/* pybind11/detail/internals.h: Internal data structure and related functions Copyright (c) 2017 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "common.h" #if defined(WITH_THREAD) && defined(PYBIND11_SIMPLE_GIL_MANAGEMENT) # include "../gil.h" #endif #include "../pytypes.h" #include /// Tracks the `internals` and `type_info` ABI version independent of the main library version. /// /// Some portions of the code use an ABI that is conditional depending on this /// version number. That allows ABI-breaking changes to be "pre-implemented". /// Once the default version number is incremented, the conditional logic that /// no longer applies can be removed. Additionally, users that need not /// maintain ABI compatibility can increase the version number in order to take /// advantage of any functionality/efficiency improvements that depend on the /// newer ABI. /// /// WARNING: If you choose to manually increase the ABI version, note that /// pybind11 may not be tested as thoroughly with a non-default ABI version, and /// further ABI-incompatible changes may be made before the ABI is officially /// changed to the new version. #ifndef PYBIND11_INTERNALS_VERSION # define PYBIND11_INTERNALS_VERSION 4 #endif PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE) using ExceptionTranslator = void (*)(std::exception_ptr); PYBIND11_NAMESPACE_BEGIN(detail) constexpr const char *internals_function_record_capsule_name = "pybind11_function_record_capsule"; // Forward declarations inline PyTypeObject *make_static_property_type(); inline PyTypeObject *make_default_metaclass(); inline PyObject *make_object_base_type(PyTypeObject *metaclass); // The old Python Thread Local Storage (TLS) API is deprecated in Python 3.7 in favor of the new // Thread Specific Storage (TSS) API. #if PY_VERSION_HEX >= 0x03070000 // Avoid unnecessary allocation of `Py_tss_t`, since we cannot use // `Py_LIMITED_API` anyway. # if PYBIND11_INTERNALS_VERSION > 4 # define PYBIND11_TLS_KEY_REF Py_tss_t & # if defined(__GNUC__) && !defined(__INTEL_COMPILER) // Clang on macOS warns due to `Py_tss_NEEDS_INIT` not specifying an initializer // for every field. # define PYBIND11_TLS_KEY_INIT(var) \ _Pragma("GCC diagnostic push") /**/ \ _Pragma("GCC diagnostic ignored \"-Wmissing-field-initializers\"") /**/ \ Py_tss_t var \ = Py_tss_NEEDS_INIT; \ _Pragma("GCC diagnostic pop") # else # define PYBIND11_TLS_KEY_INIT(var) Py_tss_t var = Py_tss_NEEDS_INIT; # endif # define PYBIND11_TLS_KEY_CREATE(var) (PyThread_tss_create(&(var)) == 0) # define PYBIND11_TLS_GET_VALUE(key) PyThread_tss_get(&(key)) # define PYBIND11_TLS_REPLACE_VALUE(key, value) PyThread_tss_set(&(key), (value)) # define PYBIND11_TLS_DELETE_VALUE(key) PyThread_tss_set(&(key), nullptr) # define PYBIND11_TLS_FREE(key) PyThread_tss_delete(&(key)) # else # define PYBIND11_TLS_KEY_REF Py_tss_t * # define PYBIND11_TLS_KEY_INIT(var) Py_tss_t *var = nullptr; # define PYBIND11_TLS_KEY_CREATE(var) \ (((var) = PyThread_tss_alloc()) != nullptr && (PyThread_tss_create((var)) == 0)) # define PYBIND11_TLS_GET_VALUE(key) PyThread_tss_get((key)) # define PYBIND11_TLS_REPLACE_VALUE(key, value) PyThread_tss_set((key), (value)) # define PYBIND11_TLS_DELETE_VALUE(key) PyThread_tss_set((key), nullptr) # define PYBIND11_TLS_FREE(key) PyThread_tss_free(key) # endif #else // Usually an int but a long on Cygwin64 with Python 3.x # define PYBIND11_TLS_KEY_REF decltype(PyThread_create_key()) # define PYBIND11_TLS_KEY_INIT(var) PYBIND11_TLS_KEY_REF var = 0; # define PYBIND11_TLS_KEY_CREATE(var) (((var) = PyThread_create_key()) != -1) # define PYBIND11_TLS_GET_VALUE(key) PyThread_get_key_value((key)) # if defined(PYPY_VERSION) // On CPython < 3.4 and on PyPy, `PyThread_set_key_value` strangely does not set // the value if it has already been set. Instead, it must first be deleted and // then set again. inline void tls_replace_value(PYBIND11_TLS_KEY_REF key, void *value) { PyThread_delete_key_value(key); PyThread_set_key_value(key, value); } # define PYBIND11_TLS_DELETE_VALUE(key) PyThread_delete_key_value(key) # define PYBIND11_TLS_REPLACE_VALUE(key, value) \ ::pybind11::detail::tls_replace_value((key), (value)) # else # define PYBIND11_TLS_DELETE_VALUE(key) PyThread_set_key_value((key), nullptr) # define PYBIND11_TLS_REPLACE_VALUE(key, value) PyThread_set_key_value((key), (value)) # endif # define PYBIND11_TLS_FREE(key) (void) key #endif // Python loads modules by default with dlopen with the RTLD_LOCAL flag; under libc++ and possibly // other STLs, this means `typeid(A)` from one module won't equal `typeid(A)` from another module // even when `A` is the same, non-hidden-visibility type (e.g. from a common include). Under // libstdc++, this doesn't happen: equality and the type_index hash are based on the type name, // which works. If not under a known-good stl, provide our own name-based hash and equality // functions that use the type name. #if defined(__GLIBCXX__) inline bool same_type(const std::type_info &lhs, const std::type_info &rhs) { return lhs == rhs; } using type_hash = std::hash; using type_equal_to = std::equal_to; #else inline bool same_type(const std::type_info &lhs, const std::type_info &rhs) { return lhs.name() == rhs.name() || std::strcmp(lhs.name(), rhs.name()) == 0; } struct type_hash { size_t operator()(const std::type_index &t) const { size_t hash = 5381; const char *ptr = t.name(); while (auto c = static_cast(*ptr++)) { hash = (hash * 33) ^ c; } return hash; } }; struct type_equal_to { bool operator()(const std::type_index &lhs, const std::type_index &rhs) const { return lhs.name() == rhs.name() || std::strcmp(lhs.name(), rhs.name()) == 0; } }; #endif template using type_map = std::unordered_map; struct override_hash { inline size_t operator()(const std::pair &v) const { size_t value = std::hash()(v.first); value ^= std::hash()(v.second) + 0x9e3779b9 + (value << 6) + (value >> 2); return value; } }; /// Internal data structure used to track registered instances and types. /// Whenever binary incompatible changes are made to this structure, /// `PYBIND11_INTERNALS_VERSION` must be incremented. struct internals { // std::type_index -> pybind11's type information type_map registered_types_cpp; // PyTypeObject* -> base type_info(s) std::unordered_map> registered_types_py; std::unordered_multimap registered_instances; // void * -> instance* std::unordered_set, override_hash> inactive_override_cache; type_map> direct_conversions; std::unordered_map> patients; std::forward_list registered_exception_translators; std::unordered_map shared_data; // Custom data to be shared across // extensions #if PYBIND11_INTERNALS_VERSION == 4 std::vector unused_loader_patient_stack_remove_at_v5; #endif std::forward_list static_strings; // Stores the std::strings backing // detail::c_str() PyTypeObject *static_property_type; PyTypeObject *default_metaclass; PyObject *instance_base; #if defined(WITH_THREAD) // Unused if PYBIND11_SIMPLE_GIL_MANAGEMENT is defined: PYBIND11_TLS_KEY_INIT(tstate) # if PYBIND11_INTERNALS_VERSION > 4 PYBIND11_TLS_KEY_INIT(loader_life_support_tls_key) # endif // PYBIND11_INTERNALS_VERSION > 4 // Unused if PYBIND11_SIMPLE_GIL_MANAGEMENT is defined: PyInterpreterState *istate = nullptr; # if PYBIND11_INTERNALS_VERSION > 4 // Note that we have to use a std::string to allocate memory to ensure a unique address // We want unique addresses since we use pointer equality to compare function records std::string function_record_capsule_name = internals_function_record_capsule_name; # endif internals() = default; internals(const internals &other) = delete; internals &operator=(const internals &other) = delete; ~internals() { # if PYBIND11_INTERNALS_VERSION > 4 PYBIND11_TLS_FREE(loader_life_support_tls_key); # endif // PYBIND11_INTERNALS_VERSION > 4 // This destructor is called *after* Py_Finalize() in finalize_interpreter(). // That *SHOULD BE* fine. The following details what happens when PyThread_tss_free is // called. PYBIND11_TLS_FREE is PyThread_tss_free on python 3.7+. On older python, it does // nothing. PyThread_tss_free calls PyThread_tss_delete and PyMem_RawFree. // PyThread_tss_delete just calls TlsFree (on Windows) or pthread_key_delete (on *NIX). // Neither of those have anything to do with CPython internals. PyMem_RawFree *requires* // that the `tstate` be allocated with the CPython allocator. PYBIND11_TLS_FREE(tstate); } #endif }; /// Additional type information which does not fit into the PyTypeObject. /// Changes to this struct also require bumping `PYBIND11_INTERNALS_VERSION`. struct type_info { PyTypeObject *type; const std::type_info *cpptype; size_t type_size, type_align, holder_size_in_ptrs; void *(*operator_new)(size_t); void (*init_instance)(instance *, const void *); void (*dealloc)(value_and_holder &v_h); std::vector implicit_conversions; std::vector> implicit_casts; std::vector *direct_conversions; buffer_info *(*get_buffer)(PyObject *, void *) = nullptr; void *get_buffer_data = nullptr; void *(*module_local_load)(PyObject *, const type_info *) = nullptr; /* A simple type never occurs as a (direct or indirect) parent * of a class that makes use of multiple inheritance. * A type can be simple even if it has non-simple ancestors as long as it has no descendants. */ bool simple_type : 1; /* True if there is no multiple inheritance in this type's inheritance tree */ bool simple_ancestors : 1; /* for base vs derived holder_type checks */ bool default_holder : 1; /* true if this is a type registered with py::module_local */ bool module_local : 1; }; /// On MSVC, debug and release builds are not ABI-compatible! #if defined(_MSC_VER) && defined(_DEBUG) # define PYBIND11_BUILD_TYPE "_debug" #else # define PYBIND11_BUILD_TYPE "" #endif /// Let's assume that different compilers are ABI-incompatible. /// A user can manually set this string if they know their /// compiler is compatible. #ifndef PYBIND11_COMPILER_TYPE # if defined(_MSC_VER) # define PYBIND11_COMPILER_TYPE "_msvc" # elif defined(__INTEL_COMPILER) # define PYBIND11_COMPILER_TYPE "_icc" # elif defined(__clang__) # define PYBIND11_COMPILER_TYPE "_clang" # elif defined(__PGI) # define PYBIND11_COMPILER_TYPE "_pgi" # elif defined(__MINGW32__) # define PYBIND11_COMPILER_TYPE "_mingw" # elif defined(__CYGWIN__) # define PYBIND11_COMPILER_TYPE "_gcc_cygwin" # elif defined(__GNUC__) # define PYBIND11_COMPILER_TYPE "_gcc" # else # define PYBIND11_COMPILER_TYPE "_unknown" # endif #endif /// Also standard libs #ifndef PYBIND11_STDLIB # if defined(_LIBCPP_VERSION) # define PYBIND11_STDLIB "_libcpp" # elif defined(__GLIBCXX__) || defined(__GLIBCPP__) # define PYBIND11_STDLIB "_libstdcpp" # else # define PYBIND11_STDLIB "" # endif #endif /// On Linux/OSX, changes in __GXX_ABI_VERSION__ indicate ABI incompatibility. #ifndef PYBIND11_BUILD_ABI # if defined(__GXX_ABI_VERSION) # define PYBIND11_BUILD_ABI "_cxxabi" PYBIND11_TOSTRING(__GXX_ABI_VERSION) # else # define PYBIND11_BUILD_ABI "" # endif #endif #ifndef PYBIND11_INTERNALS_KIND # if defined(WITH_THREAD) # define PYBIND11_INTERNALS_KIND "" # else # define PYBIND11_INTERNALS_KIND "_without_thread" # endif #endif #define PYBIND11_INTERNALS_ID \ "__pybind11_internals_v" PYBIND11_TOSTRING(PYBIND11_INTERNALS_VERSION) \ PYBIND11_INTERNALS_KIND PYBIND11_COMPILER_TYPE PYBIND11_STDLIB PYBIND11_BUILD_ABI \ PYBIND11_BUILD_TYPE "__" #define PYBIND11_MODULE_LOCAL_ID \ "__pybind11_module_local_v" PYBIND11_TOSTRING(PYBIND11_INTERNALS_VERSION) \ PYBIND11_INTERNALS_KIND PYBIND11_COMPILER_TYPE PYBIND11_STDLIB PYBIND11_BUILD_ABI \ PYBIND11_BUILD_TYPE "__" /// Each module locally stores a pointer to the `internals` data. The data /// itself is shared among modules with the same `PYBIND11_INTERNALS_ID`. inline internals **&get_internals_pp() { static internals **internals_pp = nullptr; return internals_pp; } // forward decl inline void translate_exception(std::exception_ptr); template >::value, int> = 0> bool handle_nested_exception(const T &exc, const std::exception_ptr &p) { std::exception_ptr nested = exc.nested_ptr(); if (nested != nullptr && nested != p) { translate_exception(nested); return true; } return false; } template >::value, int> = 0> bool handle_nested_exception(const T &exc, const std::exception_ptr &p) { if (const auto *nep = dynamic_cast(std::addressof(exc))) { return handle_nested_exception(*nep, p); } return false; } inline bool raise_err(PyObject *exc_type, const char *msg) { if (PyErr_Occurred()) { raise_from(exc_type, msg); return true; } PyErr_SetString(exc_type, msg); return false; } inline void translate_exception(std::exception_ptr p) { if (!p) { return; } try { std::rethrow_exception(p); } catch (error_already_set &e) { handle_nested_exception(e, p); e.restore(); return; } catch (const builtin_exception &e) { // Could not use template since it's an abstract class. if (const auto *nep = dynamic_cast(std::addressof(e))) { handle_nested_exception(*nep, p); } e.set_error(); return; } catch (const std::bad_alloc &e) { handle_nested_exception(e, p); raise_err(PyExc_MemoryError, e.what()); return; } catch (const std::domain_error &e) { handle_nested_exception(e, p); raise_err(PyExc_ValueError, e.what()); return; } catch (const std::invalid_argument &e) { handle_nested_exception(e, p); raise_err(PyExc_ValueError, e.what()); return; } catch (const std::length_error &e) { handle_nested_exception(e, p); raise_err(PyExc_ValueError, e.what()); return; } catch (const std::out_of_range &e) { handle_nested_exception(e, p); raise_err(PyExc_IndexError, e.what()); return; } catch (const std::range_error &e) { handle_nested_exception(e, p); raise_err(PyExc_ValueError, e.what()); return; } catch (const std::overflow_error &e) { handle_nested_exception(e, p); raise_err(PyExc_OverflowError, e.what()); return; } catch (const std::exception &e) { handle_nested_exception(e, p); raise_err(PyExc_RuntimeError, e.what()); return; } catch (const std::nested_exception &e) { handle_nested_exception(e, p); raise_err(PyExc_RuntimeError, "Caught an unknown nested exception!"); return; } catch (...) { raise_err(PyExc_RuntimeError, "Caught an unknown exception!"); return; } } #if !defined(__GLIBCXX__) inline void translate_local_exception(std::exception_ptr p) { try { if (p) { std::rethrow_exception(p); } } catch (error_already_set &e) { e.restore(); return; } catch (const builtin_exception &e) { e.set_error(); return; } } #endif /// Return a reference to the current `internals` data PYBIND11_NOINLINE internals &get_internals() { auto **&internals_pp = get_internals_pp(); if (internals_pp && *internals_pp) { return **internals_pp; } #if defined(WITH_THREAD) # if defined(PYBIND11_SIMPLE_GIL_MANAGEMENT) gil_scoped_acquire gil; # else // Ensure that the GIL is held since we will need to make Python calls. // Cannot use py::gil_scoped_acquire here since that constructor calls get_internals. struct gil_scoped_acquire_local { gil_scoped_acquire_local() : state(PyGILState_Ensure()) {} gil_scoped_acquire_local(const gil_scoped_acquire_local &) = delete; gil_scoped_acquire_local &operator=(const gil_scoped_acquire_local &) = delete; ~gil_scoped_acquire_local() { PyGILState_Release(state); } const PyGILState_STATE state; } gil; # endif #endif error_scope err_scope; PYBIND11_STR_TYPE id(PYBIND11_INTERNALS_ID); auto builtins = handle(PyEval_GetBuiltins()); if (builtins.contains(id) && isinstance(builtins[id])) { internals_pp = static_cast(capsule(builtins[id])); // We loaded builtins through python's builtins, which means that our `error_already_set` // and `builtin_exception` may be different local classes than the ones set up in the // initial exception translator, below, so add another for our local exception classes. // // libstdc++ doesn't require this (types there are identified only by name) // libc++ with CPython doesn't require this (types are explicitly exported) // libc++ with PyPy still need it, awaiting further investigation #if !defined(__GLIBCXX__) (*internals_pp)->registered_exception_translators.push_front(&translate_local_exception); #endif } else { if (!internals_pp) { internals_pp = new internals *(); } auto *&internals_ptr = *internals_pp; internals_ptr = new internals(); #if defined(WITH_THREAD) PyThreadState *tstate = PyThreadState_Get(); if (!PYBIND11_TLS_KEY_CREATE(internals_ptr->tstate)) { pybind11_fail("get_internals: could not successfully initialize the tstate TSS key!"); } PYBIND11_TLS_REPLACE_VALUE(internals_ptr->tstate, tstate); # if PYBIND11_INTERNALS_VERSION > 4 if (!PYBIND11_TLS_KEY_CREATE(internals_ptr->loader_life_support_tls_key)) { pybind11_fail("get_internals: could not successfully initialize the " "loader_life_support TSS key!"); } # endif internals_ptr->istate = tstate->interp; #endif builtins[id] = capsule(internals_pp); internals_ptr->registered_exception_translators.push_front(&translate_exception); internals_ptr->static_property_type = make_static_property_type(); internals_ptr->default_metaclass = make_default_metaclass(); internals_ptr->instance_base = make_object_base_type(internals_ptr->default_metaclass); } return **internals_pp; } // the internals struct (above) is shared between all the modules. local_internals are only // for a single module. Any changes made to internals may require an update to // PYBIND11_INTERNALS_VERSION, breaking backwards compatibility. local_internals is, by design, // restricted to a single module. Whether a module has local internals or not should not // impact any other modules, because the only things accessing the local internals is the // module that contains them. struct local_internals { type_map registered_types_cpp; std::forward_list registered_exception_translators; #if defined(WITH_THREAD) && PYBIND11_INTERNALS_VERSION == 4 // For ABI compatibility, we can't store the loader_life_support TLS key in // the `internals` struct directly. Instead, we store it in `shared_data` and // cache a copy in `local_internals`. If we allocated a separate TLS key for // each instance of `local_internals`, we could end up allocating hundreds of // TLS keys if hundreds of different pybind11 modules are loaded (which is a // plausible number). PYBIND11_TLS_KEY_INIT(loader_life_support_tls_key) // Holds the shared TLS key for the loader_life_support stack. struct shared_loader_life_support_data { PYBIND11_TLS_KEY_INIT(loader_life_support_tls_key) shared_loader_life_support_data() { if (!PYBIND11_TLS_KEY_CREATE(loader_life_support_tls_key)) { pybind11_fail("local_internals: could not successfully initialize the " "loader_life_support TLS key!"); } } // We can't help but leak the TLS key, because Python never unloads extension modules. }; local_internals() { auto &internals = get_internals(); // Get or create the `loader_life_support_stack_key`. auto &ptr = internals.shared_data["_life_support"]; if (!ptr) { ptr = new shared_loader_life_support_data; } loader_life_support_tls_key = static_cast(ptr)->loader_life_support_tls_key; } #endif // defined(WITH_THREAD) && PYBIND11_INTERNALS_VERSION == 4 }; /// Works like `get_internals`, but for things which are locally registered. inline local_internals &get_local_internals() { // Current static can be created in the interpreter finalization routine. If the later will be // destroyed in another static variable destructor, creation of this static there will cause // static deinitialization fiasco. In order to avoid it we avoid destruction of the // local_internals static. One can read more about the problem and current solution here: // https://google.github.io/styleguide/cppguide.html#Static_and_Global_Variables static auto *locals = new local_internals(); return *locals; } /// Constructs a std::string with the given arguments, stores it in `internals`, and returns its /// `c_str()`. Such strings objects have a long storage duration -- the internal strings are only /// cleared when the program exits or after interpreter shutdown (when embedding), and so are /// suitable for c-style strings needed by Python internals (such as PyTypeObject's tp_name). template const char *c_str(Args &&...args) { auto &strings = get_internals().static_strings; strings.emplace_front(std::forward(args)...); return strings.front().c_str(); } inline const char *get_function_record_capsule_name() { #if PYBIND11_INTERNALS_VERSION > 4 return get_internals().function_record_capsule_name.c_str(); #else return nullptr; #endif } // Determine whether or not the following capsule contains a pybind11 function record. // Note that we use `internals` to make sure that only ABI compatible records are touched. // // This check is currently used in two places: // - An important optimization in functional.h to avoid overhead in C++ -> Python -> C++ // - The sibling feature of cpp_function to allow overloads inline bool is_function_record_capsule(const capsule &cap) { // Pointer equality as we rely on internals() to ensure unique pointers return cap.name() == get_function_record_capsule_name(); } PYBIND11_NAMESPACE_END(detail) /// Returns a named pointer that is shared among all extension modules (using the same /// pybind11 version) running in the current interpreter. Names starting with underscores /// are reserved for internal usage. Returns `nullptr` if no matching entry was found. PYBIND11_NOINLINE void *get_shared_data(const std::string &name) { auto &internals = detail::get_internals(); auto it = internals.shared_data.find(name); return it != internals.shared_data.end() ? it->second : nullptr; } /// Set the shared data that can be later recovered by `get_shared_data()`. PYBIND11_NOINLINE void *set_shared_data(const std::string &name, void *data) { detail::get_internals().shared_data[name] = data; return data; } /// Returns a typed reference to a shared data entry (by using `get_shared_data()`) if /// such entry exists. Otherwise, a new object of default-constructible type `T` is /// added to the shared data under the given name and a reference to it is returned. template T &get_or_create_shared_data(const std::string &name) { auto &internals = detail::get_internals(); auto it = internals.shared_data.find(name); T *ptr = (T *) (it != internals.shared_data.end() ? it->second : nullptr); if (!ptr) { ptr = new T(); internals.shared_data[name] = ptr; } return *ptr; } PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)