Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

94 lines
2.9 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkParametricConicSpiral.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkParametricConicSpiral.h"
#include "vtkObjectFactory.h"
#include "vtkMath.h"
vtkCxxRevisionMacro(vtkParametricConicSpiral, "$Revision: 1.3 $");
vtkStandardNewMacro(vtkParametricConicSpiral);
//----------------------------------------------------------------------------
vtkParametricConicSpiral::vtkParametricConicSpiral()
{
// Preset triangulation parameters
this->MinimumU = 0;
this->MinimumV = 0;
this->MaximumU = 2.0*vtkMath::Pi();
this->MaximumV = 2.0*vtkMath::Pi();
this->JoinU = 0;
this->JoinV = 0;
this->TwistU = 0;
this->TwistV = 0;
this->ClockwiseOrdering = 1;
this->DerivativesAvailable = 1;
// Conic Spiral
this->A = 0.2;
this->B = 1;
this->C = 0.1;
this->N = 2;
}
//----------------------------------------------------------------------------
vtkParametricConicSpiral::~vtkParametricConicSpiral()
{
}
//----------------------------------------------------------------------------
void vtkParametricConicSpiral::Evaluate(double uvw[3], double Pt[3], double Duvw[9])
{
double u = uvw[0];
double v = uvw[1];
double *Du = Duvw;
double *Dv = Duvw + 3;
double inv2pi = 1.0/(2.0*vtkMath::Pi());
double cnv = cos(this->N*v);
double snv = sin(this->N*v);
double cu = cos(u);
double su = sin(u);
// The point
Pt[0] = this->A*(1-v*inv2pi)*cnv*(1+cu)+this->C*cnv;
Pt[1] = this->A*(1-v*inv2pi)*snv*(1+cu)+this->C*snv;
Pt[2] = this->B*v*inv2pi+this->A*(1-v*inv2pi)*su;
//The derivatives are:
Du[0] = -this->A*(1-v*inv2pi)*cnv*su;
Dv[0] = -this->A*inv2pi*cnv*(1+cu)-this->A*(1-v*inv2pi)*snv*this->N*(1+cu)-this->C*snv*N;
Du[1] = -this->A*(1-v*inv2pi)*snv*su;
Dv[1] = -this->A*inv2pi*snv*(1+cu)+this->A*(1-v*inv2pi)*cnv*this->N*(1+cu)+C*cnv*this->N;
Du[2] = this->A*(1-v*inv2pi)*cu;
Dv[2] = this->B*inv2pi-this->A*inv2pi*su;
}
//----------------------------------------------------------------------------
double vtkParametricConicSpiral::EvaluateScalar(double *, double *, double *)
{
return 0;
}
//----------------------------------------------------------------------------
void vtkParametricConicSpiral::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "A: " << this->A << "\n";
os << indent << "B: " << this->B << "\n";
os << indent << "C: " << this->C << "\n";
os << indent << "N: " << this->N << "\n";
}