Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

604 lines
26 KiB

/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkGenericAdaptorCell.h,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkGenericAdaptorCell - defines cell interface
// .SECTION Description
// In VTK, spatial-temporal data is defined in terms of a dataset which is
// composed of cells. The cells are topological entities over which an
// interpolation field is applied. Cells are defined in terms of a topology
// (e.g., vertices, lines, triangles, polygons, tetrahedra, etc.), points
// that instantiate the geometry of the cells, and interpolation fields
// (in the general case one interpolation field is for geometry, the other
// is for attribute data associated with the cell).
//
// Currently most algorithms in VTK use vtkCell and vtkDataSet, which make
// assumptions about the nature of datasets, cells, and attributes. In
// particular, this abstraction assumes that cell interpolation functions
// are linear, or products of linear functions. Further, VTK implements
// most of the interpolation functions. This implementation starts breaking
// down as the complexity of the interpolation (or basis) functions
// increases.
//
// vtkGenericAdaptorCell addresses these issues by providing more general
// abstraction for cells. It also adopts modern C++ practices including using
// iterators. The vtkGenericAdaptorCell is designed to fit within the adaptor
// framework; meaning that it is meant to adapt VTK to external simulation
// systems (see the GenericFiltering/README.html).
//
// Please note that most cells are defined in terms of other cells (the
// boundary cells). They are also defined in terms of points, which are
// not the same as vertices (vertices are a 0-D cell; points represent a
// position in space).
//
// Another important concept is the notion of DOFNodes. These concept
// supports cell types with complex interpolation functions. For example,
// higher-order p-method finite elements may have different functions on each
// of their topological features (edges, faces, region). The coefficients of
// these polynomial functions are associated with DOFNodes. (There is a
// single DOFNode for each topological feature.) Note that from this
// perspective, points are used to establish the topological form of the
// cell; mid-side nodes and such are considered DOFNodes.
// .SECTION See Also
// vtkGenericDataSet
#ifndef __vtkGenericAdaptorCell_h
#define __vtkGenericAdaptorCell_h
#include "vtkObject.h"
class vtkLine;
class vtkTetra;
class vtkPoints;
class vtkPointLocator;
class vtkVertex;
class vtkTriangle;
class vtkCellData;
class vtkPointData;
class vtkCellArray;
class vtkDoubleArray;
class vtkGenericCellIterator;
class vtkPointLocator;
class vtkContourValues;
class vtkImplicitFunction;
class vtkGenericCellTessellator;
class vtkGenericAttributeCollection;
class vtkGenericAttribute;
class vtkGenericPointIterator;
class vtkIdList;
class vtkOrderedTriangulator;
class vtkPolygon;
class vtkUnsignedCharArray;
class vtkQuad;
class vtkHexahedron;
class VTK_FILTERING_EXPORT vtkGenericAdaptorCell : public vtkObject
{
public:
vtkTypeRevisionMacro(vtkGenericAdaptorCell,vtkObject);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Unique identification number of the cell over the whole
// data set. This unique key may not be contiguous.
virtual vtkIdType GetId() = 0;
// Description:
// Does `this' a cell of a dataset? (otherwise, it is a boundary cell)
virtual int IsInDataSet()=0;
// Description:
// Return the type of the current cell.
// \post (result==VTK_HIGHER_ORDER_EDGE)||
// (result==VTK_HIGHER_ORDER_TRIANGLE)||
// (result==VTK_HIGHER_ORDER_TETRAHEDRON)
virtual int GetType()=0;
// Description:
// Return the topological dimension of the current cell.
// \post valid_result: result>=0 && result<=3
virtual int GetDimension() = 0;
// Description:
// Return the interpolation order of the geometry.
// \post positive_result: result>=0
virtual int GetGeometryOrder()=0;
// Description:
// Does the cell have a non-linear interpolation for the geometry?
// \post definition: result==(GetGeometryOrder()==1)
int IsGeometryLinear();
// Description:
// Return the Interpolation order of attribute `a' on the cell
// (may differ by cell).
// \pre a_exists: a!=0
// \post positive_result: result>=0
virtual int GetAttributeOrder(vtkGenericAttribute *a)=0;
// Description:
// Return the index of the first point centered attribute with the highest
// order in `ac'.
// \pre ac_exists: ac!=0
// \post valid_result: result>=-1 && result<ac->GetNumberOfAttributes()
virtual int GetHighestOrderAttribute(vtkGenericAttributeCollection *ac);
// Description:
// Does the attribute `a' have a non-linear interpolation?
// \pre a_exists: a!=0
// \post definition: result==(GetAttributeOrder()==1)
int IsAttributeLinear(vtkGenericAttribute *a);
// Description:
// Is the cell primary (i.e. not composite) ?
virtual int IsPrimary()=0;
// Description:
// Return the number of points that compose the cell.
// \post positive_result: result>=0
virtual int GetNumberOfPoints()=0;
// Description:
// Return the number of boundaries of dimension `dim' (or all dimensions
// greater than 0 and less than GetDimension() if -1) of the cell.
// When \a dim is -1, the number of vertices is not included in the
// count because vertices are a special case: a vertex will have
// at most a single field value associated with it; DOF nodes may have
// an arbitrary number of field values associated with them.
// \pre valid_dim_range: (dim==-1) || ((dim>=0)&&(dim<GetDimension()))
// \post positive_result: result>=0
virtual int GetNumberOfBoundaries(int dim=-1)=0;
// Description:
// Accumulated number of DOF nodes of the current cell. A DOF node is
// a component of cell with a given topological dimension. e.g.: a triangle
// has 4 DOF: 1 face and 3 edges. An hexahedron has 19 DOF:
// 1 region, 6 faces, and 12 edges.
//
// The number of vertices is not included in the
// count because vertices are a special case: a vertex will have
// at most a single field value associated with it; DOF nodes may have
// an arbitrary number of field values associated with them.
// \post valid_result: result==GetNumberOfBoundaries(-1)+1
virtual int GetNumberOfDOFNodes()=0;
// Description:
// Return the points of cell into `it'.
// \pre it_exists: it!=0
virtual void GetPointIterator(vtkGenericPointIterator *it)=0;
// Description:
// Create an empty cell iterator. The user is responsible for deleting it.
// \post result_exists: result!=0
virtual vtkGenericCellIterator *NewCellIterator()=0;
// Description:
// Return the `boundaries' the cells of dimension `dim' (or all dimensions
// less than GetDimension() if -1) that are part of the boundary of the cell.
// \pre valid_dim_range: (dim==-1) || ((dim>=0)&&(dim<GetDimension()))
// \pre boundaries_exist: boundaries!=0
virtual void GetBoundaryIterator(vtkGenericCellIterator *boundaries,
int dim=-1)=0;
// Description:
// Number of cells (dimension>boundary->GetDimension()) of the dataset
// that share the boundary `boundary' of `this'.
// `this' IS NOT INCLUDED.
// \pre boundary_exists: boundary!=0
// \pre real_boundary: !boundary->IsInDataSet()
// \pre cell_of_the_dataset: IsInDataSet()
// \pre boundary: HasBoundary(boundary)
// \post positive_result: result>=0
virtual int CountNeighbors(vtkGenericAdaptorCell *boundary)=0;
virtual void CountEdgeNeighbors( int* sharing ) = 0;
// Description:
// Put into `neighbors' the cells (dimension>boundary->GetDimension())
// of the dataset that share the boundary `boundary' with this cell.
// `this' IS NOT INCLUDED.
// \pre boundary_exists: boundary!=0
// \pre real_boundary: !boundary->IsInDataSet()
// \pre cell_of_the_dataset: IsInDataSet()
// \pre boundary: HasBoundary(boundary)
// \pre neighbors_exist: neighbors!=0
virtual void GetNeighbors(vtkGenericAdaptorCell *boundary,
vtkGenericCellIterator *neighbors)=0;
// Description:
// Compute the closest boundary of the current sub-cell `subId' for point
// `pcoord' (in parametric coordinates) in `boundary', and return whether
// the point is inside the cell or not. `boundary' is of dimension
// GetDimension()-1.
// \pre positive_subId: subId>=0
virtual int FindClosestBoundary(int subId,
double pcoords[3],
vtkGenericCellIterator* &boundary)=0;
// Description:
// Is `x' inside the current cell? It also evaluate parametric coordinates
// `pcoords', sub-cell id `subId' (0 means primary cell), distance squared
// to the sub-cell in `dist2' and closest corner point `closestPoint'.
// `dist2' and `closestPoint' are not evaluated if `closestPoint'==0.
// If a numerical error occurred, -1 is returned and all other results
// should be ignored.
// \post valid_result: result==-1 || result==0 || result==1
// \post positive_distance: result!=-1 implies (closestPoint!=0 implies
// dist2>=0)
virtual int EvaluatePosition(double x[3],
double *closestPoint,
int &subId,
double pcoords[3],
double &dist2)=0;
// Description:
// Determine the global coordinates `x' from sub-cell `subId' and parametric
// coordinates `pcoords' in the cell.
// \pre positive_subId: subId>=0
// \pre clamped_pcoords: (0<=pcoords[0])&&(pcoords[0]<=1)&&(0<=pcoords[1])
// &&(pcoords[1]<=1)&&(0<=pcoords[2])&&(pcoords[2]<=1)
virtual void EvaluateLocation(int subId,
double pcoords[3],
double x[3])=0;
// Description:
// Interpolate the attribute `a' at local position `pcoords' of the cell into
// `val'.
// \pre a_exists: a!=0
// \pre a_is_point_centered: a->GetCentering()==vtkPointCentered
// \pre clamped_point: pcoords[0]>=0 && pcoords[0]<=1 && pcoords[1]>=0 &&
// pcoords[1]<=1 && pcoords[2]>=0 && pcoords[2]<=1
// \pre val_exists: val!=0
// \pre valid_size: sizeof(val)==a->GetNumberOfComponents()
virtual void InterpolateTuple(vtkGenericAttribute *a, double pcoords[3],
double *val) = 0;
// Description:
// Interpolate the whole collection of attributes `c' at local position
// `pcoords' of the cell into `val'. Only point centered attributes are
// taken into account.
// \pre c_exists: c!=0
// \pre clamped_point: pcoords[0]>=0 && pcoords[0]<=1 && pcoords[1]>=0 &&
// pcoords[1]<=1 && pcoords[2]>=0 && pcoords[2]<=1
// \pre val_exists: val!=0
// \pre valid_size: sizeof(val)==c->GetNumberOfPointCenteredComponents()
virtual void InterpolateTuple(vtkGenericAttributeCollection *c,
double pcoords[3],
double *val) = 0;
// Description:
// Generate a contour (contouring primitives) for each `values' or with
// respect to an implicit function `f'. Contouring is performed on the
// scalar attribute (`attributes->GetActiveAttribute()'
// `attributes->GetActiveComponent()'). Contouring interpolates the
// `attributes->GetNumberOfattributesToInterpolate()' attributes
// `attributes->GetAttributesToInterpolate()'. The `locator', `verts',
// `lines', `polys', `outPd' and `outCd' are cumulative data arrays over
// cell iterations: they store the result of each call to Contour():
// - `locator' is points list that merges points as they are inserted (i.e.,
// prevents duplicates).
// - `verts' is an array of generated vertices
// - `lines' is an array of generated lines
// - `polys' is an array of generated polygons
// - `outPd' is an array of interpolated point data along the edge (if
// not-NULL)
// - `outCd' is an array of copied cell data of the current cell (if
// not-NULL)
// `internalPd', `secondaryPd' and `secondaryCd' are initialized by the
// filter that call it from `attributes'.
// - `internalPd' stores the result of the tessellation pass: the
// higher-order cell is tessellated into linear sub-cells.
// - `secondaryPd' and `secondaryCd' are used internally as inputs to the
// Contour() method on linear sub-cells.
// Note: the CopyAllocate() method must be invoked on both `outPd' and
// `outCd', from `secondaryPd' and `secondaryCd'.
//
// NOTE: `vtkGenericAttributeCollection *attributes' will be replaced by a
// `vtkInformation'.
//
// \pre values_exist: (values!=0 && f==0) || (values==0 && f!=0)
// \pre attributes_exist: attributes!=0
// \pre tessellator_exists: tess!=0
// \pre locator_exists: locator!=0
// \pre verts_exist: verts!=0
// \pre lines_exist: lines!=0
// \pre polys_exist: polys!=0
// \pre internalPd_exists: internalPd!=0
// \pre secondaryPd_exists: secondaryPd!=0
// \pre secondaryCd_exists: secondaryCd!=0
virtual void Contour(vtkContourValues *values,
vtkImplicitFunction *f,
vtkGenericAttributeCollection *attributes,
vtkGenericCellTessellator *tess,
vtkPointLocator *locator,
vtkCellArray *verts,
vtkCellArray *lines,
vtkCellArray *polys,
vtkPointData *outPd,
vtkCellData *outCd,
vtkPointData *internalPd,
vtkPointData *secondaryPd,
vtkCellData *secondaryCd);
// Description:
// Cut (or clip) the current cell with respect to the contour defined by
// the `value' or the implicit function `f' of the scalar attribute
// (`attributes->GetActiveAttribute()',`attributes->GetActiveComponent()').
// If `f' exists, `value' is not used. The output is the part of the
// current cell which is inside the contour. The output is a set of zero,
// one or more cells of the same topological dimension as the current
// cell. Normally, cell points whose scalar value is greater than "value"
// are considered inside. If `insideOut' is on, this is reversed. Clipping
// interpolates the `attributes->GetNumberOfattributesToInterpolate()'
// attributes `attributes->GetAttributesToInterpolate()'. `locator',
// `connectivity', `outPd' and `outCd' are cumulative data arrays over cell
// iterations: they store the result of each call to Clip():
// - `locator' is points list that merges points as they are inserted (i.e.,
// prevents duplicates).
// - `connectivity' is an array of generated cells
// - `outPd' is an array of interpolated point data along the edge (if
// not-NULL)
// - `outCd' is an array of copied cell data of the current cell (if
// not-NULL)
// `internalPd', `secondaryPd' and `secondaryCd' are initialized by the
// filter that call it from `attributes'.
// - `internalPd' stores the result of the tessellation pass: the
// higher-order cell is tessellated into linear sub-cells.
// - `secondaryPd' and `secondaryCd' are used internally as inputs to the
// Clip() method on linear sub-cells.
// Note: the CopyAllocate() method must be invoked on both `outPd' and
// `outCd', from `secondaryPd' and `secondaryCd'.
//
// NOTE: `vtkGenericAttributeCollection *attributes' will be replaced by a
// `vtkInformation'.
//
// \pre attributes_exist: attributes!=0
// \pre tessellator_exists: tess!=0
// \pre locator_exists: locator!=0
// \pre connectivity_exists: connectivity!=0
// \pre internalPd_exists: internalPd!=0
// \pre secondaryPd_exists: secondaryPd!=0
// \pre secondaryCd_exists: secondaryCd!=0
virtual void Clip(double value,
vtkImplicitFunction *f,
vtkGenericAttributeCollection *attributes,
vtkGenericCellTessellator *tess,
int insideOut,
vtkPointLocator *locator,
vtkCellArray *connectivity,
vtkPointData *outPd,
vtkCellData *outCd,
vtkPointData *internalPd,
vtkPointData *secondaryPd,
vtkCellData *secondaryCd);
// Description:
// Is there an intersection between the current cell and the ray (`p1',`p2')
// according to a tolerance `tol'? If true, `x' is the global intersection,
// `t' is the parametric coordinate for the line, `pcoords' are the
// parametric coordinates for cell. `subId' is the sub-cell where
// the intersection occurs.
// \pre positive_tolerance: tol>0
virtual int IntersectWithLine(double p1[3],
double p2[3],
double tol,
double &t,
double x[3],
double pcoords[3],
int &subId)=0;
// Description:
// Compute derivatives `derivs' of the attribute `attribute' (from its
// values at the corner points of the cell) given sub-cell `subId' (0 means
// primary cell) and parametric coordinates `pcoords'.
// Derivatives are in the x-y-z coordinate directions for each data value.
// \pre positive_subId: subId>=0
// \pre clamped_pcoords: (0<=pcoords[0])&&(pcoords[0]<=1)&&(0<=pcoords[1])
// &&(pcoords[1]<=1)&&(0<=pcoords[2])%%(pcoords[2]<=1)
// \pre attribute_exists: attribute!=0
// \pre derivs_exists: derivs!=0
// \pre valid_size: sizeof(derivs)>=attribute->GetNumberOfComponents()*3
virtual void Derivatives(int subId,
double pcoords[3],
vtkGenericAttribute *attribute,
double *derivs)=0;
// Description:
// Compute the bounding box of the current cell in `bounds' in global
// coordinates.
// THREAD SAFE
virtual void GetBounds(double bounds[6])=0;
// Description:
// Return the bounding box of the current cell in global coordinates.
// NOT THREAD SAFE
// \post result_exists: result!=0
// \post valid_size: sizeof(result)>=6
virtual double *GetBounds();
// Description:
// Return the bounding box diagonal squared of the current cell.
// \post positive_result: result>=0
virtual double GetLength2();
// Description:
// Get the center of the current cell (in parametric coordinates)and place
// in the `pcoords'. If the current cell is a composite, the return value
// is the sub-cell id that the center is in. \post valid_result:
// (result>=0) && (IsPrimary() implies result==0)
virtual int GetParametricCenter(double pcoords[3])=0;
// Description:
// Return the distance of the parametric coordinate `pcoords' to the
// current cell. If inside the cell, a distance of zero is returned. This
// is used during picking to get the correct cell picked. (The tolerance
// will occasionally allow cells to be picked who are not really
// intersected "inside" the cell.) \post positive_result: result>=0
virtual double GetParametricDistance(double pcoords[3])=0;
// Description:
// Return a contiguous array of parametric coordinates of the points defining
// the current cell. In other words, (px,py,pz, px,py,pz, etc..) The
// coordinates are ordered consistent with the definition of the point
// ordering for the cell. Note that 3D parametric coordinates are returned
// no matter what the topological dimension of the cell. It includes the DOF
// nodes.
// \post valid_result_exists: ((IsPrimary()) && (result!=0)) ||
// ((!IsPrimary()) && (result==0))
// result!=0 implies sizeof(result)==GetNumberOfPoints()
virtual double *GetParametricCoords()=0;
// Description:
// Tessellate the cell if it is not linear or if at least one attribute of
// `attributes' is not linear. The output are linear cells of the same
// dimension than than cell. If the cell is linear and all attributes are
// linear, the output is just a copy of the current cell.
// `points', `cellArray', `pd' and `cd' are cumulative output data arrays
// over cell iterations: they store the result of each call to Tessellate().
// `internalPd' is initialized by the calling filter and stores the
// result of the tessellation.
// If it is not null, `types' is fill with the types of the linear cells.
// `types' is null when it is called from vtkGenericGeometryFilter and not
// null when it is called from vtkGenericDatasetTessellator.
// \pre attributes_exist: attributes!=0
// \pre tessellator_exists: tess!=0
// \pre points_exist: points!=0
// \pre cellArray_exists: cellArray!=0
// \pre internalPd_exists: internalPd!=0
// \pre pd_exist: pd!=0
// \pre cd_exists: cd!=0
virtual void Tessellate(vtkGenericAttributeCollection *attributes,
vtkGenericCellTessellator *tess,
vtkPoints *points,
vtkPointLocator *locator,
vtkCellArray* cellArray,
vtkPointData *internalPd,
vtkPointData *pd, vtkCellData* cd,
vtkUnsignedCharArray *types);
// The following methods are for the internals of the tesselation algorithm
// (the hash table in particular)
// Description:
// Is the face `faceId' of the current cell on a exterior boundary of the
// dataset?
// \pre 3d: GetDimension()==3
virtual int IsFaceOnBoundary(vtkIdType faceId) = 0;
// Description:
// Is the cell on the exterior boundary of the dataset?
// \pre 2d: GetDimension()==2
virtual int IsOnBoundary() = 0;
// Description:
// Put into `id' the list of ids the point of the cell.
// \pre id_exists: id!=0
// \pre valid_size: sizeof(id)==GetNumberOfPoints();
virtual void GetPointIds(vtkIdType *id) = 0;
// Description:
// Tessellate face `index' of the cell. See Tessellate() for further
// explanations.
// \pre cell_is_3d: GetDimension()==3
// \pre attributes_exist: attributes!=0
// \pre tessellator_exists: tess!=0
// \pre valid_face: index>=0
// \pre points_exist: points!=0
// \pre cellArray_exists: cellArray!=0
// \pre internalPd_exists: internalPd!=0
// \pre pd_exist: pd!=0
// \pre cd_exists: cd!=0
virtual void TriangulateFace(vtkGenericAttributeCollection *attributes,
vtkGenericCellTessellator *tess, int index,
vtkPoints *points,
vtkPointLocator *locator,
vtkCellArray *cellArray,
vtkPointData *internalPd,
vtkPointData *pd, vtkCellData *cd );
// Description:
// Return the ids of the vertices defining face `faceId'.
// \pre is_3d: this->GetDimension()==3
// \pre valid_faceId_range: faceId>=0 && faceId<this->GetNumberOfBoundaries(2)
// \post result_exists: result!=0
// \post valid_size: sizeof(result)>=GetNumberOfVerticesOnFace(faceId)
virtual int *GetFaceArray(int faceId)=0;
// Description:
// Return the number of vertices defining face `faceId'.
// \pre is_3d: this->GetDimension()==3
// \pre valid_faceId_range: faceId>=0 && faceId<this->GetNumberOfBoundaries(2)
// \post positive_result: && result>0
virtual int GetNumberOfVerticesOnFace(int faceId)=0;
// Description:
// Return the ids of the vertices defining edge `edgeId'.
// \pre valid_dimension: this->GetDimension()>=2
// \pre valid_edgeId_range: edgeId>=0 && edgeId<this->GetNumberOfBoundaries(1)
// \post result_exists: result!=0
// \post valid_size: sizeof(result)==2
virtual int *GetEdgeArray(int edgeId)=0;
protected:
vtkGenericAdaptorCell();
virtual ~vtkGenericAdaptorCell();
// Description:
// Reset internal structures.
void Reset();
// Description:
// Allocate some memory if Tuples does not exist or is smaller than size.
// \pre positive_size: size>0
void AllocateTuples(int size);
//Internal tetra used for the contouring/clipping algoirthm
vtkTetra *Tetra;
vtkTriangle *Triangle;
vtkLine *Line;
vtkVertex *Vertex; //is it used ?
vtkQuad *Quad;
vtkHexahedron *Hexa;
// Internal locator when tessellating on a cell basis, this is different
// from the main locator used in contour/clip filter, this locator is used for
// points for
// Be carefull the use of a vtkLocator in conjuction with the table fast
// tessellator is very sensitive, we need to keep all the points we used
vtkDoubleArray *InternalPoints;
vtkCellArray *InternalCellArray;
vtkDoubleArray *InternalScalars;
vtkDoubleArray *PointDataScalars;
vtkIdList *InternalIds; // used by Tessellate() and TriangulateFace()
//Attributes to mimic the vtk cell look and feel, internal use only
vtkDoubleArray *Scalars;
vtkPointData *PointData;
vtkCellData *CellData;
// Scalar buffer to store the attributes values at some location
// There are variable members to reduce memory allocations.
double *Tuples;
int TuplesCapacity;
// Cached Bounds.
double Bounds[6];
private:
vtkGenericAdaptorCell(const vtkGenericAdaptorCell&); // Not implemented.
void operator=(const vtkGenericAdaptorCell&); // Not implemented.
};
#endif