You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
94 lines
3.5 KiB
94 lines
3.5 KiB
/*=========================================================================
|
|
|
|
Program: Visualization Toolkit
|
|
Module: $RCSfile: vtkParametricKlein.h,v $
|
|
|
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
|
All rights reserved.
|
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
|
|
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
PURPOSE. See the above copyright notice for more information.
|
|
|
|
=========================================================================*/
|
|
// .NAME vtkParametricKlein - Generates a "classical" representation of a Klein bottle.
|
|
// .SECTION Description
|
|
// vtkParametricKlein generates a "classical" representation of a Klein
|
|
// bottle. A Klein bottle is a closed surface with no interior and only one
|
|
// surface. It is unrealisable in 3 dimensions without intersecting
|
|
// surfaces. It can be
|
|
// realised in 4 dimensions by considering the map \f$F:R^2 \rightarrow R^4\f$ given by:
|
|
//
|
|
// - \f$f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)*sin(u/2))\f$
|
|
//
|
|
// The classical representation of the immersion in \f$R^3\f$ is returned by this function.
|
|
//
|
|
//
|
|
// For further information about this surface, please consult the
|
|
// technical description "Parametric surfaces" in http://www.vtk.org/documents.php
|
|
// in the "VTK Technical Documents" section in the VTk.org web pages.
|
|
//
|
|
// .SECTION Thanks
|
|
// Andrew Maclean a.maclean@cas.edu.au for creating and contributing the
|
|
// class.
|
|
//
|
|
#ifndef __vtkParametricKlein_h
|
|
#define __vtkParametricKlein_h
|
|
|
|
#include "vtkParametricFunction.h"
|
|
|
|
class VTK_COMMON_EXPORT vtkParametricKlein : public vtkParametricFunction
|
|
{
|
|
public:
|
|
vtkTypeRevisionMacro(vtkParametricKlein,vtkParametricFunction);
|
|
void PrintSelf(ostream& os, vtkIndent indent);
|
|
|
|
// Description:
|
|
// Construct a Klein Bottle with the following parameters:
|
|
// MinimumU = 0, MaximumU = 2*Pi,
|
|
// MinimumV = -Pi, MaximumV = Pi,
|
|
// JoinU = 0, JoinV = 1,
|
|
// TwistU = 0, TwistV = 0,
|
|
// ClockwiseOrdering = 1,
|
|
// DerivativesAvailable = 1,
|
|
static vtkParametricKlein *New(); //! Initialise the parameters for the Klein bottle
|
|
|
|
// Description
|
|
// Return the parametric dimension of the class.
|
|
virtual int GetDimension() {return 2;}
|
|
|
|
// Description:
|
|
// A Klein bottle.
|
|
//
|
|
// This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
|
|
// as Pt. It also returns the partial derivatives Du and Dv.
|
|
// \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
|
|
// Then the normal is \f$N = Du X Dv\f$ .
|
|
virtual void Evaluate(double uvw[3], double Pt[3], double Duvw[9]);
|
|
|
|
// Description:
|
|
// Calculate a user defined scalar using one or all of uvw, Pt, Duvw.
|
|
//
|
|
// uvw are the parameters with Pt being the the cartesian point,
|
|
// Duvw are the derivatives of this point with respect to u, v and w.
|
|
// Pt, Duvw are obtained from Evaluate().
|
|
//
|
|
// This function is only called if the ScalarMode has the value
|
|
// vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED
|
|
//
|
|
// If the user does not need to calculate a scalar, then the
|
|
// instantiated function should return zero.
|
|
//
|
|
virtual double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]);
|
|
|
|
protected:
|
|
vtkParametricKlein();
|
|
~vtkParametricKlein();
|
|
|
|
private:
|
|
vtkParametricKlein(const vtkParametricKlein&); // Not implemented.
|
|
void operator=(const vtkParametricKlein&); // Not implemented.
|
|
};
|
|
|
|
#endif
|
|
|