip vtkVertex vtkVoxel vtkWedge vtkPyramid
#ifndef __vtkCell_h
#define __vtkCell_h
#define VTK_CELL_SIZE 512
#define VTK_TOL 1.e-05 // Tolerance for geometric calculation
#include "vtkObject.h"
#include "vtkIdList.h" // Needed for inline methods
#include "vtkCellType.h" // Needed to define cell types
class vtkCellArray;
class vtkCellData;
class vtkDataArray;
class vtkPointData;
class vtkPointLocator;
class vtkPoints;
class VTK_FILTERING_EXPORT vtkCell : public vtkObject
{
public:
vtkTypeRevisionMacro(vtkCell,vtkObject);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Initialize cell from outside with point ids and point
// coordinates specified.
void Initialize(int npts, vtkIdType *pts, vtkPoints *p);
// Description:
// Copy this cell by reference counting the internal data structures.
// This is safe if you want a "read-only" copy. If you modify the cell
// you might wish to use DeepCopy().
virtual void ShallowCopy(vtkCell *c);
// Description:
// Copy this cell by completely copying internal data structures. This is
// slower but safer than ShallowCopy().
virtual void DeepCopy(vtkCell *c);
// Description:
// Return the type of cell.
virtual int GetCellType() = 0;
// Description:
// Return the topological dimensional of the cell (0,1,2, or 3).
virtual int GetCellDimension() = 0;
// Description:
// Non-linear cells require special treatment beyond the usual cell type
// and connectivity list information. Most cells in VTK are implicit
// cells.
virtual int IsLinear() {return 1;}
// Description:
// Some cells require initialization prior to access. For example, they
// may have to triangulate themselves or set up internal data structures.
virtual int RequiresInitialization() {return 0;}
virtual void Initialize() {}
// Description:
// Explicit cells require additional representational information
// beyond the usual cell type and connectivity list information.
// Most cells in VTK are implicit cells.
virtual int IsExplicitCell() {return 0;}
// Description:
// Get the point coordinates for the cell.
vtkPoints *GetPoints() {return this->Points;}
// Description:
// Return the number of points in the cell.
int GetNumberOfPoints() {return this->PointIds->GetNumberOfIds();}
// Description:
// Return the number of edges in the cell.
virtual int GetNumberOfEdges() = 0;
// Description:
// Return the number of faces in the cell.
virtual int GetNumberOfFaces() = 0;
// Description:
// Return the list of point ids defining the cell.
vtkIdList *GetPointIds() {return this->PointIds;}
// Description:
// For cell point i, return the actual point id.
vtkIdType GetPointId(int ptId) {return this->PointIds->GetId(ptId);}
// Description:
// Return the edge cell from the edgeId of the cell.
virtual vtkCell *GetEdge(int edgeId) = 0;
// Description:
// Return the face cell from the faceId of the cell.
virtual vtkCell *GetFace(int faceId) = 0;
// Description:
// Given parametric coordinates of a point, return the closest cell
// boundary, and whether the point is inside or outside of the cell. The
// cell boundary is defined by a list of points (pts) that specify a face
// (3D cell), edge (2D cell), or vertex (1D cell). If the return value of
// the method is != 0, then the point is inside the cell.
virtual int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) = 0;
// Description:
// Given a point x[3] return inside(=1) or outside(=0) cell; evaluate
// parametric coordinates, sub-cell id (!=0 only if cell is composite),
// distance squared of point x[3] to cell (in particular, the sub-cell
// indicated), closest point on cell to x[3] (unless closestPoint is null,
// in which case, the closest point and dist2 are not found), and
// interpolation weights in cell. (The number of weights is equal to the
// number of points defining the cell). Note: on rare occasions a -1 is
// returned from the method. This means that numerical error has occurred
// and all data returned from this method should be ignored. Also,
// inside/outside is determine parametrically. That is, a point is inside
// if it satisfies parametric limits. This can cause problems for cells of
// topological dimension 2 or less, since a point in 3D can project onto
// the cell within parametric limits but be "far" from the cell. Thus the
// value dist2 may be checked to determine true in/out.
virtual int EvaluatePosition(double x[3], double* closestPoint,
int& subId, double pcoords[3],
double& dist2, double *weights) = 0;
// Description:
// Determine global coordinate (x[3]) from subId and parametric coordinates.
// Also returns interpolation weights. (The number of weights is equal to
// the number of points in the cell.)
virtual void EvaluateLocation(int& subId, double pcoords[3],
double x[3], double *weights) = 0;
// Description:
// Generate contouring primitives. The scalar list cellScalars are
// scalar values at each cell point. The point locator is essentially a
// points list that merges points as they are inserted (i.e., prevents
// duplicates). Contouring primitives can be vertices, lines, or
// polygons. It is possible to interpolate point data along the edge
// by providing input and output point data - if outPd is NULL, then
// no interpolation is performed. Also, if the output cell data is
// non-NULL, the cell data from the contoured cell is passed to the
// generated contouring primitives. (Note: the CopyAllocate() method
// must be invoked on both the output cell and point data. The
// cellId refers to the cell from which the cell data is copied.)
virtual void Contour(double value, vtkDataArray *cellScalars,
vtkPointLocator *locator, vtkCellArray *verts,
vtkCellArray *lines, vtkCellArray *polys,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId,
vtkCellData *outCd) = 0;
// Description:
// Cut (or clip) the cell based on the input cellScalars and the
// specified value. The output of the clip operation will be one or
// more cells of the same topological dimension as the original cell.
// The flag insideOut controls what part of the cell is considered inside -
// normally cell points whose scalar value is greater than "value" are
// considered inside. If insideOut is on, this is reversed. Also, if the
// output cell data is non-NULL, the cell data from the clipped cell is
// passed to the generated contouring primitives. (Note: the CopyAllocate()
// method must be invoked on both the output cell and point data. The
// cellId refers to the cell from which the cell data is copied.)
virtual void Clip(double value, vtkDataArray *cellScalars,
vtkPointLocator *locator, vtkCellArray *connectivity,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
int insideOut) = 0;
// Description:
// Intersect with a ray. Return parametric coordinates (both line and cell)
// and global intersection coordinates, given ray definition and tolerance.
// The method returns non-zero value if intersection occurs.
virtual int IntersectWithLine(double p1[3], double p2[3],
double tol, double& t, double x[3],
double pcoords[3], int& subId) = 0;
// Description:
// Generate simplices of proper dimension. If cell is 3D, tetrahedron are
// generated; if 2D triangles; if 1D lines; if 0D points. The form of the
// output is a sequence of points, each n+1 points (where n is topological
// cell dimension) defining a simplex. The index is a parameter that controls
// which triangulation to use (if more than one is possible). If numerical
// degeneracy encountered, 0 is returned, otherwise 1 is returned.
// This method does not insert new points: all the points that define the
// simplices are the points that define the cell.
virtual int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) = 0;
// Description:
// Compute derivatives given cell subId and parametric coordinates. The
// values array is a series of data value(s) at the cell points. There is a
// one-to-one correspondence between cell point and data value(s). Dim is
// the number of data values per cell point. Derivs are derivatives in the
// x-y-z coordinate directions for each data value. Thus, if computing
// derivatives for a scalar function in a hexahedron, dim=1, 8 values are
// supplied, and 3 deriv values are returned (i.e., derivatives in x-y-z
// directions). On the other hand, if computing derivatives of velocity
// (vx,vy,vz) dim=3, 24 values are supplied ((vx,vy,vz)1, (vx,vy,vz)2,
// ....()8), and 9 deriv values are returned
// ((d(vx)/dx),(d(vx)/dy),(d(vx)/dz), (d(vy)/dx),(d(vy)/dy), (d(vy)/dz),
// (d(vz)/dx),(d(vz)/dy),(d(vz)/dz)).
virtual void Derivatives(int subId, double pcoords[3], double *values,
int dim, double *derivs) = 0;
// Description:
// Compute cell bounding box (xmin,xmax,ymin,ymax,zmin,zmax). Copy result
// into user provided array.
void GetBounds(double bounds[6]);
// Description:
// Compute cell bounding box (xmin,xmax,ymin,ymax,zmin,zmax). Return pointer
// to array of six double values.
double *GetBounds();
// Description:
// Compute Length squared of cell (i.e., bounding box diagonal squared).
double GetLength2();
// Description:
// Return center of the cell in parametric coordinates. Note that the
// parametric center is not always located at (0.5,0.5,0.5). The return
// value is the subId that the center is in (if a composite cell). If you
// want the center in x-y-z space, invoke the EvaluateLocation() method.
virtual int GetParametricCenter(double pcoords[3]);
// Description:
// Return the distance of the parametric coordinate provided to the
// cell. If inside the cell, a distance of zero is returned. This is
// used during picking to get the correct cell picked. (The tolerance
// will occasionally allow cells to be picked who are not really
// intersected "inside" the cell.)
virtual double GetParametricDistance(double pcoords[3]);
// Description:
// Return whether this cell type has a fixed topology or whether the
// topology varies depending on the data (e.g., vtkConvexPointSet).
// This compares to composite cells that are typically composed of
// primary cells (e.g., a triangle strip composite cell is made up of
// triangle primary cells).
virtual int IsPrimaryCell() {return 1;}
// Description:
// Return a contiguous array of parametric coordinates of the points
// defining this cell. In other words, (px,py,pz, px,py,pz, etc..) The
// coordinates are ordered consistent with the definition of the point
// ordering for the cell. This method returns a non-NULL pointer when
// the cell is a primary type (i.e., IsPrimaryCell() is true). Note that
// 3D parametric coordinates are returned no matter what the topological
// dimension of the cell.
virtual double *GetParametricCoords();
// left public for quick computational access
vtkPoints *Points;
vtkIdList *PointIds;
protected:
vtkCell();
~vtkCell();
double Bounds[6];
private:
vtkCell(const vtkCell&); // Not implemented.
void operator=(const vtkCell&); // Not implemented.
};
#endif