/* pybind11/pybind11.h: Main header file of the C++11 python binding generator library Copyright (c) 2016 Wenzel Jakob All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. */ #pragma once #include "detail/class.h" #include "detail/init.h" #include "attr.h" #include "gil.h" #include "options.h" #include #include #include #include #include #include #include #if defined(__cpp_lib_launder) && !(defined(_MSC_VER) && (_MSC_VER < 1914)) # define PYBIND11_STD_LAUNDER std::launder # define PYBIND11_HAS_STD_LAUNDER 1 #else # define PYBIND11_STD_LAUNDER # define PYBIND11_HAS_STD_LAUNDER 0 #endif #if defined(__GNUG__) && !defined(__clang__) # include #endif PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE) /* https://stackoverflow.com/questions/46798456/handling-gccs-noexcept-type-warning This warning is about ABI compatibility, not code health. It is only actually needed in a couple places, but apparently GCC 7 "generates this warning if and only if the first template instantiation ... involves noexcept" [stackoverflow], therefore it could get triggered from seemingly random places, depending on user code. No other GCC version generates this warning. */ #if defined(__GNUC__) && __GNUC__ == 7 PYBIND11_WARNING_DISABLE_GCC("-Wnoexcept-type") #endif PYBIND11_WARNING_DISABLE_MSVC(4127) PYBIND11_NAMESPACE_BEGIN(detail) // Apply all the extensions translators from a list // Return true if one of the translators completed without raising an exception // itself. Return of false indicates that if there are other translators // available, they should be tried. inline bool apply_exception_translators(std::forward_list &translators) { auto last_exception = std::current_exception(); for (auto &translator : translators) { try { translator(last_exception); return true; } catch (...) { last_exception = std::current_exception(); } } return false; } #if defined(_MSC_VER) # define PYBIND11_COMPAT_STRDUP _strdup #else # define PYBIND11_COMPAT_STRDUP strdup #endif PYBIND11_NAMESPACE_END(detail) /// Wraps an arbitrary C++ function/method/lambda function/.. into a callable Python object class cpp_function : public function { public: cpp_function() = default; // NOLINTNEXTLINE(google-explicit-constructor) cpp_function(std::nullptr_t) {} /// Construct a cpp_function from a vanilla function pointer template // NOLINTNEXTLINE(google-explicit-constructor) cpp_function(Return (*f)(Args...), const Extra &...extra) { initialize(f, f, extra...); } /// Construct a cpp_function from a lambda function (possibly with internal state) template ::value>> // NOLINTNEXTLINE(google-explicit-constructor) cpp_function(Func &&f, const Extra &...extra) { initialize( std::forward(f), (detail::function_signature_t *) nullptr, extra...); } /// Construct a cpp_function from a class method (non-const, no ref-qualifier) template // NOLINTNEXTLINE(google-explicit-constructor) cpp_function(Return (Class::*f)(Arg...), const Extra &...extra) { initialize( [f](Class *c, Arg... args) -> Return { return (c->*f)(std::forward(args)...); }, (Return(*)(Class *, Arg...)) nullptr, extra...); } /// Construct a cpp_function from a class method (non-const, lvalue ref-qualifier) /// A copy of the overload for non-const functions without explicit ref-qualifier /// but with an added `&`. template // NOLINTNEXTLINE(google-explicit-constructor) cpp_function(Return (Class::*f)(Arg...) &, const Extra &...extra) { initialize( [f](Class *c, Arg... args) -> Return { return (c->*f)(std::forward(args)...); }, (Return(*)(Class *, Arg...)) nullptr, extra...); } /// Construct a cpp_function from a class method (const, no ref-qualifier) template // NOLINTNEXTLINE(google-explicit-constructor) cpp_function(Return (Class::*f)(Arg...) const, const Extra &...extra) { initialize([f](const Class *c, Arg... args) -> Return { return (c->*f)(std::forward(args)...); }, (Return(*)(const Class *, Arg...)) nullptr, extra...); } /// Construct a cpp_function from a class method (const, lvalue ref-qualifier) /// A copy of the overload for const functions without explicit ref-qualifier /// but with an added `&`. template // NOLINTNEXTLINE(google-explicit-constructor) cpp_function(Return (Class::*f)(Arg...) const &, const Extra &...extra) { initialize([f](const Class *c, Arg... args) -> Return { return (c->*f)(std::forward(args)...); }, (Return(*)(const Class *, Arg...)) nullptr, extra...); } /// Return the function name object name() const { return attr("__name__"); } protected: struct InitializingFunctionRecordDeleter { // `destruct(function_record, false)`: `initialize_generic` copies strings and // takes care of cleaning up in case of exceptions. So pass `false` to `free_strings`. void operator()(detail::function_record *rec) { destruct(rec, false); } }; using unique_function_record = std::unique_ptr; /// Space optimization: don't inline this frequently instantiated fragment PYBIND11_NOINLINE unique_function_record make_function_record() { return unique_function_record(new detail::function_record()); } /// Special internal constructor for functors, lambda functions, etc. template void initialize(Func &&f, Return (*)(Args...), const Extra &...extra) { using namespace detail; struct capture { remove_reference_t f; }; /* Store the function including any extra state it might have (e.g. a lambda capture * object) */ // The unique_ptr makes sure nothing is leaked in case of an exception. auto unique_rec = make_function_record(); auto *rec = unique_rec.get(); /* Store the capture object directly in the function record if there is enough space */ if (sizeof(capture) <= sizeof(rec->data)) { /* Without these pragmas, GCC warns that there might not be enough space to use the placement new operator. However, the 'if' statement above ensures that this is the case. */ PYBIND11_WARNING_PUSH #if defined(__GNUG__) && __GNUC__ >= 6 PYBIND11_WARNING_DISABLE_GCC("-Wplacement-new") #endif new ((capture *) &rec->data) capture{std::forward(f)}; #if !PYBIND11_HAS_STD_LAUNDER PYBIND11_WARNING_DISABLE_GCC("-Wstrict-aliasing") #endif // UB without std::launder, but without breaking ABI and/or // a significant refactoring it's "impossible" to solve. if (!std::is_trivially_destructible::value) { rec->free_data = [](function_record *r) { auto data = PYBIND11_STD_LAUNDER((capture *) &r->data); (void) data; data->~capture(); }; } PYBIND11_WARNING_POP } else { rec->data[0] = new capture{std::forward(f)}; rec->free_data = [](function_record *r) { delete ((capture *) r->data[0]); }; } /* Type casters for the function arguments and return value */ using cast_in = argument_loader; using cast_out = make_caster::value, void_type, Return>>; static_assert( expected_num_args( sizeof...(Args), cast_in::args_pos >= 0, cast_in::has_kwargs), "The number of argument annotations does not match the number of function arguments"); /* Dispatch code which converts function arguments and performs the actual function call */ rec->impl = [](function_call &call) -> handle { cast_in args_converter; /* Try to cast the function arguments into the C++ domain */ if (!args_converter.load_args(call)) { return PYBIND11_TRY_NEXT_OVERLOAD; } /* Invoke call policy pre-call hook */ process_attributes::precall(call); /* Get a pointer to the capture object */ const auto *data = (sizeof(capture) <= sizeof(call.func.data) ? &call.func.data : call.func.data[0]); auto *cap = const_cast(reinterpret_cast(data)); /* Override policy for rvalues -- usually to enforce rvp::move on an rvalue */ return_value_policy policy = return_value_policy_override::policy(call.func.policy); /* Function scope guard -- defaults to the compile-to-nothing `void_type` */ using Guard = extract_guard_t; /* Perform the function call */ handle result = cast_out::cast(std::move(args_converter).template call(cap->f), policy, call.parent); /* Invoke call policy post-call hook */ process_attributes::postcall(call, result); return result; }; rec->nargs_pos = cast_in::args_pos >= 0 ? static_cast(cast_in::args_pos) : sizeof...(Args) - cast_in::has_kwargs; // Will get reduced more if // we have a kw_only rec->has_args = cast_in::args_pos >= 0; rec->has_kwargs = cast_in::has_kwargs; /* Process any user-provided function attributes */ process_attributes::init(extra..., rec); { constexpr bool has_kw_only_args = any_of...>::value, has_pos_only_args = any_of...>::value, has_arg_annotations = any_of...>::value; static_assert(has_arg_annotations || !has_kw_only_args, "py::kw_only requires the use of argument annotations"); static_assert(has_arg_annotations || !has_pos_only_args, "py::pos_only requires the use of argument annotations (for docstrings " "and aligning the annotations to the argument)"); static_assert(constexpr_sum(is_kw_only::value...) <= 1, "py::kw_only may be specified only once"); static_assert(constexpr_sum(is_pos_only::value...) <= 1, "py::pos_only may be specified only once"); constexpr auto kw_only_pos = constexpr_first(); constexpr auto pos_only_pos = constexpr_first(); static_assert(!(has_kw_only_args && has_pos_only_args) || pos_only_pos < kw_only_pos, "py::pos_only must come before py::kw_only"); } /* Generate a readable signature describing the function's arguments and return value types */ static constexpr auto signature = const_name("(") + cast_in::arg_names + const_name(") -> ") + cast_out::name; PYBIND11_DESCR_CONSTEXPR auto types = decltype(signature)::types(); /* Register the function with Python from generic (non-templated) code */ // Pass on the ownership over the `unique_rec` to `initialize_generic`. `rec` stays valid. initialize_generic(std::move(unique_rec), signature.text, types.data(), sizeof...(Args)); /* Stash some additional information used by an important optimization in 'functional.h' */ using FunctionType = Return (*)(Args...); constexpr bool is_function_ptr = std::is_convertible::value && sizeof(capture) == sizeof(void *); if (is_function_ptr) { rec->is_stateless = true; rec->data[1] = const_cast(reinterpret_cast(&typeid(FunctionType))); } } // Utility class that keeps track of all duplicated strings, and cleans them up in its // destructor, unless they are released. Basically a RAII-solution to deal with exceptions // along the way. class strdup_guard { public: strdup_guard() = default; strdup_guard(const strdup_guard &) = delete; strdup_guard &operator=(const strdup_guard &) = delete; ~strdup_guard() { for (auto *s : strings) { std::free(s); } } char *operator()(const char *s) { auto *t = PYBIND11_COMPAT_STRDUP(s); strings.push_back(t); return t; } void release() { strings.clear(); } private: std::vector strings; }; /// Register a function call with Python (generic non-templated code goes here) void initialize_generic(unique_function_record &&unique_rec, const char *text, const std::type_info *const *types, size_t args) { // Do NOT receive `unique_rec` by value. If this function fails to move out the unique_ptr, // we do not want this to destruct the pointer. `initialize` (the caller) still relies on // the pointee being alive after this call. Only move out if a `capsule` is going to keep // it alive. auto *rec = unique_rec.get(); // Keep track of strdup'ed strings, and clean them up as long as the function's capsule // has not taken ownership yet (when `unique_rec.release()` is called). // Note: This cannot easily be fixed by a `unique_ptr` with custom deleter, because the // strings are only referenced before strdup'ing. So only *after* the following block could // `destruct` safely be called, but even then, `repr` could still throw in the middle of // copying all strings. strdup_guard guarded_strdup; /* Create copies of all referenced C-style strings */ rec->name = guarded_strdup(rec->name ? rec->name : ""); if (rec->doc) { rec->doc = guarded_strdup(rec->doc); } for (auto &a : rec->args) { if (a.name) { a.name = guarded_strdup(a.name); } if (a.descr) { a.descr = guarded_strdup(a.descr); } else if (a.value) { a.descr = guarded_strdup(repr(a.value).cast().c_str()); } } rec->is_constructor = (std::strcmp(rec->name, "__init__") == 0) || (std::strcmp(rec->name, "__setstate__") == 0); #if defined(PYBIND11_DETAILED_ERROR_MESSAGES) && !defined(PYBIND11_DISABLE_NEW_STYLE_INIT_WARNING) if (rec->is_constructor && !rec->is_new_style_constructor) { const auto class_name = detail::get_fully_qualified_tp_name((PyTypeObject *) rec->scope.ptr()); const auto func_name = std::string(rec->name); PyErr_WarnEx(PyExc_FutureWarning, ("pybind11-bound class '" + class_name + "' is using an old-style " "placement-new '" + func_name + "' which has been deprecated. See " "the upgrade guide in pybind11's docs. This message is only visible " "when compiled in debug mode.") .c_str(), 0); } #endif /* Generate a proper function signature */ std::string signature; size_t type_index = 0, arg_index = 0; bool is_starred = false; for (const auto *pc = text; *pc != '\0'; ++pc) { const auto c = *pc; if (c == '{') { // Write arg name for everything except *args and **kwargs. is_starred = *(pc + 1) == '*'; if (is_starred) { continue; } // Separator for keyword-only arguments, placed before the kw // arguments start (unless we are already putting an *args) if (!rec->has_args && arg_index == rec->nargs_pos) { signature += "*, "; } if (arg_index < rec->args.size() && rec->args[arg_index].name) { signature += rec->args[arg_index].name; } else if (arg_index == 0 && rec->is_method) { signature += "self"; } else { signature += "arg" + std::to_string(arg_index - (rec->is_method ? 1 : 0)); } signature += ": "; } else if (c == '}') { // Write default value if available. if (!is_starred && arg_index < rec->args.size() && rec->args[arg_index].descr) { signature += " = "; signature += rec->args[arg_index].descr; } // Separator for positional-only arguments (placed after the // argument, rather than before like * if (rec->nargs_pos_only > 0 && (arg_index + 1) == rec->nargs_pos_only) { signature += ", /"; } if (!is_starred) { arg_index++; } } else if (c == '%') { const std::type_info *t = types[type_index++]; if (!t) { pybind11_fail("Internal error while parsing type signature (1)"); } if (auto *tinfo = detail::get_type_info(*t)) { handle th((PyObject *) tinfo->type); signature += th.attr("__module__").cast() + "." + th.attr("__qualname__").cast(); } else if (rec->is_new_style_constructor && arg_index == 0) { // A new-style `__init__` takes `self` as `value_and_holder`. // Rewrite it to the proper class type. signature += rec->scope.attr("__module__").cast() + "." + rec->scope.attr("__qualname__").cast(); } else { std::string tname(t->name()); detail::clean_type_id(tname); signature += tname; } } else { signature += c; } } if (arg_index != args - rec->has_args - rec->has_kwargs || types[type_index] != nullptr) { pybind11_fail("Internal error while parsing type signature (2)"); } rec->signature = guarded_strdup(signature.c_str()); rec->args.shrink_to_fit(); rec->nargs = (std::uint16_t) args; if (rec->sibling && PYBIND11_INSTANCE_METHOD_CHECK(rec->sibling.ptr())) { rec->sibling = PYBIND11_INSTANCE_METHOD_GET_FUNCTION(rec->sibling.ptr()); } detail::function_record *chain = nullptr, *chain_start = rec; if (rec->sibling) { if (PyCFunction_Check(rec->sibling.ptr())) { auto *self = PyCFunction_GET_SELF(rec->sibling.ptr()); if (!isinstance(self)) { chain = nullptr; } else { auto rec_capsule = reinterpret_borrow(self); if (detail::is_function_record_capsule(rec_capsule)) { chain = rec_capsule.get_pointer(); /* Never append a method to an overload chain of a parent class; instead, hide the parent's overloads in this case */ if (!chain->scope.is(rec->scope)) { chain = nullptr; } } else { chain = nullptr; } } } // Don't trigger for things like the default __init__, which are wrapper_descriptors // that we are intentionally replacing else if (!rec->sibling.is_none() && rec->name[0] != '_') { pybind11_fail("Cannot overload existing non-function object \"" + std::string(rec->name) + "\" with a function of the same name"); } } if (!chain) { /* No existing overload was found, create a new function object */ rec->def = new PyMethodDef(); std::memset(rec->def, 0, sizeof(PyMethodDef)); rec->def->ml_name = rec->name; rec->def->ml_meth = reinterpret_cast(reinterpret_cast(dispatcher)); rec->def->ml_flags = METH_VARARGS | METH_KEYWORDS; capsule rec_capsule(unique_rec.release(), [](void *ptr) { destruct((detail::function_record *) ptr); }); rec_capsule.set_name(detail::get_function_record_capsule_name()); guarded_strdup.release(); object scope_module; if (rec->scope) { if (hasattr(rec->scope, "__module__")) { scope_module = rec->scope.attr("__module__"); } else if (hasattr(rec->scope, "__name__")) { scope_module = rec->scope.attr("__name__"); } } m_ptr = PyCFunction_NewEx(rec->def, rec_capsule.ptr(), scope_module.ptr()); if (!m_ptr) { pybind11_fail("cpp_function::cpp_function(): Could not allocate function object"); } } else { /* Append at the beginning or end of the overload chain */ m_ptr = rec->sibling.ptr(); inc_ref(); if (chain->is_method != rec->is_method) { pybind11_fail( "overloading a method with both static and instance methods is not supported; " #if !defined(PYBIND11_DETAILED_ERROR_MESSAGES) "#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for more " "details" #else "error while attempting to bind " + std::string(rec->is_method ? "instance" : "static") + " method " + std::string(pybind11::str(rec->scope.attr("__name__"))) + "." + std::string(rec->name) + signature #endif ); } if (rec->prepend) { // Beginning of chain; we need to replace the capsule's current head-of-the-chain // pointer with this one, then make this one point to the previous head of the // chain. chain_start = rec; rec->next = chain; auto rec_capsule = reinterpret_borrow(((PyCFunctionObject *) m_ptr)->m_self); rec_capsule.set_pointer(unique_rec.release()); guarded_strdup.release(); } else { // Or end of chain (normal behavior) chain_start = chain; while (chain->next) { chain = chain->next; } chain->next = unique_rec.release(); guarded_strdup.release(); } } std::string signatures; int index = 0; /* Create a nice pydoc rec including all signatures and docstrings of the functions in the overload chain */ if (chain && options::show_function_signatures()) { // First a generic signature signatures += rec->name; signatures += "(*args, **kwargs)\n"; signatures += "Overloaded function.\n\n"; } // Then specific overload signatures bool first_user_def = true; for (auto *it = chain_start; it != nullptr; it = it->next) { if (options::show_function_signatures()) { if (index > 0) { signatures += '\n'; } if (chain) { signatures += std::to_string(++index) + ". "; } signatures += rec->name; signatures += it->signature; signatures += '\n'; } if (it->doc && it->doc[0] != '\0' && options::show_user_defined_docstrings()) { // If we're appending another docstring, and aren't printing function signatures, // we need to append a newline first: if (!options::show_function_signatures()) { if (first_user_def) { first_user_def = false; } else { signatures += '\n'; } } if (options::show_function_signatures()) { signatures += '\n'; } signatures += it->doc; if (options::show_function_signatures()) { signatures += '\n'; } } } /* Install docstring */ auto *func = (PyCFunctionObject *) m_ptr; std::free(const_cast(func->m_ml->ml_doc)); // Install docstring if it's non-empty (when at least one option is enabled) func->m_ml->ml_doc = signatures.empty() ? nullptr : PYBIND11_COMPAT_STRDUP(signatures.c_str()); if (rec->is_method) { m_ptr = PYBIND11_INSTANCE_METHOD_NEW(m_ptr, rec->scope.ptr()); if (!m_ptr) { pybind11_fail( "cpp_function::cpp_function(): Could not allocate instance method object"); } Py_DECREF(func); } } /// When a cpp_function is GCed, release any memory allocated by pybind11 static void destruct(detail::function_record *rec, bool free_strings = true) { // If on Python 3.9, check the interpreter "MICRO" (patch) version. // If this is running on 3.9.0, we have to work around a bug. #if !defined(PYPY_VERSION) && PY_MAJOR_VERSION == 3 && PY_MINOR_VERSION == 9 static bool is_zero = Py_GetVersion()[4] == '0'; #endif while (rec) { detail::function_record *next = rec->next; if (rec->free_data) { rec->free_data(rec); } // During initialization, these strings might not have been copied yet, // so they cannot be freed. Once the function has been created, they can. // Check `make_function_record` for more details. if (free_strings) { std::free((char *) rec->name); std::free((char *) rec->doc); std::free((char *) rec->signature); for (auto &arg : rec->args) { std::free(const_cast(arg.name)); std::free(const_cast(arg.descr)); } } for (auto &arg : rec->args) { arg.value.dec_ref(); } if (rec->def) { std::free(const_cast(rec->def->ml_doc)); // Python 3.9.0 decref's these in the wrong order; rec->def // If loaded on 3.9.0, let these leak (use Python 3.9.1 at runtime to fix) // See https://github.com/python/cpython/pull/22670 #if !defined(PYPY_VERSION) && PY_MAJOR_VERSION == 3 && PY_MINOR_VERSION == 9 if (!is_zero) { delete rec->def; } #else delete rec->def; #endif } delete rec; rec = next; } } /// Main dispatch logic for calls to functions bound using pybind11 static PyObject *dispatcher(PyObject *self, PyObject *args_in, PyObject *kwargs_in) { using namespace detail; assert(isinstance(self)); /* Iterator over the list of potentially admissible overloads */ const function_record *overloads = reinterpret_cast( PyCapsule_GetPointer(self, get_function_record_capsule_name())), *it = overloads; assert(overloads != nullptr); /* Need to know how many arguments + keyword arguments there are to pick the right overload */ const auto n_args_in = (size_t) PyTuple_GET_SIZE(args_in); handle parent = n_args_in > 0 ? PyTuple_GET_ITEM(args_in, 0) : nullptr, result = PYBIND11_TRY_NEXT_OVERLOAD; auto self_value_and_holder = value_and_holder(); if (overloads->is_constructor) { if (!parent || !PyObject_TypeCheck(parent.ptr(), (PyTypeObject *) overloads->scope.ptr())) { PyErr_SetString( PyExc_TypeError, "__init__(self, ...) called with invalid or missing `self` argument"); return nullptr; } auto *const tinfo = get_type_info((PyTypeObject *) overloads->scope.ptr()); auto *const pi = reinterpret_cast(parent.ptr()); self_value_and_holder = pi->get_value_and_holder(tinfo, true); // If this value is already registered it must mean __init__ is invoked multiple times; // we really can't support that in C++, so just ignore the second __init__. if (self_value_and_holder.instance_registered()) { return none().release().ptr(); } } try { // We do this in two passes: in the first pass, we load arguments with `convert=false`; // in the second, we allow conversion (except for arguments with an explicit // py::arg().noconvert()). This lets us prefer calls without conversion, with // conversion as a fallback. std::vector second_pass; // However, if there are no overloads, we can just skip the no-convert pass entirely const bool overloaded = it != nullptr && it->next != nullptr; for (; it != nullptr; it = it->next) { /* For each overload: 1. Copy all positional arguments we were given, also checking to make sure that named positional arguments weren't *also* specified via kwarg. 2. If we weren't given enough, try to make up the omitted ones by checking whether they were provided by a kwarg matching the `py::arg("name")` name. If so, use it (and remove it from kwargs); if not, see if the function binding provided a default that we can use. 3. Ensure that either all keyword arguments were "consumed", or that the function takes a kwargs argument to accept unconsumed kwargs. 4. Any positional arguments still left get put into a tuple (for args), and any leftover kwargs get put into a dict. 5. Pack everything into a vector; if we have py::args or py::kwargs, they are an extra tuple or dict at the end of the positional arguments. 6. Call the function call dispatcher (function_record::impl) If one of these fail, move on to the next overload and keep trying until we get a result other than PYBIND11_TRY_NEXT_OVERLOAD. */ const function_record &func = *it; size_t num_args = func.nargs; // Number of positional arguments that we need if (func.has_args) { --num_args; // (but don't count py::args } if (func.has_kwargs) { --num_args; // or py::kwargs) } size_t pos_args = func.nargs_pos; if (!func.has_args && n_args_in > pos_args) { continue; // Too many positional arguments for this overload } if (n_args_in < pos_args && func.args.size() < pos_args) { continue; // Not enough positional arguments given, and not enough defaults to // fill in the blanks } function_call call(func, parent); // Protect std::min with parentheses size_t args_to_copy = (std::min)(pos_args, n_args_in); size_t args_copied = 0; // 0. Inject new-style `self` argument if (func.is_new_style_constructor) { // The `value` may have been preallocated by an old-style `__init__` // if it was a preceding candidate for overload resolution. if (self_value_and_holder) { self_value_and_holder.type->dealloc(self_value_and_holder); } call.init_self = PyTuple_GET_ITEM(args_in, 0); call.args.emplace_back(reinterpret_cast(&self_value_and_holder)); call.args_convert.push_back(false); ++args_copied; } // 1. Copy any position arguments given. bool bad_arg = false; for (; args_copied < args_to_copy; ++args_copied) { const argument_record *arg_rec = args_copied < func.args.size() ? &func.args[args_copied] : nullptr; if (kwargs_in && arg_rec && arg_rec->name && dict_getitemstring(kwargs_in, arg_rec->name)) { bad_arg = true; break; } handle arg(PyTuple_GET_ITEM(args_in, args_copied)); if (arg_rec && !arg_rec->none && arg.is_none()) { bad_arg = true; break; } call.args.push_back(arg); call.args_convert.push_back(arg_rec ? arg_rec->convert : true); } if (bad_arg) { continue; // Maybe it was meant for another overload (issue #688) } // Keep track of how many position args we copied out in case we need to come back // to copy the rest into a py::args argument. size_t positional_args_copied = args_copied; // We'll need to copy this if we steal some kwargs for defaults dict kwargs = reinterpret_borrow(kwargs_in); // 1.5. Fill in any missing pos_only args from defaults if they exist if (args_copied < func.nargs_pos_only) { for (; args_copied < func.nargs_pos_only; ++args_copied) { const auto &arg_rec = func.args[args_copied]; handle value; if (arg_rec.value) { value = arg_rec.value; } if (value) { call.args.push_back(value); call.args_convert.push_back(arg_rec.convert); } else { break; } } if (args_copied < func.nargs_pos_only) { continue; // Not enough defaults to fill the positional arguments } } // 2. Check kwargs and, failing that, defaults that may help complete the list if (args_copied < num_args) { bool copied_kwargs = false; for (; args_copied < num_args; ++args_copied) { const auto &arg_rec = func.args[args_copied]; handle value; if (kwargs_in && arg_rec.name) { value = dict_getitemstring(kwargs.ptr(), arg_rec.name); } if (value) { // Consume a kwargs value if (!copied_kwargs) { kwargs = reinterpret_steal(PyDict_Copy(kwargs.ptr())); copied_kwargs = true; } if (PyDict_DelItemString(kwargs.ptr(), arg_rec.name) == -1) { throw error_already_set(); } } else if (arg_rec.value) { value = arg_rec.value; } if (!arg_rec.none && value.is_none()) { break; } if (value) { // If we're at the py::args index then first insert a stub for it to be // replaced later if (func.has_args && call.args.size() == func.nargs_pos) { call.args.push_back(none()); } call.args.push_back(value); call.args_convert.push_back(arg_rec.convert); } else { break; } } if (args_copied < num_args) { continue; // Not enough arguments, defaults, or kwargs to fill the // positional arguments } } // 3. Check everything was consumed (unless we have a kwargs arg) if (kwargs && !kwargs.empty() && !func.has_kwargs) { continue; // Unconsumed kwargs, but no py::kwargs argument to accept them } // 4a. If we have a py::args argument, create a new tuple with leftovers if (func.has_args) { tuple extra_args; if (args_to_copy == 0) { // We didn't copy out any position arguments from the args_in tuple, so we // can reuse it directly without copying: extra_args = reinterpret_borrow(args_in); } else if (positional_args_copied >= n_args_in) { extra_args = tuple(0); } else { size_t args_size = n_args_in - positional_args_copied; extra_args = tuple(args_size); for (size_t i = 0; i < args_size; ++i) { extra_args[i] = PyTuple_GET_ITEM(args_in, positional_args_copied + i); } } if (call.args.size() <= func.nargs_pos) { call.args.push_back(extra_args); } else { call.args[func.nargs_pos] = extra_args; } call.args_convert.push_back(false); call.args_ref = std::move(extra_args); } // 4b. If we have a py::kwargs, pass on any remaining kwargs if (func.has_kwargs) { if (!kwargs.ptr()) { kwargs = dict(); // If we didn't get one, send an empty one } call.args.push_back(kwargs); call.args_convert.push_back(false); call.kwargs_ref = std::move(kwargs); } // 5. Put everything in a vector. Not technically step 5, we've been building it // in `call.args` all along. #if defined(PYBIND11_DETAILED_ERROR_MESSAGES) if (call.args.size() != func.nargs || call.args_convert.size() != func.nargs) { pybind11_fail("Internal error: function call dispatcher inserted wrong number " "of arguments!"); } #endif std::vector second_pass_convert; if (overloaded) { // We're in the first no-convert pass, so swap out the conversion flags for a // set of all-false flags. If the call fails, we'll swap the flags back in for // the conversion-allowed call below. second_pass_convert.resize(func.nargs, false); call.args_convert.swap(second_pass_convert); } // 6. Call the function. try { loader_life_support guard{}; result = func.impl(call); } catch (reference_cast_error &) { result = PYBIND11_TRY_NEXT_OVERLOAD; } if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD) { break; } if (overloaded) { // The (overloaded) call failed; if the call has at least one argument that // permits conversion (i.e. it hasn't been explicitly specified `.noconvert()`) // then add this call to the list of second pass overloads to try. for (size_t i = func.is_method ? 1 : 0; i < pos_args; i++) { if (second_pass_convert[i]) { // Found one: swap the converting flags back in and store the call for // the second pass. call.args_convert.swap(second_pass_convert); second_pass.push_back(std::move(call)); break; } } } } if (overloaded && !second_pass.empty() && result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) { // The no-conversion pass finished without success, try again with conversion // allowed for (auto &call : second_pass) { try { loader_life_support guard{}; result = call.func.impl(call); } catch (reference_cast_error &) { result = PYBIND11_TRY_NEXT_OVERLOAD; } if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD) { // The error reporting logic below expects 'it' to be valid, as it would be // if we'd encountered this failure in the first-pass loop. if (!result) { it = &call.func; } break; } } } } catch (error_already_set &e) { e.restore(); return nullptr; #ifdef __GLIBCXX__ } catch (abi::__forced_unwind &) { throw; #endif } catch (...) { /* When an exception is caught, give each registered exception translator a chance to translate it to a Python exception. First all module-local translators will be tried in reverse order of registration. If none of the module-locale translators handle the exception (or there are no module-locale translators) then the global translators will be tried, also in reverse order of registration. A translator may choose to do one of the following: - catch the exception and call PyErr_SetString or PyErr_SetObject to set a standard (or custom) Python exception, or - do nothing and let the exception fall through to the next translator, or - delegate translation to the next translator by throwing a new type of exception. */ auto &local_exception_translators = get_local_internals().registered_exception_translators; if (detail::apply_exception_translators(local_exception_translators)) { return nullptr; } auto &exception_translators = get_internals().registered_exception_translators; if (detail::apply_exception_translators(exception_translators)) { return nullptr; } PyErr_SetString(PyExc_SystemError, "Exception escaped from default exception translator!"); return nullptr; } auto append_note_if_missing_header_is_suspected = [](std::string &msg) { if (msg.find("std::") != std::string::npos) { msg += "\n\n" "Did you forget to `#include `? Or ,\n" ", , etc. Some automatic\n" "conversions are optional and require extra headers to be included\n" "when compiling your pybind11 module."; } }; if (result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) { if (overloads->is_operator) { return handle(Py_NotImplemented).inc_ref().ptr(); } std::string msg = std::string(overloads->name) + "(): incompatible " + std::string(overloads->is_constructor ? "constructor" : "function") + " arguments. The following argument types are supported:\n"; int ctr = 0; for (const function_record *it2 = overloads; it2 != nullptr; it2 = it2->next) { msg += " " + std::to_string(++ctr) + ". "; bool wrote_sig = false; if (overloads->is_constructor) { // For a constructor, rewrite `(self: Object, arg0, ...) -> NoneType` as // `Object(arg0, ...)` std::string sig = it2->signature; size_t start = sig.find('(') + 7; // skip "(self: " if (start < sig.size()) { // End at the , for the next argument size_t end = sig.find(", "), next = end + 2; size_t ret = sig.rfind(" -> "); // Or the ), if there is no comma: if (end >= sig.size()) { next = end = sig.find(')'); } if (start < end && next < sig.size()) { msg.append(sig, start, end - start); msg += '('; msg.append(sig, next, ret - next); wrote_sig = true; } } } if (!wrote_sig) { msg += it2->signature; } msg += '\n'; } msg += "\nInvoked with: "; auto args_ = reinterpret_borrow(args_in); bool some_args = false; for (size_t ti = overloads->is_constructor ? 1 : 0; ti < args_.size(); ++ti) { if (!some_args) { some_args = true; } else { msg += ", "; } try { msg += pybind11::repr(args_[ti]); } catch (const error_already_set &) { msg += ""; } } if (kwargs_in) { auto kwargs = reinterpret_borrow(kwargs_in); if (!kwargs.empty()) { if (some_args) { msg += "; "; } msg += "kwargs: "; bool first = true; for (auto kwarg : kwargs) { if (first) { first = false; } else { msg += ", "; } msg += pybind11::str("{}=").format(kwarg.first); try { msg += pybind11::repr(kwarg.second); } catch (const error_already_set &) { msg += ""; } } } } append_note_if_missing_header_is_suspected(msg); // Attach additional error info to the exception if supported if (PyErr_Occurred()) { // #HelpAppreciated: unit test coverage for this branch. raise_from(PyExc_TypeError, msg.c_str()); return nullptr; } PyErr_SetString(PyExc_TypeError, msg.c_str()); return nullptr; } if (!result) { std::string msg = "Unable to convert function return value to a " "Python type! The signature was\n\t"; msg += it->signature; append_note_if_missing_header_is_suspected(msg); // Attach additional error info to the exception if supported if (PyErr_Occurred()) { raise_from(PyExc_TypeError, msg.c_str()); return nullptr; } PyErr_SetString(PyExc_TypeError, msg.c_str()); return nullptr; } if (overloads->is_constructor && !self_value_and_holder.holder_constructed()) { auto *pi = reinterpret_cast(parent.ptr()); self_value_and_holder.type->init_instance(pi, nullptr); } return result.ptr(); } }; /// Wrapper for Python extension modules class module_ : public object { public: PYBIND11_OBJECT_DEFAULT(module_, object, PyModule_Check) /// Create a new top-level Python module with the given name and docstring PYBIND11_DEPRECATED("Use PYBIND11_MODULE or module_::create_extension_module instead") explicit module_(const char *name, const char *doc = nullptr) { *this = create_extension_module(name, doc, new PyModuleDef()); } /** \rst Create Python binding for a new function within the module scope. ``Func`` can be a plain C++ function, a function pointer, or a lambda function. For details on the ``Extra&& ... extra`` argument, see section :ref:`extras`. \endrst */ template module_ &def(const char *name_, Func &&f, const Extra &...extra) { cpp_function func(std::forward(f), name(name_), scope(*this), sibling(getattr(*this, name_, none())), extra...); // NB: allow overwriting here because cpp_function sets up a chain with the intention of // overwriting (and has already checked internally that it isn't overwriting // non-functions). add_object(name_, func, true /* overwrite */); return *this; } /** \rst Create and return a new Python submodule with the given name and docstring. This also works recursively, i.e. .. code-block:: cpp py::module_ m("example", "pybind11 example plugin"); py::module_ m2 = m.def_submodule("sub", "A submodule of 'example'"); py::module_ m3 = m2.def_submodule("subsub", "A submodule of 'example.sub'"); \endrst */ module_ def_submodule(const char *name, const char *doc = nullptr) { const char *this_name = PyModule_GetName(m_ptr); if (this_name == nullptr) { throw error_already_set(); } std::string full_name = std::string(this_name) + '.' + name; handle submodule = PyImport_AddModule(full_name.c_str()); if (!submodule) { throw error_already_set(); } auto result = reinterpret_borrow(submodule); if (doc && options::show_user_defined_docstrings()) { result.attr("__doc__") = pybind11::str(doc); } attr(name) = result; return result; } /// Import and return a module or throws `error_already_set`. static module_ import(const char *name) { PyObject *obj = PyImport_ImportModule(name); if (!obj) { throw error_already_set(); } return reinterpret_steal(obj); } /// Reload the module or throws `error_already_set`. void reload() { PyObject *obj = PyImport_ReloadModule(ptr()); if (!obj) { throw error_already_set(); } *this = reinterpret_steal(obj); } /** \rst Adds an object to the module using the given name. Throws if an object with the given name already exists. ``overwrite`` should almost always be false: attempting to overwrite objects that pybind11 has established will, in most cases, break things. \endrst */ PYBIND11_NOINLINE void add_object(const char *name, handle obj, bool overwrite = false) { if (!overwrite && hasattr(*this, name)) { pybind11_fail( "Error during initialization: multiple incompatible definitions with name \"" + std::string(name) + "\""); } PyModule_AddObject(ptr(), name, obj.inc_ref().ptr() /* steals a reference */); } using module_def = PyModuleDef; // TODO: Can this be removed (it was needed only for Python 2)? /** \rst Create a new top-level module that can be used as the main module of a C extension. ``def`` should point to a statically allocated module_def. \endrst */ static module_ create_extension_module(const char *name, const char *doc, module_def *def) { // module_def is PyModuleDef // Placement new (not an allocation). def = new (def) PyModuleDef{/* m_base */ PyModuleDef_HEAD_INIT, /* m_name */ name, /* m_doc */ options::show_user_defined_docstrings() ? doc : nullptr, /* m_size */ -1, /* m_methods */ nullptr, /* m_slots */ nullptr, /* m_traverse */ nullptr, /* m_clear */ nullptr, /* m_free */ nullptr}; auto *m = PyModule_Create(def); if (m == nullptr) { if (PyErr_Occurred()) { throw error_already_set(); } pybind11_fail("Internal error in module_::create_extension_module()"); } // TODO: Should be reinterpret_steal for Python 3, but Python also steals it again when // returned from PyInit_... // For Python 2, reinterpret_borrow was correct. return reinterpret_borrow(m); } }; // When inside a namespace (or anywhere as long as it's not the first item on a line), // C++20 allows "module" to be used. This is provided for backward compatibility, and for // simplicity, if someone wants to use py::module for example, that is perfectly safe. using module = module_; /// \ingroup python_builtins /// Return a dictionary representing the global variables in the current execution frame, /// or ``__main__.__dict__`` if there is no frame (usually when the interpreter is embedded). inline dict globals() { PyObject *p = PyEval_GetGlobals(); return reinterpret_borrow(p ? p : module_::import("__main__").attr("__dict__").ptr()); } template ()>> PYBIND11_DEPRECATED("make_simple_namespace should be replaced with " "py::module_::import(\"types\").attr(\"SimpleNamespace\") ") object make_simple_namespace(Args &&...args_) { return module_::import("types").attr("SimpleNamespace")(std::forward(args_)...); } PYBIND11_NAMESPACE_BEGIN(detail) /// Generic support for creating new Python heap types class generic_type : public object { public: PYBIND11_OBJECT_DEFAULT(generic_type, object, PyType_Check) protected: void initialize(const type_record &rec) { if (rec.scope && hasattr(rec.scope, "__dict__") && rec.scope.attr("__dict__").contains(rec.name)) { pybind11_fail("generic_type: cannot initialize type \"" + std::string(rec.name) + "\": an object with that name is already defined"); } if ((rec.module_local ? get_local_type_info(*rec.type) : get_global_type_info(*rec.type)) != nullptr) { pybind11_fail("generic_type: type \"" + std::string(rec.name) + "\" is already registered!"); } m_ptr = make_new_python_type(rec); /* Register supplemental type information in C++ dict */ auto *tinfo = new detail::type_info(); tinfo->type = (PyTypeObject *) m_ptr; tinfo->cpptype = rec.type; tinfo->type_size = rec.type_size; tinfo->type_align = rec.type_align; tinfo->operator_new = rec.operator_new; tinfo->holder_size_in_ptrs = size_in_ptrs(rec.holder_size); tinfo->init_instance = rec.init_instance; tinfo->dealloc = rec.dealloc; tinfo->simple_type = true; tinfo->simple_ancestors = true; tinfo->default_holder = rec.default_holder; tinfo->module_local = rec.module_local; auto &internals = get_internals(); auto tindex = std::type_index(*rec.type); tinfo->direct_conversions = &internals.direct_conversions[tindex]; if (rec.module_local) { get_local_internals().registered_types_cpp[tindex] = tinfo; } else { internals.registered_types_cpp[tindex] = tinfo; } internals.registered_types_py[(PyTypeObject *) m_ptr] = {tinfo}; if (rec.bases.size() > 1 || rec.multiple_inheritance) { mark_parents_nonsimple(tinfo->type); tinfo->simple_ancestors = false; } else if (rec.bases.size() == 1) { auto *parent_tinfo = get_type_info((PyTypeObject *) rec.bases[0].ptr()); assert(parent_tinfo != nullptr); bool parent_simple_ancestors = parent_tinfo->simple_ancestors; tinfo->simple_ancestors = parent_simple_ancestors; // The parent can no longer be a simple type if it has MI and has a child parent_tinfo->simple_type = parent_tinfo->simple_type && parent_simple_ancestors; } if (rec.module_local) { // Stash the local typeinfo and loader so that external modules can access it. tinfo->module_local_load = &type_caster_generic::local_load; setattr(m_ptr, PYBIND11_MODULE_LOCAL_ID, capsule(tinfo)); } } /// Helper function which tags all parents of a type using mult. inheritance void mark_parents_nonsimple(PyTypeObject *value) { auto t = reinterpret_borrow(value->tp_bases); for (handle h : t) { auto *tinfo2 = get_type_info((PyTypeObject *) h.ptr()); if (tinfo2) { tinfo2->simple_type = false; } mark_parents_nonsimple((PyTypeObject *) h.ptr()); } } void install_buffer_funcs(buffer_info *(*get_buffer)(PyObject *, void *), void *get_buffer_data) { auto *type = (PyHeapTypeObject *) m_ptr; auto *tinfo = detail::get_type_info(&type->ht_type); if (!type->ht_type.tp_as_buffer) { pybind11_fail("To be able to register buffer protocol support for the type '" + get_fully_qualified_tp_name(tinfo->type) + "' the associated class<>(..) invocation must " "include the pybind11::buffer_protocol() annotation!"); } tinfo->get_buffer = get_buffer; tinfo->get_buffer_data = get_buffer_data; } // rec_func must be set for either fget or fset. void def_property_static_impl(const char *name, handle fget, handle fset, detail::function_record *rec_func) { const auto is_static = (rec_func != nullptr) && !(rec_func->is_method && rec_func->scope); const auto has_doc = (rec_func != nullptr) && (rec_func->doc != nullptr) && pybind11::options::show_user_defined_docstrings(); auto property = handle( (PyObject *) (is_static ? get_internals().static_property_type : &PyProperty_Type)); attr(name) = property(fget.ptr() ? fget : none(), fset.ptr() ? fset : none(), /*deleter*/ none(), pybind11::str(has_doc ? rec_func->doc : "")); } }; /// Set the pointer to operator new if it exists. The cast is needed because it can be overloaded. template (T::operator new))>> void set_operator_new(type_record *r) { r->operator_new = &T::operator new; } template void set_operator_new(...) {} template struct has_operator_delete : std::false_type {}; template struct has_operator_delete(T::operator delete))>> : std::true_type {}; template struct has_operator_delete_size : std::false_type {}; template struct has_operator_delete_size< T, void_t(T::operator delete))>> : std::true_type { }; /// Call class-specific delete if it exists or global otherwise. Can also be an overload set. template ::value, int> = 0> void call_operator_delete(T *p, size_t, size_t) { T::operator delete(p); } template ::value && has_operator_delete_size::value, int> = 0> void call_operator_delete(T *p, size_t s, size_t) { T::operator delete(p, s); } inline void call_operator_delete(void *p, size_t s, size_t a) { (void) s; (void) a; #if defined(__cpp_aligned_new) && (!defined(_MSC_VER) || _MSC_VER >= 1912) if (a > __STDCPP_DEFAULT_NEW_ALIGNMENT__) { # ifdef __cpp_sized_deallocation ::operator delete(p, s, std::align_val_t(a)); # else ::operator delete(p, std::align_val_t(a)); # endif return; } #endif #ifdef __cpp_sized_deallocation ::operator delete(p, s); #else ::operator delete(p); #endif } inline void add_class_method(object &cls, const char *name_, const cpp_function &cf) { cls.attr(cf.name()) = cf; if (std::strcmp(name_, "__eq__") == 0 && !cls.attr("__dict__").contains("__hash__")) { cls.attr("__hash__") = none(); } } PYBIND11_NAMESPACE_END(detail) /// Given a pointer to a member function, cast it to its `Derived` version. /// Forward everything else unchanged. template auto method_adaptor(F &&f) -> decltype(std::forward(f)) { return std::forward(f); } template auto method_adaptor(Return (Class::*pmf)(Args...)) -> Return (Derived::*)(Args...) { static_assert( detail::is_accessible_base_of::value, "Cannot bind an inaccessible base class method; use a lambda definition instead"); return pmf; } template auto method_adaptor(Return (Class::*pmf)(Args...) const) -> Return (Derived::*)(Args...) const { static_assert( detail::is_accessible_base_of::value, "Cannot bind an inaccessible base class method; use a lambda definition instead"); return pmf; } template class class_ : public detail::generic_type { template using is_holder = detail::is_holder_type; template using is_subtype = detail::is_strict_base_of; template using is_base = detail::is_strict_base_of; // struct instead of using here to help MSVC: template struct is_valid_class_option : detail::any_of, is_subtype, is_base> {}; public: using type = type_; using type_alias = detail::exactly_one_t; constexpr static bool has_alias = !std::is_void::value; using holder_type = detail::exactly_one_t, options...>; static_assert(detail::all_of...>::value, "Unknown/invalid class_ template parameters provided"); static_assert(!has_alias || std::is_polymorphic::value, "Cannot use an alias class with a non-polymorphic type"); PYBIND11_OBJECT(class_, generic_type, PyType_Check) template class_(handle scope, const char *name, const Extra &...extra) { using namespace detail; // MI can only be specified via class_ template options, not constructor parameters static_assert( none_of...>::value || // no base class arguments, or: (constexpr_sum(is_pyobject::value...) == 1 && // Exactly one base constexpr_sum(is_base::value...) == 0 && // no template option bases // no multiple_inheritance attr none_of...>::value), "Error: multiple inheritance bases must be specified via class_ template options"); type_record record; record.scope = scope; record.name = name; record.type = &typeid(type); record.type_size = sizeof(conditional_t); record.type_align = alignof(conditional_t &); record.holder_size = sizeof(holder_type); record.init_instance = init_instance; record.dealloc = dealloc; record.default_holder = detail::is_instantiation::value; set_operator_new(&record); /* Register base classes specified via template arguments to class_, if any */ PYBIND11_EXPAND_SIDE_EFFECTS(add_base(record)); /* Process optional arguments, if any */ process_attributes::init(extra..., &record); generic_type::initialize(record); if (has_alias) { auto &instances = record.module_local ? get_local_internals().registered_types_cpp : get_internals().registered_types_cpp; instances[std::type_index(typeid(type_alias))] = instances[std::type_index(typeid(type))]; } } template ::value, int> = 0> static void add_base(detail::type_record &rec) { rec.add_base(typeid(Base), [](void *src) -> void * { return static_cast(reinterpret_cast(src)); }); } template ::value, int> = 0> static void add_base(detail::type_record &) {} template class_ &def(const char *name_, Func &&f, const Extra &...extra) { cpp_function cf(method_adaptor(std::forward(f)), name(name_), is_method(*this), sibling(getattr(*this, name_, none())), extra...); add_class_method(*this, name_, cf); return *this; } template class_ &def_static(const char *name_, Func &&f, const Extra &...extra) { static_assert(!std::is_member_function_pointer::value, "def_static(...) called with a non-static member function pointer"); cpp_function cf(std::forward(f), name(name_), scope(*this), sibling(getattr(*this, name_, none())), extra...); auto cf_name = cf.name(); attr(std::move(cf_name)) = staticmethod(std::move(cf)); return *this; } template = 0> class_ &def(const T &op, const Extra &...extra) { op.execute(*this, extra...); return *this; } template = 0> class_ &def_cast(const T &op, const Extra &...extra) { op.execute_cast(*this, extra...); return *this; } template class_ &def(const detail::initimpl::constructor &init, const Extra &...extra) { PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(init); init.execute(*this, extra...); return *this; } template class_ &def(const detail::initimpl::alias_constructor &init, const Extra &...extra) { PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(init); init.execute(*this, extra...); return *this; } template class_ &def(detail::initimpl::factory &&init, const Extra &...extra) { std::move(init).execute(*this, extra...); return *this; } template class_ &def(detail::initimpl::pickle_factory &&pf, const Extra &...extra) { std::move(pf).execute(*this, extra...); return *this; } template class_ &def_buffer(Func &&func) { struct capture { Func func; }; auto *ptr = new capture{std::forward(func)}; install_buffer_funcs( [](PyObject *obj, void *ptr) -> buffer_info * { detail::make_caster caster; if (!caster.load(obj, false)) { return nullptr; } return new buffer_info(((capture *) ptr)->func(std::move(caster))); }, ptr); weakref(m_ptr, cpp_function([ptr](handle wr) { delete ptr; wr.dec_ref(); })) .release(); return *this; } template class_ &def_buffer(Return (Class::*func)(Args...)) { return def_buffer([func](type &obj) { return (obj.*func)(); }); } template class_ &def_buffer(Return (Class::*func)(Args...) const) { return def_buffer([func](const type &obj) { return (obj.*func)(); }); } template class_ &def_readwrite(const char *name, D C::*pm, const Extra &...extra) { static_assert(std::is_same::value || std::is_base_of::value, "def_readwrite() requires a class member (or base class member)"); cpp_function fget([pm](const type &c) -> const D & { return c.*pm; }, is_method(*this)), fset([pm](type &c, const D &value) { c.*pm = value; }, is_method(*this)); def_property(name, fget, fset, return_value_policy::reference_internal, extra...); return *this; } template class_ &def_readonly(const char *name, const D C::*pm, const Extra &...extra) { static_assert(std::is_same::value || std::is_base_of::value, "def_readonly() requires a class member (or base class member)"); cpp_function fget([pm](const type &c) -> const D & { return c.*pm; }, is_method(*this)); def_property_readonly(name, fget, return_value_policy::reference_internal, extra...); return *this; } template class_ &def_readwrite_static(const char *name, D *pm, const Extra &...extra) { cpp_function fget([pm](const object &) -> const D & { return *pm; }, scope(*this)), fset([pm](const object &, const D &value) { *pm = value; }, scope(*this)); def_property_static(name, fget, fset, return_value_policy::reference, extra...); return *this; } template class_ &def_readonly_static(const char *name, const D *pm, const Extra &...extra) { cpp_function fget([pm](const object &) -> const D & { return *pm; }, scope(*this)); def_property_readonly_static(name, fget, return_value_policy::reference, extra...); return *this; } /// Uses return_value_policy::reference_internal by default template class_ &def_property_readonly(const char *name, const Getter &fget, const Extra &...extra) { return def_property_readonly(name, cpp_function(method_adaptor(fget)), return_value_policy::reference_internal, extra...); } /// Uses cpp_function's return_value_policy by default template class_ & def_property_readonly(const char *name, const cpp_function &fget, const Extra &...extra) { return def_property(name, fget, nullptr, extra...); } /// Uses return_value_policy::reference by default template class_ & def_property_readonly_static(const char *name, const Getter &fget, const Extra &...extra) { return def_property_readonly_static( name, cpp_function(fget), return_value_policy::reference, extra...); } /// Uses cpp_function's return_value_policy by default template class_ &def_property_readonly_static(const char *name, const cpp_function &fget, const Extra &...extra) { return def_property_static(name, fget, nullptr, extra...); } /// Uses return_value_policy::reference_internal by default template class_ & def_property(const char *name, const Getter &fget, const Setter &fset, const Extra &...extra) { return def_property(name, fget, cpp_function(method_adaptor(fset)), extra...); } template class_ &def_property(const char *name, const Getter &fget, const cpp_function &fset, const Extra &...extra) { return def_property(name, cpp_function(method_adaptor(fget)), fset, return_value_policy::reference_internal, extra...); } /// Uses cpp_function's return_value_policy by default template class_ &def_property(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra &...extra) { return def_property_static(name, fget, fset, is_method(*this), extra...); } /// Uses return_value_policy::reference by default template class_ &def_property_static(const char *name, const Getter &fget, const cpp_function &fset, const Extra &...extra) { return def_property_static( name, cpp_function(fget), fset, return_value_policy::reference, extra...); } /// Uses cpp_function's return_value_policy by default template class_ &def_property_static(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra &...extra) { static_assert(0 == detail::constexpr_sum(std::is_base_of::value...), "Argument annotations are not allowed for properties"); auto rec_fget = get_function_record(fget), rec_fset = get_function_record(fset); auto *rec_active = rec_fget; if (rec_fget) { char *doc_prev = rec_fget->doc; /* 'extra' field may include a property-specific documentation string */ detail::process_attributes::init(extra..., rec_fget); if (rec_fget->doc && rec_fget->doc != doc_prev) { std::free(doc_prev); rec_fget->doc = PYBIND11_COMPAT_STRDUP(rec_fget->doc); } } if (rec_fset) { char *doc_prev = rec_fset->doc; detail::process_attributes::init(extra..., rec_fset); if (rec_fset->doc && rec_fset->doc != doc_prev) { std::free(doc_prev); rec_fset->doc = PYBIND11_COMPAT_STRDUP(rec_fset->doc); } if (!rec_active) { rec_active = rec_fset; } } def_property_static_impl(name, fget, fset, rec_active); return *this; } private: /// Initialize holder object, variant 1: object derives from enable_shared_from_this template static void init_holder(detail::instance *inst, detail::value_and_holder &v_h, const holder_type * /* unused */, const std::enable_shared_from_this * /* dummy */) { auto sh = std::dynamic_pointer_cast( detail::try_get_shared_from_this(v_h.value_ptr())); if (sh) { new (std::addressof(v_h.holder())) holder_type(std::move(sh)); v_h.set_holder_constructed(); } if (!v_h.holder_constructed() && inst->owned) { new (std::addressof(v_h.holder())) holder_type(v_h.value_ptr()); v_h.set_holder_constructed(); } } static void init_holder_from_existing(const detail::value_and_holder &v_h, const holder_type *holder_ptr, std::true_type /*is_copy_constructible*/) { new (std::addressof(v_h.holder())) holder_type(*reinterpret_cast(holder_ptr)); } static void init_holder_from_existing(const detail::value_and_holder &v_h, const holder_type *holder_ptr, std::false_type /*is_copy_constructible*/) { new (std::addressof(v_h.holder())) holder_type(std::move(*const_cast(holder_ptr))); } /// Initialize holder object, variant 2: try to construct from existing holder object, if /// possible static void init_holder(detail::instance *inst, detail::value_and_holder &v_h, const holder_type *holder_ptr, const void * /* dummy -- not enable_shared_from_this) */) { if (holder_ptr) { init_holder_from_existing(v_h, holder_ptr, std::is_copy_constructible()); v_h.set_holder_constructed(); } else if (detail::always_construct_holder::value || inst->owned) { new (std::addressof(v_h.holder())) holder_type(v_h.value_ptr()); v_h.set_holder_constructed(); } } /// Performs instance initialization including constructing a holder and registering the known /// instance. Should be called as soon as the `type` value_ptr is set for an instance. Takes /// an optional pointer to an existing holder to use; if not specified and the instance is /// `.owned`, a new holder will be constructed to manage the value pointer. static void init_instance(detail::instance *inst, const void *holder_ptr) { auto v_h = inst->get_value_and_holder(detail::get_type_info(typeid(type))); if (!v_h.instance_registered()) { register_instance(inst, v_h.value_ptr(), v_h.type); v_h.set_instance_registered(); } init_holder(inst, v_h, (const holder_type *) holder_ptr, v_h.value_ptr()); } /// Deallocates an instance; via holder, if constructed; otherwise via operator delete. static void dealloc(detail::value_and_holder &v_h) { // We could be deallocating because we are cleaning up after a Python exception. // If so, the Python error indicator will be set. We need to clear that before // running the destructor, in case the destructor code calls more Python. // If we don't, the Python API will exit with an exception, and pybind11 will // throw error_already_set from the C++ destructor which is forbidden and triggers // std::terminate(). error_scope scope; if (v_h.holder_constructed()) { v_h.holder().~holder_type(); v_h.set_holder_constructed(false); } else { detail::call_operator_delete( v_h.value_ptr(), v_h.type->type_size, v_h.type->type_align); } v_h.value_ptr() = nullptr; } static detail::function_record *get_function_record(handle h) { h = detail::get_function(h); if (!h) { return nullptr; } handle func_self = PyCFunction_GET_SELF(h.ptr()); if (!func_self) { throw error_already_set(); } if (!isinstance(func_self)) { return nullptr; } auto cap = reinterpret_borrow(func_self); if (!detail::is_function_record_capsule(cap)) { return nullptr; } return cap.get_pointer(); } }; /// Binds an existing constructor taking arguments Args... template detail::initimpl::constructor init() { return {}; } /// Like `init()`, but the instance is always constructed through the alias class (even /// when not inheriting on the Python side). template detail::initimpl::alias_constructor init_alias() { return {}; } /// Binds a factory function as a constructor template > Ret init(Func &&f) { return {std::forward(f)}; } /// Dual-argument factory function: the first function is called when no alias is needed, the /// second when an alias is needed (i.e. due to python-side inheritance). Arguments must be /// identical. template > Ret init(CFunc &&c, AFunc &&a) { return {std::forward(c), std::forward(a)}; } /// Binds pickling functions `__getstate__` and `__setstate__` and ensures that the type /// returned by `__getstate__` is the same as the argument accepted by `__setstate__`. template detail::initimpl::pickle_factory pickle(GetState &&g, SetState &&s) { return {std::forward(g), std::forward(s)}; } PYBIND11_NAMESPACE_BEGIN(detail) inline str enum_name(handle arg) { dict entries = arg.get_type().attr("__entries"); for (auto kv : entries) { if (handle(kv.second[int_(0)]).equal(arg)) { return pybind11::str(kv.first); } } return "???"; } struct enum_base { enum_base(const handle &base, const handle &parent) : m_base(base), m_parent(parent) {} PYBIND11_NOINLINE void init(bool is_arithmetic, bool is_convertible) { m_base.attr("__entries") = dict(); auto property = handle((PyObject *) &PyProperty_Type); auto static_property = handle((PyObject *) get_internals().static_property_type); m_base.attr("__repr__") = cpp_function( [](const object &arg) -> str { handle type = type::handle_of(arg); object type_name = type.attr("__name__"); return pybind11::str("<{}.{}: {}>") .format(std::move(type_name), enum_name(arg), int_(arg)); }, name("__repr__"), is_method(m_base)); m_base.attr("name") = property(cpp_function(&enum_name, name("name"), is_method(m_base))); m_base.attr("__str__") = cpp_function( [](handle arg) -> str { object type_name = type::handle_of(arg).attr("__name__"); return pybind11::str("{}.{}").format(std::move(type_name), enum_name(arg)); }, name("name"), is_method(m_base)); if (options::show_enum_members_docstring()) { m_base.attr("__doc__") = static_property( cpp_function( [](handle arg) -> std::string { std::string docstring; dict entries = arg.attr("__entries"); if (((PyTypeObject *) arg.ptr())->tp_doc) { docstring += std::string( reinterpret_cast(arg.ptr())->tp_doc); docstring += "\n\n"; } docstring += "Members:"; for (auto kv : entries) { auto key = std::string(pybind11::str(kv.first)); auto comment = kv.second[int_(1)]; docstring += "\n\n "; docstring += key; if (!comment.is_none()) { docstring += " : "; docstring += pybind11::str(comment).cast(); } } return docstring; }, name("__doc__")), none(), none(), ""); } m_base.attr("__members__") = static_property(cpp_function( [](handle arg) -> dict { dict entries = arg.attr("__entries"), m; for (auto kv : entries) { m[kv.first] = kv.second[int_(0)]; } return m; }, name("__members__")), none(), none(), ""); #define PYBIND11_ENUM_OP_STRICT(op, expr, strict_behavior) \ m_base.attr(op) = cpp_function( \ [](const object &a, const object &b) { \ if (!type::handle_of(a).is(type::handle_of(b))) \ strict_behavior; /* NOLINT(bugprone-macro-parentheses) */ \ return expr; \ }, \ name(op), \ is_method(m_base), \ arg("other")) #define PYBIND11_ENUM_OP_CONV(op, expr) \ m_base.attr(op) = cpp_function( \ [](const object &a_, const object &b_) { \ int_ a(a_), b(b_); \ return expr; \ }, \ name(op), \ is_method(m_base), \ arg("other")) #define PYBIND11_ENUM_OP_CONV_LHS(op, expr) \ m_base.attr(op) = cpp_function( \ [](const object &a_, const object &b) { \ int_ a(a_); \ return expr; \ }, \ name(op), \ is_method(m_base), \ arg("other")) if (is_convertible) { PYBIND11_ENUM_OP_CONV_LHS("__eq__", !b.is_none() && a.equal(b)); PYBIND11_ENUM_OP_CONV_LHS("__ne__", b.is_none() || !a.equal(b)); if (is_arithmetic) { PYBIND11_ENUM_OP_CONV("__lt__", a < b); PYBIND11_ENUM_OP_CONV("__gt__", a > b); PYBIND11_ENUM_OP_CONV("__le__", a <= b); PYBIND11_ENUM_OP_CONV("__ge__", a >= b); PYBIND11_ENUM_OP_CONV("__and__", a & b); PYBIND11_ENUM_OP_CONV("__rand__", a & b); PYBIND11_ENUM_OP_CONV("__or__", a | b); PYBIND11_ENUM_OP_CONV("__ror__", a | b); PYBIND11_ENUM_OP_CONV("__xor__", a ^ b); PYBIND11_ENUM_OP_CONV("__rxor__", a ^ b); m_base.attr("__invert__") = cpp_function([](const object &arg) { return ~(int_(arg)); }, name("__invert__"), is_method(m_base)); } } else { PYBIND11_ENUM_OP_STRICT("__eq__", int_(a).equal(int_(b)), return false); PYBIND11_ENUM_OP_STRICT("__ne__", !int_(a).equal(int_(b)), return true); if (is_arithmetic) { #define PYBIND11_THROW throw type_error("Expected an enumeration of matching type!"); PYBIND11_ENUM_OP_STRICT("__lt__", int_(a) < int_(b), PYBIND11_THROW); PYBIND11_ENUM_OP_STRICT("__gt__", int_(a) > int_(b), PYBIND11_THROW); PYBIND11_ENUM_OP_STRICT("__le__", int_(a) <= int_(b), PYBIND11_THROW); PYBIND11_ENUM_OP_STRICT("__ge__", int_(a) >= int_(b), PYBIND11_THROW); #undef PYBIND11_THROW } } #undef PYBIND11_ENUM_OP_CONV_LHS #undef PYBIND11_ENUM_OP_CONV #undef PYBIND11_ENUM_OP_STRICT m_base.attr("__getstate__") = cpp_function( [](const object &arg) { return int_(arg); }, name("__getstate__"), is_method(m_base)); m_base.attr("__hash__") = cpp_function( [](const object &arg) { return int_(arg); }, name("__hash__"), is_method(m_base)); } PYBIND11_NOINLINE void value(char const *name_, object value, const char *doc = nullptr) { dict entries = m_base.attr("__entries"); str name(name_); if (entries.contains(name)) { std::string type_name = (std::string) str(m_base.attr("__name__")); throw value_error(std::move(type_name) + ": element \"" + std::string(name_) + "\" already exists!"); } entries[name] = pybind11::make_tuple(value, doc); m_base.attr(std::move(name)) = std::move(value); } PYBIND11_NOINLINE void export_values() { dict entries = m_base.attr("__entries"); for (auto kv : entries) { m_parent.attr(kv.first) = kv.second[int_(0)]; } } handle m_base; handle m_parent; }; template struct equivalent_integer {}; template <> struct equivalent_integer { using type = int8_t; }; template <> struct equivalent_integer { using type = uint8_t; }; template <> struct equivalent_integer { using type = int16_t; }; template <> struct equivalent_integer { using type = uint16_t; }; template <> struct equivalent_integer { using type = int32_t; }; template <> struct equivalent_integer { using type = uint32_t; }; template <> struct equivalent_integer { using type = int64_t; }; template <> struct equivalent_integer { using type = uint64_t; }; template using equivalent_integer_t = typename equivalent_integer::value, sizeof(IntLike)>::type; PYBIND11_NAMESPACE_END(detail) /// Binds C++ enumerations and enumeration classes to Python template class enum_ : public class_ { public: using Base = class_; using Base::attr; using Base::def; using Base::def_property_readonly; using Base::def_property_readonly_static; using Underlying = typename std::underlying_type::type; // Scalar is the integer representation of underlying type using Scalar = detail::conditional_t, std::is_same>::value, detail::equivalent_integer_t, Underlying>; template enum_(const handle &scope, const char *name, const Extra &...extra) : class_(scope, name, extra...), m_base(*this, scope) { constexpr bool is_arithmetic = detail::any_of...>::value; constexpr bool is_convertible = std::is_convertible::value; m_base.init(is_arithmetic, is_convertible); def(init([](Scalar i) { return static_cast(i); }), arg("value")); def_property_readonly("value", [](Type value) { return (Scalar) value; }); def("__int__", [](Type value) { return (Scalar) value; }); def("__index__", [](Type value) { return (Scalar) value; }); attr("__setstate__") = cpp_function( [](detail::value_and_holder &v_h, Scalar arg) { detail::initimpl::setstate( v_h, static_cast(arg), Py_TYPE(v_h.inst) != v_h.type->type); }, detail::is_new_style_constructor(), pybind11::name("__setstate__"), is_method(*this), arg("state")); } /// Export enumeration entries into the parent scope enum_ &export_values() { m_base.export_values(); return *this; } /// Add an enumeration entry enum_ &value(char const *name, Type value, const char *doc = nullptr) { m_base.value(name, pybind11::cast(value, return_value_policy::copy), doc); return *this; } private: detail::enum_base m_base; }; PYBIND11_NAMESPACE_BEGIN(detail) PYBIND11_NOINLINE void keep_alive_impl(handle nurse, handle patient) { if (!nurse || !patient) { pybind11_fail("Could not activate keep_alive!"); } if (patient.is_none() || nurse.is_none()) { return; /* Nothing to keep alive or nothing to be kept alive by */ } auto tinfo = all_type_info(Py_TYPE(nurse.ptr())); if (!tinfo.empty()) { /* It's a pybind-registered type, so we can store the patient in the * internal list. */ add_patient(nurse.ptr(), patient.ptr()); } else { /* Fall back to clever approach based on weak references taken from * Boost.Python. This is not used for pybind-registered types because * the objects can be destroyed out-of-order in a GC pass. */ cpp_function disable_lifesupport([patient](handle weakref) { patient.dec_ref(); weakref.dec_ref(); }); weakref wr(nurse, disable_lifesupport); patient.inc_ref(); /* reference patient and leak the weak reference */ (void) wr.release(); } } PYBIND11_NOINLINE void keep_alive_impl(size_t Nurse, size_t Patient, function_call &call, handle ret) { auto get_arg = [&](size_t n) { if (n == 0) { return ret; } if (n == 1 && call.init_self) { return call.init_self; } if (n <= call.args.size()) { return call.args[n - 1]; } return handle(); }; keep_alive_impl(get_arg(Nurse), get_arg(Patient)); } inline std::pair all_type_info_get_cache(PyTypeObject *type) { auto res = get_internals() .registered_types_py #ifdef __cpp_lib_unordered_map_try_emplace .try_emplace(type); #else .emplace(type, std::vector()); #endif if (res.second) { // New cache entry created; set up a weak reference to automatically remove it if the type // gets destroyed: weakref((PyObject *) type, cpp_function([type](handle wr) { get_internals().registered_types_py.erase(type); // TODO consolidate the erasure code in pybind11_meta_dealloc() in class.h auto &cache = get_internals().inactive_override_cache; for (auto it = cache.begin(), last = cache.end(); it != last;) { if (it->first == reinterpret_cast(type)) { it = cache.erase(it); } else { ++it; } } wr.dec_ref(); })) .release(); } return res; } /* There are a large number of apparently unused template arguments because * each combination requires a separate py::class_ registration. */ template struct iterator_state { Iterator it; Sentinel end; bool first_or_done; }; // Note: these helpers take the iterator by non-const reference because some // iterators in the wild can't be dereferenced when const. The & after Iterator // is required for MSVC < 16.9. SFINAE cannot be reused for result_type due to // bugs in ICC, NVCC, and PGI compilers. See PR #3293. template ())> struct iterator_access { using result_type = decltype(*std::declval()); // NOLINTNEXTLINE(readability-const-return-type) // PR #3263 result_type operator()(Iterator &it) const { return *it; } }; template ()).first)> class iterator_key_access { private: using pair_type = decltype(*std::declval()); public: /* If either the pair itself or the element of the pair is a reference, we * want to return a reference, otherwise a value. When the decltype * expression is parenthesized it is based on the value category of the * expression; otherwise it is the declared type of the pair member. * The use of declval in the second branch rather than directly * using *std::declval() is a workaround for nvcc * (it's not used in the first branch because going via decltype and back * through declval does not perfectly preserve references). */ using result_type = conditional_t())>::value, decltype(((*std::declval()).first)), decltype(std::declval().first)>; result_type operator()(Iterator &it) const { return (*it).first; } }; template ()).second)> class iterator_value_access { private: using pair_type = decltype(*std::declval()); public: using result_type = conditional_t())>::value, decltype(((*std::declval()).second)), decltype(std::declval().second)>; result_type operator()(Iterator &it) const { return (*it).second; } }; template iterator make_iterator_impl(Iterator first, Sentinel last, Extra &&...extra) { using state = detail::iterator_state; // TODO: state captures only the types of Extra, not the values if (!detail::get_type_info(typeid(state), false)) { class_(handle(), "iterator", pybind11::module_local()) .def("__iter__", [](state &s) -> state & { return s; }) .def( "__next__", [](state &s) -> ValueType { if (!s.first_or_done) { ++s.it; } else { s.first_or_done = false; } if (s.it == s.end) { s.first_or_done = true; throw stop_iteration(); } return Access()(s.it); // NOLINTNEXTLINE(readability-const-return-type) // PR #3263 }, std::forward(extra)..., Policy); } return cast(state{first, last, true}); } PYBIND11_NAMESPACE_END(detail) /// Makes a python iterator from a first and past-the-end C++ InputIterator. template ::result_type, typename... Extra> iterator make_iterator(Iterator first, Sentinel last, Extra &&...extra) { return detail::make_iterator_impl, Policy, Iterator, Sentinel, ValueType, Extra...>(first, last, std::forward(extra)...); } /// Makes a python iterator over the keys (`.first`) of a iterator over pairs from a /// first and past-the-end InputIterator. template ::result_type, typename... Extra> iterator make_key_iterator(Iterator first, Sentinel last, Extra &&...extra) { return detail::make_iterator_impl, Policy, Iterator, Sentinel, KeyType, Extra...>(first, last, std::forward(extra)...); } /// Makes a python iterator over the values (`.second`) of a iterator over pairs from a /// first and past-the-end InputIterator. template ::result_type, typename... Extra> iterator make_value_iterator(Iterator first, Sentinel last, Extra &&...extra) { return detail::make_iterator_impl, Policy, Iterator, Sentinel, ValueType, Extra...>(first, last, std::forward(extra)...); } /// Makes an iterator over values of an stl container or other container supporting /// `std::begin()`/`std::end()` template iterator make_iterator(Type &value, Extra &&...extra) { return make_iterator( std::begin(value), std::end(value), std::forward(extra)...); } /// Makes an iterator over the keys (`.first`) of a stl map-like container supporting /// `std::begin()`/`std::end()` template iterator make_key_iterator(Type &value, Extra &&...extra) { return make_key_iterator( std::begin(value), std::end(value), std::forward(extra)...); } /// Makes an iterator over the values (`.second`) of a stl map-like container supporting /// `std::begin()`/`std::end()` template iterator make_value_iterator(Type &value, Extra &&...extra) { return make_value_iterator( std::begin(value), std::end(value), std::forward(extra)...); } template void implicitly_convertible() { struct set_flag { bool &flag; explicit set_flag(bool &flag_) : flag(flag_) { flag_ = true; } ~set_flag() { flag = false; } }; auto implicit_caster = [](PyObject *obj, PyTypeObject *type) -> PyObject * { static bool currently_used = false; if (currently_used) { // implicit conversions are non-reentrant return nullptr; } set_flag flag_helper(currently_used); if (!detail::make_caster().load(obj, false)) { return nullptr; } tuple args(1); args[0] = obj; PyObject *result = PyObject_Call((PyObject *) type, args.ptr(), nullptr); if (result == nullptr) { PyErr_Clear(); } return result; }; if (auto *tinfo = detail::get_type_info(typeid(OutputType))) { tinfo->implicit_conversions.emplace_back(std::move(implicit_caster)); } else { pybind11_fail("implicitly_convertible: Unable to find type " + type_id()); } } inline void register_exception_translator(ExceptionTranslator &&translator) { detail::get_internals().registered_exception_translators.push_front( std::forward(translator)); } /** * Add a new module-local exception translator. Locally registered functions * will be tried before any globally registered exception translators, which * will only be invoked if the module-local handlers do not deal with * the exception. */ inline void register_local_exception_translator(ExceptionTranslator &&translator) { detail::get_local_internals().registered_exception_translators.push_front( std::forward(translator)); } /** * Wrapper to generate a new Python exception type. * * This should only be used with PyErr_SetString for now. * It is not (yet) possible to use as a py::base. * Template type argument is reserved for future use. */ template class exception : public object { public: exception() = default; exception(handle scope, const char *name, handle base = PyExc_Exception) { std::string full_name = scope.attr("__name__").cast() + std::string(".") + name; m_ptr = PyErr_NewException(const_cast(full_name.c_str()), base.ptr(), nullptr); if (hasattr(scope, "__dict__") && scope.attr("__dict__").contains(name)) { pybind11_fail("Error during initialization: multiple incompatible " "definitions with name \"" + std::string(name) + "\""); } scope.attr(name) = *this; } // Sets the current python exception to this exception object with the given message void operator()(const char *message) { PyErr_SetString(m_ptr, message); } }; PYBIND11_NAMESPACE_BEGIN(detail) // Returns a reference to a function-local static exception object used in the simple // register_exception approach below. (It would be simpler to have the static local variable // directly in register_exception, but that makes clang <3.5 segfault - issue #1349). template exception &get_exception_object() { static exception ex; return ex; } // Helper function for register_exception and register_local_exception template exception & register_exception_impl(handle scope, const char *name, handle base, bool isLocal) { auto &ex = detail::get_exception_object(); if (!ex) { ex = exception(scope, name, base); } auto register_func = isLocal ? ®ister_local_exception_translator : ®ister_exception_translator; register_func([](std::exception_ptr p) { if (!p) { return; } try { std::rethrow_exception(p); } catch (const CppException &e) { detail::get_exception_object()(e.what()); } }); return ex; } PYBIND11_NAMESPACE_END(detail) /** * Registers a Python exception in `m` of the given `name` and installs a translator to * translate the C++ exception to the created Python exception using the what() method. * This is intended for simple exception translations; for more complex translation, register the * exception object and translator directly. */ template exception & register_exception(handle scope, const char *name, handle base = PyExc_Exception) { return detail::register_exception_impl(scope, name, base, false /* isLocal */); } /** * Registers a Python exception in `m` of the given `name` and installs a translator to * translate the C++ exception to the created Python exception using the what() method. * This translator will only be used for exceptions that are thrown in this module and will be * tried before global exception translators, including those registered with register_exception. * This is intended for simple exception translations; for more complex translation, register the * exception object and translator directly. */ template exception & register_local_exception(handle scope, const char *name, handle base = PyExc_Exception) { return detail::register_exception_impl(scope, name, base, true /* isLocal */); } PYBIND11_NAMESPACE_BEGIN(detail) PYBIND11_NOINLINE void print(const tuple &args, const dict &kwargs) { auto strings = tuple(args.size()); for (size_t i = 0; i < args.size(); ++i) { strings[i] = str(args[i]); } auto sep = kwargs.contains("sep") ? kwargs["sep"] : str(" "); auto line = sep.attr("join")(std::move(strings)); object file; if (kwargs.contains("file")) { file = kwargs["file"].cast(); } else { try { file = module_::import("sys").attr("stdout"); } catch (const error_already_set &) { /* If print() is called from code that is executed as part of garbage collection during interpreter shutdown, importing 'sys' can fail. Give up rather than crashing the interpreter in this case. */ return; } } auto write = file.attr("write"); write(std::move(line)); write(kwargs.contains("end") ? kwargs["end"] : str("\n")); if (kwargs.contains("flush") && kwargs["flush"].cast()) { file.attr("flush")(); } } PYBIND11_NAMESPACE_END(detail) template void print(Args &&...args) { auto c = detail::collect_arguments(std::forward(args)...); detail::print(c.args(), c.kwargs()); } inline void error_already_set::m_fetched_error_deleter(detail::error_fetch_and_normalize *raw_ptr) { gil_scoped_acquire gil; error_scope scope; delete raw_ptr; } inline const char *error_already_set::what() const noexcept { gil_scoped_acquire gil; error_scope scope; return m_fetched_error->error_string().c_str(); } PYBIND11_NAMESPACE_BEGIN(detail) inline function get_type_override(const void *this_ptr, const type_info *this_type, const char *name) { handle self = get_object_handle(this_ptr, this_type); if (!self) { return function(); } handle type = type::handle_of(self); auto key = std::make_pair(type.ptr(), name); /* Cache functions that aren't overridden in Python to avoid many costly Python dictionary lookups below */ auto &cache = get_internals().inactive_override_cache; if (cache.find(key) != cache.end()) { return function(); } function override = getattr(self, name, function()); if (override.is_cpp_function()) { cache.insert(std::move(key)); return function(); } /* Don't call dispatch code if invoked from overridden function. Unfortunately this doesn't work on PyPy. */ #if !defined(PYPY_VERSION) # if PY_VERSION_HEX >= 0x03090000 PyFrameObject *frame = PyThreadState_GetFrame(PyThreadState_Get()); if (frame != nullptr) { PyCodeObject *f_code = PyFrame_GetCode(frame); // f_code is guaranteed to not be NULL if ((std::string) str(f_code->co_name) == name && f_code->co_argcount > 0) { PyObject *locals = PyEval_GetLocals(); if (locals != nullptr) { PyObject *co_varnames = PyObject_GetAttrString((PyObject *) f_code, "co_varnames"); PyObject *self_arg = PyTuple_GET_ITEM(co_varnames, 0); Py_DECREF(co_varnames); PyObject *self_caller = dict_getitem(locals, self_arg); if (self_caller == self.ptr()) { Py_DECREF(f_code); Py_DECREF(frame); return function(); } } } Py_DECREF(f_code); Py_DECREF(frame); } # else PyFrameObject *frame = PyThreadState_Get()->frame; if (frame != nullptr && (std::string) str(frame->f_code->co_name) == name && frame->f_code->co_argcount > 0) { PyFrame_FastToLocals(frame); PyObject *self_caller = dict_getitem(frame->f_locals, PyTuple_GET_ITEM(frame->f_code->co_varnames, 0)); if (self_caller == self.ptr()) { return function(); } } # endif #else /* PyPy currently doesn't provide a detailed cpyext emulation of frame objects, so we have to emulate this using Python. This is going to be slow..*/ dict d; d["self"] = self; d["name"] = pybind11::str(name); PyObject *result = PyRun_String("import inspect\n" "frame = inspect.currentframe()\n" "if frame is not None:\n" " frame = frame.f_back\n" " if frame is not None and str(frame.f_code.co_name) == name and " "frame.f_code.co_argcount > 0:\n" " self_caller = frame.f_locals[frame.f_code.co_varnames[0]]\n" " if self_caller == self:\n" " self = None\n", Py_file_input, d.ptr(), d.ptr()); if (result == nullptr) throw error_already_set(); Py_DECREF(result); if (d["self"].is_none()) return function(); #endif return override; } PYBIND11_NAMESPACE_END(detail) /** \rst Try to retrieve a python method by the provided name from the instance pointed to by the this_ptr. :this_ptr: The pointer to the object the overridden method should be retrieved for. This should be the first non-trampoline class encountered in the inheritance chain. :name: The name of the overridden Python method to retrieve. :return: The Python method by this name from the object or an empty function wrapper. \endrst */ template function get_override(const T *this_ptr, const char *name) { auto *tinfo = detail::get_type_info(typeid(T)); return tinfo ? detail::get_type_override(this_ptr, tinfo, name) : function(); } #define PYBIND11_OVERRIDE_IMPL(ret_type, cname, name, ...) \ do { \ pybind11::gil_scoped_acquire gil; \ pybind11::function override \ = pybind11::get_override(static_cast(this), name); \ if (override) { \ auto o = override(__VA_ARGS__); \ if (pybind11::detail::cast_is_temporary_value_reference::value) { \ static pybind11::detail::override_caster_t caster; \ return pybind11::detail::cast_ref(std::move(o), caster); \ } \ return pybind11::detail::cast_safe(std::move(o)); \ } \ } while (false) /** \rst Macro to populate the virtual method in the trampoline class. This macro tries to look up a method named 'fn' from the Python side, deals with the :ref:`gil` and necessary argument conversions to call this method and return the appropriate type. See :ref:`overriding_virtuals` for more information. This macro should be used when the method name in C is not the same as the method name in Python. For example with `__str__`. .. code-block:: cpp std::string toString() override { PYBIND11_OVERRIDE_NAME( std::string, // Return type (ret_type) Animal, // Parent class (cname) "__str__", // Name of method in Python (name) toString, // Name of function in C++ (fn) ); } \endrst */ #define PYBIND11_OVERRIDE_NAME(ret_type, cname, name, fn, ...) \ do { \ PYBIND11_OVERRIDE_IMPL(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, __VA_ARGS__); \ return cname::fn(__VA_ARGS__); \ } while (false) /** \rst Macro for pure virtual functions, this function is identical to :c:macro:`PYBIND11_OVERRIDE_NAME`, except that it throws if no override can be found. \endrst */ #define PYBIND11_OVERRIDE_PURE_NAME(ret_type, cname, name, fn, ...) \ do { \ PYBIND11_OVERRIDE_IMPL(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, __VA_ARGS__); \ pybind11::pybind11_fail( \ "Tried to call pure virtual function \"" PYBIND11_STRINGIFY(cname) "::" name "\""); \ } while (false) /** \rst Macro to populate the virtual method in the trampoline class. This macro tries to look up the method from the Python side, deals with the :ref:`gil` and necessary argument conversions to call this method and return the appropriate type. This macro should be used if the method name in C and in Python are identical. See :ref:`overriding_virtuals` for more information. .. code-block:: cpp class PyAnimal : public Animal { public: // Inherit the constructors using Animal::Animal; // Trampoline (need one for each virtual function) std::string go(int n_times) override { PYBIND11_OVERRIDE_PURE( std::string, // Return type (ret_type) Animal, // Parent class (cname) go, // Name of function in C++ (must match Python name) (fn) n_times // Argument(s) (...) ); } }; \endrst */ #define PYBIND11_OVERRIDE(ret_type, cname, fn, ...) \ PYBIND11_OVERRIDE_NAME(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), #fn, fn, __VA_ARGS__) /** \rst Macro for pure virtual functions, this function is identical to :c:macro:`PYBIND11_OVERRIDE`, except that it throws if no override can be found. \endrst */ #define PYBIND11_OVERRIDE_PURE(ret_type, cname, fn, ...) \ PYBIND11_OVERRIDE_PURE_NAME( \ PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), #fn, fn, __VA_ARGS__) // Deprecated versions PYBIND11_DEPRECATED("get_type_overload has been deprecated") inline function get_type_overload(const void *this_ptr, const detail::type_info *this_type, const char *name) { return detail::get_type_override(this_ptr, this_type, name); } template inline function get_overload(const T *this_ptr, const char *name) { return get_override(this_ptr, name); } #define PYBIND11_OVERLOAD_INT(ret_type, cname, name, ...) \ PYBIND11_OVERRIDE_IMPL(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, __VA_ARGS__) #define PYBIND11_OVERLOAD_NAME(ret_type, cname, name, fn, ...) \ PYBIND11_OVERRIDE_NAME(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, fn, __VA_ARGS__) #define PYBIND11_OVERLOAD_PURE_NAME(ret_type, cname, name, fn, ...) \ PYBIND11_OVERRIDE_PURE_NAME( \ PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, fn, __VA_ARGS__); #define PYBIND11_OVERLOAD(ret_type, cname, fn, ...) \ PYBIND11_OVERRIDE(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), fn, __VA_ARGS__) #define PYBIND11_OVERLOAD_PURE(ret_type, cname, fn, ...) \ PYBIND11_OVERRIDE_PURE(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), fn, __VA_ARGS__); PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)