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Abstract

The rapid development of high performance computing has pushed the computational

electromagnetics(CEM) towards high accuracy, high fidelity and extreme computa-

tional scales. There is a great need for existing CEM solvers to have enhanced

parallelism and scaling capability. The purpose of this dissertation is to investi-

gate advanced parallel algorithms for both frequency and time domain solvers. In

frequency domain, this work first develop the underpinnings of parallel precondition-

ing technique and high-order transmission condition in the context of multi-solver

scheme. The result is a computing resource-aware and implementation wise compact

solver. Then this work targeted at developing efficient algorithms for cases where

iteration of simulations,e.g. parameter sweep, is necessary. The proposed platform

Green’s function method can effectively reduce the turn-around time by exploiting

reusable matrices.
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In time domain, due to the ever-increasing sophistication in EM systems, a typi-

cal transient simulation may require many time steps. Most current transient solvers

exploit parallelism in spatial domain which it is not trivial to sustain parallel scaling

capability in high level. This work,therefore, provided a new perspective in paral-

lelism, parallel-in-time(PIT). The problem is first decomposed based on superposition

principle and corresponding effective integration methods are developed. Next, a hy-

brid parallel scheme, space-time building block method, which is based on reduced

order model, is proposed for applications like meta-material simulation. A improved

scaling efficiency and 3x speed-up is observed in our work. Finally, PIT is extended to

improve scaling efficiency for nonlinear circuit-electromagnetic co-simulations, where

2x better efficiency is achieved by proposed algorithms.
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Chapter 1. Introduction

Computational electromagnetic(EM) becomes essential for design and analysis in

today’s highly complicated engineering environments. A variety of numerical meth-

ods have been developed to analyze different type of problems. In the time-harmonic

regime, surface integral equation(SIE) [1] methods are useful for the solution of large,

impenetrable or homogeneous EN scatterings. Some fast algorithms, such as multi-

level fast multiple method(MLFMA) can achieve good acceleration and near optimal

computational complexity of O(NlogN) [2]. Another widely used method is finite

element method(FEM) [3, 4] as it provides accurate results in dealing with complex

geometric features and material properties.

More recently, many practical interests have been focused on electrically large

object and complicated platform simulations since the ever-growing power of com-

putational capabilities. Among various numerical methods, domain decomposition

methods(DDMs) and multi-solver schemes [5,6] have been introduced to greatly ex-

tend the capability by applying the optimal solvers for each individual subdomains

and formulate inter-subdomain coupling as incident fields.

Over the past decades, time-domain (TD) computational electromagetics (CEM)

methods have also enjoyed considerable success in solving transient and broadband

electromagnetic (EM) problems. The TD nature of these methods, compared to its

frequency domain(FD) counterpart, offers direct and efficient approaches in certain

EM problems where we need to study a transient field effect of an arbitrary time-

signal excitation(e.g. EMC/EMI coupling, ultra-wideband antennas), or the non-

linear circuit-EM interactions. Many TD numerical methods, including finite element

methods [7–13], integral equation methods [14–18], finite difference methods [19–

23], discontinuous Galerkin methods [24–28], pseudospectral method [29–31], finite

integration techniques [32,33], and transmission-line-matrix methods [34] have been

developed. These techniques have been thoroughly tested to be robust and efficient

in a wide range of problems [35–37].
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Chapter 1. Introduction

1.1 Overview

The era of supercomputing has landed as more challenges have come in com-

pany [38]. One highlight in the trend of HPC is that the scale of computing has gone

massively parallel instead of clock speed going significantly faster. The development

of CEM algorithms should also keep up with the pace. As the power of high per-

formance computing(HPC) grows, the demand for efficient and parallel solvers also

stands out. We can approach the challenging problems in CEM from the perspective

of increasing complexity.

The first scenario is the single frequency simulation which is often raised in an-

tenna RCS evaluation and object scattering analysis. Since the CAD models are built

based on the awareness of geometry and materials, divide-and-conquer is mainly con-

sidered for parallelism. One of the most successful framework is multi-solver domain

decomposition(MSDDM) where each submain is solver by separate solvers and glued

together by necessary continuity conditions. The partition of subdomain and choice

of solver are often the time manually with prior knowledge. The process should be

as modular as possible for the ease of implementation and plug-in-play components

should be the ideal. Design optimization and iteration are never rare which putting

high demands for simulation-to-result time.

The second scenario is the broad-band response evaluation which show itself

in EMC/EMI application and meta-materials design. Transient behaviors are of

interest. Long term simulation is inevitable for certain resonating structures and

stability is another concern. Lots of work has been done in discretizing PDE such

that more concurrency can be exploited but there is always bottle-neck when the

number of processes grows large. Time integration is sequential in nature by first

look and how to break this nature will be a breakthrough point.

The last scenario comes in when more physics is involved. Electromagnetic circuit

3



Chapter 1. Introduction

Figure 1.1: Overview of challenging problems in CEM

co-simulation is an typical example where non-linearity features. If consider in a

coupled system, different physics may have various scale of evolving rate which could

be translated into stiffness in mathematical language. These level up the difficulties

towards parallelism. The three scenarios and corresponding features and solution

can be found in Figure 1.1.

1.2 Issues to be addressed

The goal for this dissertation is to utilize advanced CEM algorithms to address

most challenging problems in CEM. The contributions can be made from the follow-

ing aspects of needs.

(1) The advance to the next-generation HPC architectures will be achieved by in-

creased concurrency, not increased processor speed. Unfortunately, traditional time-

dependent solvers are typically parallel only in the spatial domain, and advance

time-step by time-step. For example, discontinuous Galerkin(DG) spatial discretiza-
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Chapter 1. Introduction

tion permits us to take advantage of using unstructured high-order finite elements

and some OpenMP/MPI parallelizaton. The sequential-in-time nature of the solvers

may present good parallel scaling when the number of spatial mesh points per core

is large. But the parallel efficiency quickly deteriorates even saturates if the spatial

parallelism has been fully exploited. This issue is known as the strong scaling limit,

which has surfaced an obstacle to achieve exascale parallel performance.

(2) The successful application of DDM in time-harmonic has no alternative in

transient regime. Can we utilize the repetion in both space and time in periodic

structures and create some reusable building blocks becomes a critical issue in further

reduce simulation-to-solution time.

(3) This time-domain hybrid model for Nonlinear circuit-EM cosimulation also

poses some challenges for existing simulation capabilities. (1) Due to the nonlinear

nature of some lump circuit components, the global system become more stiff. The

previously proposed methods, especially thosed steming from linear superposition

principle should fail. (2) Newton-Raphson iterations are required for solving non-

linear system of equation every time the right hand side of ODE system needs to

be evaluted. Unlike linear case where several matrix-vector multiplcations are just

required to forward one step in time, additional computations are inevitable such

as evaluating Jacobian, making tentative searching step and et al. These make for-

warding one time step much slower than linear problems. (3) Multirate nature [39]

of circuit phenomenon and EM physics.

(4) For multi-solver schemes, it should be noticed that the following limitations.

First, the coupling between touching sub-domains only supports Robin-type trans-

mission condition [40,41] because individual subdomain solvers may not be consistent

in structure. This barrier prevents the further enhancement of convergence. Second,

there lacks of a flexible preconditioning technique to be adaptive to the available

parallel computing environment. Existing parallel preconditioners are of Jacobi type

5



Chapter 1. Introduction

but poor in convergence.

(5) The CEM based in-situ antenna design goes beyond just performing a single

simulation. It often needs to perform a number of simulations in order to navigate

highly complex design spaces. Each simulation should complete within at most a

few minutes even a few seconds in an industrial design environment. In the case

where multiple simulations,e.g. parameter sweep, are required, the turn-around time

always get to expensive to afford. Does it exist a technique to significantly shorten the

simulation-to-engineering process by creating some reusable building blocks? Clearly,

fundamental research into innovative mathematics and algorithms are required.

1.3 Outline

This dissertation proposal is organized as follows. Chapter 2 will discuss parallel-

in-time method for transient EM problem. Chapter 3 will result in a novel time-

evolution schemes with parallelism in both space and time. Chapter 4 will address the

extension of parallel in time method in circuit-EM cosimulation. And Chapter 5 will

discuss the parallel and fast methods for solving time-harmonic Maxwell equations

by proposing hybrid preconditioning technique and platform Green’s function. The

future direction and conclusions are discussed in Chapter 6.
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Chapter 2. Parallel in time method for transient electromagnetic analysis

2.1 Introduction

The question to be answered in this chapter is how to incorporate a new level

of parallelism in the temporal dimension, in order to achieve high parallel efficiency

and reduce the time-to-solution on massively distributed and parallel computing

platforms. There have been various efforts to develop time parallel time integration

methods in the applied math community. Examples include waveform relaxation

methods [42–45], parareal methods [46–51], space-time multigrid methods [52, 53],

overlapping domain decomposition methods [54], and parallel deferred correction

framework [55–57]. A recent survey paper can be found in [58]. Nevertheless, the

research field is in many ways on the going. The parallel efficiency is far from

ideal, and the success has been shown primarily for parabolic equations, instead of

hyperbolic equations of this paper’s interests.

To break the sequential barrier, the proposed work exploits the direct parallel-

in-time methodology with a space-time domain decomposition scheme. A pioneer

work, so-called parallel exponential propagation (ParaEXP) was presented [59], and

recently extended to EM wave problems [60, 61]. The contributions of this work

include the efficient, parallel calculation of time-evolution operator, and the fusion

of parallel-in-space and parallel-in-time methods for three-dimensional transient EM

problems. The technique ingredients include the discontinuous Galerkin weak for-

mulation in the spatial domain and the rational Arnoldi approximation of the evo-

lution operator in the temporal domain. The work has two major benefits: (i) it

results in a scalable, parallel time-domain solver with flexible space and time decom-

position scheme; and (ii) it provides a natural way to integrate with many existing

time integration techniques. The capability and performance of the computational

algorithms are illustrated and validated through numerical experiments.
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Chapter 2. Parallel in time method for transient electromagnetic analysis

2.2 Formulation

2.2.1 Discontinuous Galerkin Finite element in Time Do-

main

To illustrate, we consider time-domain Maxwell’s Equations for heterogeneous

linear media in a bounded domain Ω:

ε
∂E

∂t
+ σE−∇×H = −J in Ω× [0, T ], (2.1)

µ
∂H

∂t
+∇× E = M in Ω× [0, T ], (2.2)

E (r, t = 0) = E0, (2.3)

H (r, t = 0) = H0. (2.4)

For the spatial discretization, we briefly outline the discontinuous Galerkin (DG)

finite element method. To formulate the semi-discretized DG for Equation 2.1 and

Equation 2.2, the spatial domain Ω is partitioned into N non-overlapping finite

elements, Ω =
⋃N
i=1Ki. Let V k

h (Ki) denote the space of vectorial Nedelec basis over

element i, the weak formulation is stated as, to find (E,H) ∈ V k
h (Ki) × V k

h (Ki),

such that∫
Ki

w ·
(
∇× E + µ

∂H

∂t
−M

)
dΩ

−
∫
Ki

v ·
(
∇×H− ε∂E

∂t
− σE− J

)
dΩ

+

∫
∂Ki

{{v}} · JHKγds−
∫
∂Ki

{{w}} · JEKγds

+ e

∫
∂Ki

JvKπ · JEKπ + f

∫
∂Ki

JwKπ · JHKπ = 0, i = 1, 2, ...N. (2.5)

where (w,v) ∈ V k
h (Ki) × V k

h (Ki) are the test functions. The above equation is a

sum-up of volume residuals and numerical fluxes on the interfaces (∂Ki) of each

9



Chapter 2. Parallel in time method for transient electromagnetic analysis

element. The numerical flux is essential to allow for discontinuities between ele-

ment, and they are defined as {{u}} = (πτ (ui) + πτ (uj))/2, JuKγ = γτ (ui) + γτ (uj)

and JuKπ = πτ (ui) − πτ (uj), where γτ (ui) = n̂i × ui and πτ (ui) = n̂i × ui × n̂i are

twisted and tangential trace operators, respectively. For special choice of coefficients

e = 1/(2ZΓ) and f = 1/(2YΓ) with ZΓ and YΓ being average impedance and admit-

tance over adjacent elements, we arrive at upwind flux [62, 63] with optimal rate of

convergence(O(h3)) for spatial discretization. [64].

The semi-discrete matrix system can be written as:

MεdE

dt
= −CeE + SeH− f e in Ω, (2.6)

MµdH

dt
= −ShE− ChH + fh in Ω, (2.7)

where Mε,µ and Se,h are element-wise mass matrices and stiffness matrices. Matrices

Ce,h are constructed from DG testing from adjacent elements’ faces and conductive

term. f e,h represent electrical and magnetical source terms.

Concerning the time discretization, a variety of time-stepping schemes have been

investigated, including LeapFrog scheme [65], Runge-Kutta method [66], implicit

schemes [63], the Crank-Nicolson scheme [67], and hybrid implicit-explicit Runge-

Kutta (IMEX-RK) scheme [68].

In a distributed memory HPC environment, the DG discretizations are parti-

tioned into a number of spatial subdomains, which are mapped adaptively to avail-

able Message Passing Interface (MPI) processors; information exchanges are required

only at the boundary between neighboring subdomains. Moreover, individual sub-

domains are allowed to choose their own time-stepping sizes and schemes. The

hybridization of MPI parallelization and local time-stepping strategy has been suc-

cessfully applied to large, multiscale problems with non-uniform, non-conformal dis-

cretizations [26,69,70].

In general, the space-parallel DGTD solver can achieve good parallel efficiency in

10
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weak scaling experiments, but often exhibits limited performance for strong scaling

tests. Namely, as the number of MPI processors for a given transient EM problem

increases, the solution time does not decrease proportionally. The bottleneck is due

to the limited inter-core data transfer bandwidth between processors. The increased

MPI processors lead to increased number of subdomains, which in turn, increase the

inter-core communication. In the following, we will incorporate additional parallelism

in temporal dimension to achieve high parallel efficiency and to reduce the time-to-

solution on large-scale parallel HPC computers.

2.2.2 Temporal Domain Decomposition

Initial value problem

Attributed to the advantages of DG weak formulation, the mass matrices Mε

and Mµ are block diagonal and trivially invertible. Equations Equation 2.6 and

Equation 2.7 can be combined into an equivalent form [71]:

du

dt
= −Au + f̃(t), u(t = 0) = v0, (2.8)

with u(t) = [E(t),H(t)]T, A := M−1S, f̃(t) = M−1f(t), f(t) =
[
f e, fh

]T
is the

excitation term, and v0 is the initial condition. The compact mass and stiffness

matrices are defined by:

M :=

 Mε

Mµ

 , S :=

 Ce −Se

Sh Ch

 . (2.9)

In traditional sequential time-marching algorithms, the solution u is obtained by

advancing time step by time step. To break the sequential barrier, the work extends

11
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the domain decomposition idea to the temporal dimension, resulting in a time-domain

parallel scheme for 3D transient EM problems.

Decomposition of sub-problems

After applying the variation-of-constants formula [72] to Equation 2.8, the semi-

analytical solution can be written as:

u(T ) = exp (−TA) v0 +

∫ T

0

exp (− (T − t)A) f̃(t)dt, (2.10)

where exp (−TA) is the exponential, time-evolution operator and exp (−TA) v0 gives

the homogeneous solution determined solely by the initial condition. The convolution

integral leads to the particular solution due to the complex source term f̃(t).

The key idea of this work is to increase the concurrency in the parallel computing.

Since we have the complete knowledge of the source term, f̃(t), over the entire time

period [0, T ], the source-dependent problem can be solved parallel in time [59]. To

illustrate, we divide the time period into 3 non-overlapping subintervals [0, T/3],

[T/3, 2T/3] and [2T/3, T ], Correspondingly, the source term is decomposed into three

components, f̃ = f̃1 ∪ f̃2 ∪ f̃3, which are defined as:

f̃i (t) =

 f̃ (t) (i−1)T
3
≤ t ≤ iT

3
.

0 otherwise
(2.11)

Based on the principle of superposition, the solution to the original problem can

be written as:

u(T ) = exp (−TA) v0 +

∫ T

0

exp (− (T−t)A) f̃1(t)dt+∫ T

0

exp (− (T−t)A) f̃2(t)dt+

∫ T

0

exp (− (T−t)A) f̃3(t)dt. (2.12)

12



Chapter 2. Parallel in time method for transient electromagnetic analysis

Through straightforward manipulations, we can then rewrite Equation 2.12 as:

u(T ) =exp (−TA) v0+

exp

(
−2T

3
A
)∫ T

3

0

exp

(
−
(
T

3
− t
)
A
)

f̃1(t)dt+

exp

(
−T

3
A
)∫ 2T

3

T
3

exp

(
−
(

2T

3
− t
)
A
)

f̃2(t)dt+∫ T

2T
3

exp (− (T − t)A) f̃3(t)dt. (2.13)

We observe the three integrals in Equation 2.13 are corresponding to three tem-

poral subproblems resulting from the sources f̃1, f̃2, and f̃3, respectively. They are

perfectly parallelizable since they can be evaluated independently. In the proposed

work, these temporal subproblems are solved by the space-parallel DGTD method,

where the spatial domain is partitioned into nonoverlapping subdomains. Each tem-

poral subproblem is allowed to choose its own time-stepping scheme according to the

Fourier spectrum of the source term f̃i. The solutions of the subproblems can be

expressed as:

vi =

∫ iT
3

(i−1)T
3

exp

(
−
(
iT

3
− t
)
A
)

f̃i(t)dt, i = 1, 2, 3. (2.14)

The final solution can be written as:

u(T )=

[
exp(−TA) exp

(
−2T

3
A
)

exp

(
−T

3
A
)

I
]


v0

v1

v2

v3

 . (2.15)

The expression in Equation 2.15 involves a sum of multiplications between time-

evolution operators and input vectors (vi, i = 0, · · · , 3). They can be again evaluated

completely independently and concurrently. Clearly, the calculation of Equation 2.15
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lies largely upon the efficient and time-parallel means of applying the time-evolution

operator, which will be discussed in detail in the next subsection. We remark that

we have confined our discussion to linear problems in the present work. The possible

extension to nonlinear problems can be found in [73].

Matrix Exponential Propagator

The application of time-evolution operator, y(t) = exp(−tA)v, can be understood

as the Green’s function propagator in time. It involves the action of the exponential

of matrix A on a given source vector v at a future time t. There are various meth-

ods available in the literature to calculate the matrix exponential. Representative

examples include the Chebyshev polynomials [74], scaling and squaring with Pade

or Taylor approximations and others [75, 76]. These methods are efficient for small,

dense matrices, but very expensive for large-scale matrices. Fortunately, attributed

to the advantage of DG weak formulation, the mass matrix M is block diagonal and

trivially invertible. The matrix A = M−1S remains sparse and structured after the

matrix product. Therefore, we will consider the Krylov subspace methods to con-

struct a parallelizable and reduced order approximation of exp(−tA)v, instead of

forming exp(−tA) explicitly.

We recall the essential idea of Krylov subspace methods is to construct a low-

dimensional subspace Km(A,v)=span{v,Av,A2v, · · · ,Am−1v} [72]. The action of

matrix exponential can be projected and evaluated on the reduced Krylov sub-

space. In the standard polynomial Krylov method, an orthonormal basis Vm =

[v1, · · · ,vm] ∈ IRn×m is built up by the well-known Arnoldi orthogonalization pro-

cess:

AVm = VmHm,m + vm+1hm+1,meTm, (2.16)

where em = [0, ...0, 1]T ∈ IRm is the last canonical basis vector in IRm, Hm,m is the
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upper Hesssenberg matrix which consists of the orthogonalization coefficients.

By the orthogonality of Vm, the Hessenberg matrix Hm,m = VT
mAVm represents

the projection of A onto the Km. Then the polynomial Arnoldi approximation ym(t)

of y(t) = exp(−tA)v can be described as

ym(t) = Vmexp (−tHm,m)V∗mv. (2.17)

The efficiency of the polynomial Krylov method rests on the fact ym(t) approximates

y(t) even with small number of m. Consequently, the computational cost of the

matrix exponential exp(−tHm,m) can be much cheaper than the direct calculation of

exp(−tA) since m� n.

Nevertheless, due to the nature of matrix-vector multiplication in the polynomial

Krylov subspace, the eigenvalues of Hessenberg matrix Hm,m approximate predomi-

nantly the large eigenvalues of A. But in long-time simulations, the large eigenvalues

(in modulus) are not as significant as the small ones due to the exponential decay.

Thus, the polynomial Krylov method only exhibits super-linear convergence for short

time simulations.

To address this shortcoming, we exploit the recent advances in the rational Krylov

approximation of matrix functions [77–79]. The orthogonal basis vector in rational

Krylov subspace is constructed using the recursion:

vj+1hj+1,j =

(
I− A

ξj

)−1

Avj −
j∑
i=1

vihi,j. (2.18)

The mth-order rational Arnoldi decomposition can be written in the matrix form as:

AVm (Im + Hm,mXm) = Vm+1Hm+1,m, (2.19)

where Xm = diag(ξ−1
1 , ξ−1

2 , ..., ξ−1
m ), Im is the identity matrix.

And Hm+1,m =
[
Hm,m, hm+1,meTm

]T
. To simplify the notation, we introduce Km =
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(Im + Hm,mXm), the rational Arnoldi decomposition can be expressed as

AVm = VmHm,mK−1
m + vm+1hm+1,meTmK−1

m . (2.20)

Using this decomposition we can construct the rational Arnoldi approximation of the

matrix exponential as:

ym(t) = Vmexp (−tAm)V∗mv, (2.21)

where Am = Hm,mK−1
m , which is also known as the matrix Rayleigh quotient [80].

In this work, a residual based error estimation [81] is adopted for the convergence

criteria. Let δm = ‖ym − ym−1‖2 / ‖ym‖2 be the normalized difference of ym, the

residual-based error εm is defined as:

εm = min(1 + ‖ym‖2,
δm

1− δm
‖ym‖2). (2.22)

We would like to highlight a few appealing aspects of the rational Arnoldi ap-

proximation:

• The rational Arnoldi approximation is equivalent to the action of a rational

function Rm on a vector. Namely, it interpolates the matrix exponential

as: ym(t) = Vmexp (−tAm)V∗mv = Rm (A) v. The denominator polynomial

qm−1 ∈ IPm−1 of the rational function satisfies [82]:

qm−1 (A) :=
m−1∏
j=1

(I− A/ξj) , (2.23)

where poles ξ1, ξ2, · · ·, ξm−1 ∈ C := C ∪ {∞}. In practice, it is efficient to

use cyclically repeated poles, where the number of distinct poles is far fewer

than the rational Krylov space dimension. Comparing to the direct rational

interpolation of the time-evolution operator [83, 84], the rational Krylov ap-

proximation incorporates the properties of the starting vector v, thus requires

much less expansion terms than the direct method.
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• The rational Krylov space of order m can be stated as:

Qm(A,v) := qm−1(A)−1Km(A,v). (2.24)

It is able to account for the contribution from different eigenvalues by pre-

selecting the denominator polynomial qm−1. If all the poles ξ1, ξ2, ..., ξm−1 are

set to infinity, then Qm(A,v) reduces to a polynomial Krylov space Km(A,v).

If let ξi = σ < ∞, i = 1, 2, ...,m − 1, then Qm(A,v) reduces to a Krylov

subspace Km((A− σI)−1,v) which results in a special case known as the shift-

invert method [61,85].

• The rational Arnoldi approximation can be considered as a nonstandard time

integrator comparing to the traditional time-stepping schemes. The method

provides high accuracy, superlinear convergence, and good scaling efficiency.

Since there is no discretization in the temporal dimension, it does not suffer

from small time steps required for highly oscillatory wave problems. Thus, it

is particularly suitable for long time EM simulations. Moreover, the iteration

number (Krylov subspace dimension) is almost constant when the spatial dis-

cretization becomes finer, i.e., the convergence is almost mesh independent.

This property inspires a heuristic poles selection strategy in the next section.

2.2.3 Parallel-in-Space-and-Time Simulation

Overview of proposed work

In the proposed work, the parallel-in-space-time simulation consists of two com-

puting stages, as illustrated in Figure 2.1. The first stage is the source-dependent

propagation, corresponding to Equation 2.14. The time period [0, T ] is partitioned

into N time windows Wi = (ti−1, ti] with i = 1, 2, ..., N . Accordingly, the source
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term f̃(t) is decomposed as shown in Equation 2.11. Within each time window, the

spatial domain is decomposed into M sub-domains. The space-parallel DGTD (with

M cores/sub-domains) is applied to the temporal subproblem of individual time win-

dows Wi, denoted by Group 1 to Group N in Figure 2.1. This stage calculates all

the initial vectors vi as in Equation 2.15. The main computational effort during this

stage is the matrix-vector multiplication (explicit scheme) or matrix system solution

(implicit scheme) in the DGTD method.

The second stage is the matrix exponential (Green’s Function) propagation, which

is independent of source terms. The time period [0, T ] is divided into N overlapped

time-windows withW ′
i = (ti−1, T ]. The matrix exponential propagation tasks on each

W ′
i are carried out concurrently and independently as illustrated in Equation 2.15.

  

Figure 2.1: Schematic diagram of the proposed work

Parallel rational Krylov approximation

The parallelization of rational Krylov method was first studied for the eigenvalue

computations [86,87]. Recently, a new strategy of parallel rational approximation is
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presented in [77], aiming to construct multiple basis vectors inQm(A,v) concurrently.

In this work, the parallelization of rational Arnoldi decomposition consists of two

main parts: parallel matrix system solutions for a series of shifted system and parallel

matrix vector multiplications for Gram-Schmidt orthogonalization.

There are M processors assigned to each task defined on W ′
i . The processors are

further distributed according to the number of poles pre-selected such that matrix

system solutions are computed concurrently.

The parallel implementation is described in Algorithm Algorithm 1, where v,k,h

are column vectors of matrices Vm+1,Km and Hm, respectively. The number of ma-

trix factorizations is equal to the number of distinct poles. These matrix factoriza-

tions can be precomputed and reused in practice. The number of matrix system

solutions, m, is equal to the dimension of rational Krylov space. The complexity for

Gram-Schmidt process is of order O(m2n), where n is the dimension of matrix A.

Assume a total number of p processors (or groups) are used and pole ξi is assigned

to each processor (group). The p shifted systems are factorized/solved in parallel.

The continuation pairs are chosen to guarantee the newly computed Krylov vec-

tors ws+l+1 being orthogonal to rational Krylov spaces generated previously. Their

qualities determine the number of parallel poles.

Next, the newly computed Krylov vectors are made to be orthogonal to each

other. The communication between p processors (groups) involves O(p2) message

and the p is no more than 8 in practice. Additional parallelism within each processor

(group) can be achieved by parallel linear algebra operations (e.g. matrix-vector

multiplication).
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Algorithm 1 Compute AVm+1Km = Vm+1Hm

1: Input:A,v,ξi, processors

2: Assign ξi to processors labelled by l = 1, 2, ..., p

3: v
[l]
1 = v

‖v‖2

4: for j = 1, ..., [m/p] do . in parallel

5: s = (j − 1)p

6: choose continuation pair(η
[l]
s+l/ρ

[l]
s+l, t

[l]
s+l)

7: w
[l]
s+l+1 ← (A− ξs+lI)−1(ρ

[l]
s+lA− η

[l]
s+lI)V[l]

s+lt
[l]
s+l

8: w
[l]
s+l+1 ← w

[l]
s+l+1 − V[l]

s+l[(V
[l]
s+l)

∗w
[l]
s+l+1]

9: for i = 1, ..., p do

10: Orthogonalize w
[l]
s+l+1 to each other

11: Update and BroadCast k
[l]
s+i,h

[l]
s+i, t

[l]
s+i,v

[l]
s+i

12: end for

13: end for

Parallel efficiency and Load balancing

Let’s first review the strong scaling efficiency of parallel-in-space (PIS) method.

Assume the time period is [0, T ], and the time step is chosen as ∆t to meet certain

accuracy requirement. The total number of time steps is obtained by: T
∆t

.

Let tPIS
K be the run time that the parallel-in-space method takes for marching one

time step on K MPI processors. The parallel scaling efficiency ηPIS
K can be expressed
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as:

ηPIS
K =

tPIS
1

K · tPIS
K

, (2.25)

where the tPIS
1 is the run time taking on a single processor. The total run time on K

MPI processors for T
∆t

time steps can be written as:

TPIS =
T

∆t
· tPIS
K =

T · tPIS
1

∆t ·KηPIS
K

. (2.26)

Due to the increase of communication to computation ratio, the scaling efficiency is

expected to decay as: ηPIS
1 > ηPIS

2 > ... > ηPIS
K . Therefore, the run time, TPIS, does

not linearly decrease with the increase of MPI processors.

Based on the same calculation, the run time in the 1st stage of the parallel-in-

space-time method on K MPI processors can be expressed as (assuming N time

windows and M processors per time window):

T1 =
T

N ·∆t
· tPIS
M , (2.27)

where K = M ·N . The run time for the 2nd stage is:

T2 = max
1≤j≤N

texp
j = β · T1, (2.28)

where β is the ratio of run time between 1st and 2nd stage. Therefore, the speed up

over the parallel-in-space only method is written as:

S =
TPIS

T1 + T2

=
ηPIS
M

(1 + β)ηPIS
K

. (2.29)

The speed up scales up to ηPIS
M /ηPIS

K as the run time for the 2nd stage is insignificant

comparing to the 1st stage.

It is verified by numerical experiments that the parallel scaling efficiency of PIS

method decreases quickly with respect to increasing number of processors, K. As a

comparison, the parallel-in-space-time method is allowed to use a fixed number of

processors per time window, M , and increases the number of time windows when

more processors are available. Therefore, higher speed-up will be achieved on larger

scale computers.
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A two-level matrix exponential propagator

As alluded to in the previous section, the polynomial Krylov approximation is

suitable for short time simulations. On the other hand, the rational Krylov approx-

imation is very efficient for long time propagations, but is more expensive since it

requires solving matrix systems of equations. We propose a two-level matrix expo-

nential propagator to combine the strength of both methods. The rational Krylov

approximation is exploited for the propagation over regular, coarse-level time units.

Arbitrarily long timespan simulation can be achieved by periodically applying time

unit propagators. The polynomial Krylov approximation is then used as a fine level

propagator within the time units. The result will be demonstrated in the numerical

experiment section.

2.3 Numerical Experiments

2.3.1 Accuracy and Convergency Study

We first examine the accuracy of the Krylov subspace approximation of matrix
exponential propagator. The accuracy study is conducted on two examples. For the
first one, a one-dimensional Maxwell equations is solved in x ∈ [−1, 1] with Dirichlet
boundary conditions. The boundary values satisfy Et(−1) = Et(1) = 0. The initial
condition is set as E0(x) = H0(x) = sin(kπx), k = 8, 16, 24. The spatial domain
is partitioned into 60 segments of grids and a fourth-order Lagrange polynomial is
used as basis function. The evolution of error is illustrated in Figure 2.2, where
the reference solution at each time snapshot is achieved by evaluating exp(tA)v0

directly. Here the polynomial Krylov method is used in a time stepping way (10
steps) and the average polynomial Krylov dimension is 20. The convergence tolerance
for polynomial Krylov method is is set to 1.0 × 10−3 such that the total number of
matrix-vector multiplications of all three methods are approximately the same. We
can see that the polynomial Krylov method shows great advantage in accuracy over
traditional time marching schemes when the solution has high frequency components.
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Figure 2.2: Error evolution with time

The second example is a two-port rectangular WG90 waveguide with dimensions
2.286cm×1.016cm×10.8.cm. The total number of unknowns is 7,967.The eigenspec-
trum of the original matrix tA, and Riz values (eigenvalues of reduced matrix tAm)
of polynomial/rational Krylov methods are shown in Figure 2.3. The time window
length t = 0.4ns. In the polynomial Krylov method, the Riz values approximate the
large eigenvalues of tA. In the rational Krylov method, the Riz values are clustered
around the pre-selected, optimized 16 poles (only distinct poles are displayed in the
figure).
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Figure 2.3: Eigenspectrum study of original and reduced system

Next, we compare the error in the matrix exponential approximation using these

two methods, where the error is defined as: ‖exp (−tA) v0 − Vmexp (−tAm)V∗mv0‖.

The error convergence histories are presented in Figure 2.4. The results show that the

rational Krylov method provides much more accurate approximation with smaller

Krylov subspace dimension.
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Figure 2.4: Convergence history w.r.t. Krylov subspace dimension.

The rational Krylov approximation can be considered as a nonstandard time in-
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tegrator comparing to the standard time-stepping schemes. In this experiment, we
compare the efficiency of matrix exponential propagator with two standard time-
stepping schemes, Runge-Kutta-4nd and LeapFrog-2nd methods. The numerical re-
sults are shown in Figure 2.5. The rational Krylov method requires very fews itera-
tions to achieve the same order of accuracy. In turn, it offers a big advantage in the
run time. The computational statistics are presented in Table 2.1.

(a) Traditional time-stepping schemes
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(b) Matrix exponential propagator

Figure 2.5: Convergence histories of traditional and exponential time integrator

Table 2.1: Run Time Statistics

Error Norm Methods Steps RunTime(s) Mxv

Runge-Kutta-4nd 300 0.3 1200
1.0× 10−4 LeapFrog-2nd 15000 6.75 30000

Rational Krylov 1 0.1 96

Runge-Kutta-4nd 500 0.49 2000
1.0× 10−5 LeapFrog-2nd 50000 23.1 100000

Rational Krylov 1 0.13 128

Runge-Kutta-4nd 900 0.88 3600
1.0× 10−6 LeapFrog-2nd 158490 69.1 316980

Rational Krylov 1 0.16 160
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2.3.2 Heuristic Pole Selection Strategy

In this section, we present a heuristic pole selection strategy for the rational

Krylov method. A careful examination reveals that the eigenspectrum of the time-

evolution matrix, A, is determined by the EM topology, boundary conditions, and

mesh density of the computational domain. In particular, due to the curl differential

operator, the spectrum radius of A scales asO
(
h1/d

)
, where h,d are the discretization

size and spatial dimension respectively.

In the proposed work, we start from a coarse discretization of the computational

domain, whose average mesh density is hc. The resulting time-evolution matrix

is denoted by Ac. An optimized set of poles, ξc
1, ξ

c
2, ..., ξ

c
m−1 can be obtained by

performing the following rational least square fitting problem,

min‖etAc

v − rm(tAc)v‖2
2 (2.30)

where rm(·) = pm(·)/qm(·). The optimal qm(·) is achieved by iteratively conduct-

ing the following procedure [77]. With the initial qm(·), a rational Krylov space

Qm(Ac,v) is built by Arnoldi process. In the next step, a vector ṽ ∈ Qm(Ac,v) is

to be found such that etA
c
ṽ has least projection error in Qm(Ac,v). New qm(·) is

updated by q̃m(·) such that ṽ = q̃m(tAc)qm(tAc)−1v.

Subsequently, the coarse discretization is refined to a fine discretization with

mesh density hf , which is determined by the spatial resolution requirement. Due to

the scaling effect from discontinuous Galerkin operator, the eigenspectrum of spatial

discretization matrix Af (characterized by hf) exhibits the same pattern with Ac

except that the spectrum radius is scaled by α = (hc/hf)1/d. Thus the spectrum

pattern of tAf can be approximated by that of (αt)Ac. This is equivalent to finding

a set of optimal poles Ξc(αt)=
{
ξc

1(αt), ξc
2(αt), ..., ξc

m−1(αt)
}

on the coarse mesh for

time period of αt. Finally, Ξf(t) ≈ Ξc(αt) can be regarded as a set of estimated poles

for tAf .
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To illustrate, a transverse magnetic (TM) EM field in a two-dimensional PEC
cavity is discretized by the discontinuous Galerkin formulation with two different
discretization sizes: hc = 0.22 and hf = 0.125. The eigenspecturms of scaled time-
evolution matrices Ac/f are shown in Figure 2.6. The optimal and estimated poles for
the fine discretization are also presented in Figure 2.6. We notice that the estimated
poles are very close to the optimal poles, which validates the proposed heuristic
pole selection strategy. Finally, we present the convergence histories of the rational
Krylov method using estimated and optimal poles in Figure 2.7. The initial condition
is given as Ez = sin(πx)sin(πy), Hx = Hy = 0. The results indicate the estimated
poles are good approximation of optimal ones, where similar convergence behaviors
are obtained.
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Figure 2.6: Eigenspectrum and optimal/estimated poles on unstructured meshes
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Figure 2.7: Convergence of the rational Krylov Method using optimal/estimated
poles

2.3.3 Scaling of Parallel Rational Krylov Method

Rational Krylov approximation is the most computationally intensive part in the
source-independent propagation. The construction of rational Krylov spaces can be
implemented in parallel. Figure 2.8 shows the convergence history and run time
statistics of such parallel construction. The test example is a rectangular WR90
waveguide operating at 8GHz with total number of unknowns of 111,592, where 12
pre-selected poles are used. We observe with more poles computed in parallel, the
convergence is slightly changed but the run time decreases almost linearly. Although
matrices factorizations take a large portion of run time, the computation can be
performed in an off-line scheme. The results are also reusable in the different simula-
tions. We also notice the run time scales well with the increase of number of parallel
poles, which validates the re-assignment of parallel poles to processors (groups) can
provide flexibilities to exploiting the parallel scaling efficiency.

28



Chapter 2. Parallel in time method for transient electromagnetic analysis

0 50 100 150 200
Iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

R
e
s
id

u
a
l 
N

o
rm

1 Base in parallel

2 Bases in parallel

3 Bases in parallel

4 Bases in parallel

(a) Convergence history

1 2 3 4
Number of Parallel Bases

0

100

200

300

400

500

600

700

800

900

1000

R
u
n
T

im
e
 (

s
)

Factorization

ContPair

Vector

Multiply+Solver

Orth

53.08%

27.1%

100%

35.78%

(b) Run time statistics

Figure 2.8: Assessment of parallel performance of the rational Krylov method

2.3.4 Performance of Space-Time Parallel Method

In this subsection, a mockup missile impinged by a Gaussian pulse is simulated.

The configuration of the missile model and internal microstrip waveguide are given

in Figure 2.9(a). The EM signal has two channels to propagate into the cavity:

front door coupling through the missile chamber, and back door coupling through

the mounted antenna. The entire missile model is placed inside a cylindrical air box,

where the 1st order absorbing boundary condition is used at the exterior surface of

the air box. The pulse has the expression of V = e−(t−t0)2/σ2
V , where σ = 0.5ns,

t0 = 0.75ns. The time and frequency domain information of the input pulse are given

by Figure 2.9(b-c). The total number of unknowns of DG discretization is 446,296.
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(a) Geometry and internal structures
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Figure 2.9: Setup of missile and excitation

Source dependent period

Since the Gaussian pulse excitation only lasts for 2ns, the source dependent period

spans [0, 2ns]. In the first experiment, the source term is divided into 2 even time

windows, as shown in Figure 2.9(b). Within each time window, the spatial domain

is decomposed according to the number of cores assigned. For instance, in the case

of total number of cores being 16 and two time windows division, the spatial domain

is divided into 2 subdomains within each time window. Each spatial subdomain

will be computed over a period of 1ns by 4 cores. We first apply the space-parallel

DGTD to these two temporal subproblems, then employ the rational Krylov method
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for the matrix exponential propagation. The obtained electric current distribution

is compared with the standard DGTD method, where the time marching scheme is

LeapFrog-2nd, without temporal decomposition in Figure 2.10. A good agreement is

observed.

(a) Space-time parallel result (b) Reference result

Figure 2.10: Surface current plot at 2ns

In order to show the accuracy of rational Krylov method, the results at 4 time

snapshots over time-span [1ns, 2ns] are compared with the LeapFrog-2nd method. Let

u∆t and um∆t denote the solution under step size ∆t and m∆t, where m is an integer.

The reference solution uref is approximated by Richardson extrapolation [88], as

uref =
m2u∆t − um∆t

m2 − 1
. (2.31)

The time step size of LeapFrog-2nd is chosen to be the maximal under the stability

restriction (dt = 0.122ps).

We can see from Figure 2.11 that rational Krylov method outperforms LeapFrog-
2nd method in terms of accuracy. The dimension of rational Krylov subspace is
160.
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Figure 2.11: A comparison of the error with time evolution
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Figure 2.12: Source dependent period

We proceed to study the parallel efficiency with respect to increasing number of

processors. As evident in Figure 2.12(a), the parallel-in-space DGTD solver exhibits

good parallel scaling at the beginning, but the parallel efficiency quickly deteriorates
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as the number of processors increases. As a comparison, the parallel-in-space-time

method achieves a much better parallelization efficiency by introducing additional

parallelism in the time dimension. The time period [0, 2ns] is evenly divided into 2,

4, and 8 time windows. Each time window is assigned to equal number of processors.

The detailed run time statistics for the 4 time windows scenario are presented in

??(b).

Source independent period

We proceed to demonstrate the advantage of the parallel rational Krylov method
for long time simulations. Due to the high Q-factor of the missile cavity, it takes
a lengthy time for the EM energy to decay after being coupled into the cavity. In
this experiment, we take the EM fields at 2ns as the initial vector, and continue
the simulation for time periods of 2ns, 4ns and 6ns, respectively. The convergence
history and runtime are shown in Figure 2.13. There are 8 pre-selected cyclically
repeated poles selected by the heuristic poles selection strategy. For example, the
estimated poles for 4ns are Ξ = {−2.0014 ± 15.2575i, 0.7192 ± 10.2914i, 1.9046 ±
5.9581i, 2.8733± 1.8710i}.
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Figure 2.13: Source independent period.
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We notice that the convergence of the rational Krylov method only changes

slightly with different time periods. The scale convergence results in apparent ad-

vantages in long time simulations. The computational statistics are compared to

LeapFrog time stepping methods in Table 2.2.

Table 2.2: Computational Statistics

Rational Krylov method LeapFrog time stepping
Period 2/4/6ns Period 2/4/6ns

Multiply+Solve 87/84/91s Time Steps 16371/32742/49913
Orth 101/96/100s ∆t 0.12216ps

Total Time 189/181/192s Total Time 1164/2328/3492s

Two-level matrix exponential propagator

Finally, we demonstrate the two-level matrix exponential propagator combining

the rational and polynomial Krylov methods. In this study, the rational Krylov

method is used for the coarse-level propagation over 1ns time unit. Within each

time unit, the polynomial Krylov method is applied as a fine-level propagator. The

two-level propagator scheme is applied to analyze the transient induced voltage at

the microstrip waveguide inside the cavity. The voltages are shown in Figure 2.14,

together with a comparison between the voltages obtained by LeapFrong-2nd method

with different sizes of time step. The discrepancy remains at a low level.
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Figure 2.14: Transient voltage on the microstrip port

The voltages at time snapshot 4ns, 5ns and 6ns are calculated by the rational

Krylov method, the rest are from the polynomial method. The convergence histories

and runtime statistics of the polynomial Krylov method in the time unit of [3ns, 4ns]

are showed in Figure 2.15.
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Figure 2.15: Polynomial Krylov method as a fine level propagator
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Over the past two decades, metamaterials and metasurfaces have received sig-

nificant attentions in the scientific and engineering community due to their unique

electromagnetic (EM) and optical properties. They offer a range of advantageous

and exceptional responses that are not readily available in nature. The time-domain

full-wave analysis is an essential tool to understand spectral and temporal properties

of those advanced materials/structures. One advantage is the ability to directly an-

alyze broadband responses and short-pulse waveforms of metamaterials. Moreover,

it is considered as the most natural way to interface with nonlinear lumped circuit

elements. But due to increasingly complex structures and design, it is very time-

consuming to generate the computer-aided-design (CAD) model and to discretize

the entire microscale structure. One significant property of meta-materials is that

there exists many repetition units in the geometry. This chapter proposed a new

space-time domain decomposition and building block methodology by leveraging the

principles of linear superposition and space-time causality in EM physics. Given

the geometry and material of the problem to be simulated, periodicity is invoked

and a finite number of 4D space-time building blocks are identified. Each build-

ing block is constructed upon 3D spatial unit cell and 1D time unit. Within each

time unit, the entire domain solution is obtained by superimposing solutions from

building block subproblems, all of which are solved independently and in parallel.

To address spatial, temporal multi-scale challenges, the time-evolution in space-time

subproblems is computed by the Krylov-subspace based reduced-order model. The

work results in novel time integration schemes, which exhibit high-order accuracy

and are excitation-aware.
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3.1 Space-Time Domain Decomposition

Evidently, for metamaterial problems of interest, there exhibits certain symmetry,
periodicity, and repetition in the 4D (3D space, 1D time) computational domain. To
exploit the symmetry in the physical domain, we first introduce a space-time domain
decomposition. The spatial domain Ω is decomposed into subdomains Ωm,m =
1, · · · ,M . For typical metamaterial configurations, the spatial subdomain Ωm may
be a single unit cell or span a few unit cells. Next, we define a time unit, Tu, which
corresponds to the time it takes for the wave traveling from Ωm to its surrounding
subdomains. A sample space-time partition is illustrated in Figure 3.1.

Figure 3.1: A space-time partition

We now consider a space-time subproblem between time-interval [(n− 1)Tu, nTu]

as shown in Figure 3.2:

dvm(t, r)

dt
= −Amvm(t, r) + f̃m(t, r) (3.1)

with initial condition at time t = (n− 1)Tu given as:

vm ((n− 1)Tu, r)=

 u ((n− 1)Tu, r) r ∈ Ωm

0 otherwise
(3.2)

and local source term f̃m in Ωm.

Based on the space-time causality, Am is a truncated submatrix of A, which is
localized at the subdomain Ωm and its surrounding subdomains.
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Figure 3.2: Space-time subproblem

Afterwards, the entire domain solution at t = nTu can be obtained by the principle

of linear superposition:

u (nTu, r) = v1(nTu, r) + v2(nTu, r) + · · ·vM(nTu, r)︸ ︷︷ ︸
can be evaluated concurrently

(3.3)

We note that individual subproblem solutions in Equation 3.3 can be computed

trivially in parallel. The repetition and periodicity in the spatial domain Ω reflects

to the similarity in solving subproblems, Equation 3.1. Those observations motivate

us to develop a space-time building block propagator, which will be discussed in

detail in the next subsection.

3.1.1 Space-Time Building Block Propagator

We consider the space-time subproblem in Equation 3.1 defined on time interval

[tn, tn+1]. The solution can be decomposed into the particular solution, ṽm, due to

the source term f̃m, and the homogeneous solution, v̄m, determined solely by the

initial condition. Namely, vm= ṽm + v̄m, such that:

dṽm(t, r)

dt
= −Amṽm(t, r) + f̃m(t, r), ṽm(tn, r) = 0 (3.4)

dv̄m(t, r)

dt
= −Amv̄m(t, r), v̄m(tn, r) = vm(tn, r) (3.5)

Due to the way the problem is decomposed, source-dependent propagation as in

Equation 3.4 is perfectly parallel in both temporal and spatial dimension while the
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source-independent propagation as in Equation 3.5 relies on ṽm(tn, r) and its past

values v̄m(t, r), t < tn. Therefore, source-dependent problems defined on all space-

time blocks are evaluated in the first stage. In the second stage, source-independent

propagation is carried on by taking in all necessary initial values yield from last stage.

Source-dependent propagation

Regarding to the source-dependent propagation in Equation 3.4, the solution

ṽm(t, r) can be obtained by:

ṽm(t, r) =

∫ t

0

exp((τ − t)Am)f̃m(τ, r)dτ (3.6)

In general, Equation 3.6 does not have analytical solutions. Nevertheless, we recog-

nize that, in many metamaterial applications the source is implemented by applying

a time modulation function, g̃m, on the eigenmode field at port boundary or the

plane wave field at domain boundary. Namely, the source term is denoted by:

f̃m(t, r) = bm(r)g̃Tm(t) (3.7)

where bm(r) is the eigenmode or plane wave field distribution, which only exhibits
spatial dependence. A pictorial illustration can be found in Figure 3.3.

Figure 3.3: Field distribution and time modulation

Therefore, we first construct a low-dimensional Krylov subspace Kk(Am,bm) =

span{bm,Ambm, · · · ,Ak−1
m bm}. An orthonormal basis set Wk = [w1, · · · ,wk] ∈
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IRn×k (n = dim(Am)) is then built up by the well-known Arnoldi orthogonalization

process:

AmWk = WkHk,k + wk+1hk+1,ke
T
k (3.8)

where ek = [0, · · · , 0, 1]T , Hk,k is the upper Hesssenberg matrix which consists of the

orthogonalization coefficients. By the orthogonality of Wk, the Hessenberg matrix

Hk,k = WT
kAmWk represents the excitation-aware projection of Am onto the Krylov

subspace Kk. Note that the dimension k � dim(Am).

The solution to Equation 3.6 can now be rewritten as:

ṽm(t, r) =

∫ t

0

exp((τ − t)Am)f̃m(τ, r)dτ

≈Wk

∫ t

0

exp((τ − t)Hk,k)g̃m(τ)dτWT
kbm(r)

= βWk

∫ t

0

exp((τ − t)Hk,k)e1g̃m(τ)dτ︸ ︷︷ ︸
ṽk
m

(3.9)

where β = ‖b‖ and e1 = [1, · · · , 0, 0]T . The expression in Equation 3.9 inspires us

to obtain the solution to the original problem in Equation 3.4 in the following two

steps.

We begin with the computation of time-evolution problem for a reduced subspace

matrix Hk,k:

dṽkm
dt

= −Hk,kṽ
k
m + e1g̃

T
m(t), ṽkm(tn, r) = 0 (3.10)

As the dimension of matrix Hk,k is much smaller than Am, Equation 3.10 can be

solved much faster than the original problem in Equation 3.4.

After ṽkm is computed, the solution to Equation 3.4 is then sought by ṽm ≈

βWkṽ
k
m according to Equation 3.9.
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We remark that the reduced matrix Hk,k is constructed once for all repetitive

spatial subdomains with the same port excitation. Furthermore, as the space-time

relation is decoupled in Eq. 3.7, the same reduced matrix can be reused for different

time domain waveforms. The saving of simulation time can be very significant when

waveform parameters (e.g. rising time, pulse rate) need to be iterated during design

stage.

Source-independent propagation

For the homogeneous, source-independent problem in Equation 3.5, it has the

semi-analytical solution: we may follow a similar procedure and construct a Krylov

subspace Kk(Am, v̄
0
m) = span{v̄0

m,Amv̄0
m, · · · ,Ak−1

m v̄0
m}, with v̄0

m = v̄m(tn, r) repre-

sents the initial condition.

After the construction of the projection matrix Wk and the upper-Hessenberg

matrix Hk,k, we solve the homogeneous time-evolution problem on the reduced order

system:

dv̄km
dt

= −Hk,kv̄
k
m, v̄km(tn) =

∥∥v̄0
m

∥∥ e1 (3.11)

Note that Equation 3.11 is solved by v̄km(tn+1) = exp (−TuHk,k) v̄km(tn). The solution

to the original problem in Equation 3.5 can then be obtained by:

v̄m(tn+1, r) ≈Wkv̄
k
m(tn+1) =

∥∥v̄0
m

∥∥Wkexp (−TuHk,k) e1 (3.12)

In summary, given the geometry and material of the problem to be simulated, we

first invoke periodicity and identify a finite number of 4D space-time building block.

Within each time unit, the entire domain solution is obtained by superimposing

solutions from building block subproblems, all of which are solved independently and

in parallel. Arbitrarily long timespan simulation is achieved by repetitively applying
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building block propagators. To address spatial, temporal multi-scale challenges,

the time-evolution in space-time subproblems is performed on the Krylov-subspace

based reduced-order model. The work leads to much-desired robustness, accuracy

and parallel efficiency for transient EM analysis.

3.1.2 Recursive correction integration scheme

Matrix exponential based integration schemes embrace both good stability and

accuracy properties. But in order to out-perform explicit time stepping schemes, the

matrix exponential integrators need to deal with memory cost among other imple-

mentation issues. Solving for the reduced matrix system in Equation 3.10 and build-

ing up the Krylov subspace Kk(Am,bm) are two major computationally intensive

steps in source-dependent propagation. For time unit Tu, the dimension of Krylov

subspace could be growing drastically depending on the accuracy required. To tackle

this problem, a residual based restarting method is proposed to strike a balance be-

tween accuracy and computational cost. The source term f̃m(t, r) = bm(r)g̃Tm(t) is

actually a rank-1 matrix if g̃m(t) takes samples at TL = {t1, t2, ..., tL}. Simply choose

the initial guess solution ṽ0(t) = 0 and the dependency on r and subscript m are

omitted for brevity of notations. After construction of Krylov subspace of dimen-

sion k and solving for Equation 3.10, the residual of Equation 3.10 corresponding to

approximated solution ṽ1(t) can be written as,

r1(t) = −Aṽ1(t)− ṽ1(t)′ + bg̃T (t) (3.13)

The error of solution which is measured by difference ẽ(t) = ṽ1(t) − ṽ(t), forms a

correction equation as,

dẽ(t)

dt
= −Aẽ(t)− r1(t), ẽ(0) = 0 (3.14)
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,where r1(t) is another rank-1 matrix evalutated at samples TL. To see this, just

combine Equation 3.8 and Equation 3.10, then re-write r1(t) as,

r1(t) = bg̃T (t)− β(WkHk,k + wk+1hk+1,kek)ṽ
k(t)− βWṽk(t)′

= bg̃T (t)− βWk(e1g̃
T (t))−wk+1hk+1,kekṽ

k(t)

= bg̃T (t)− bg̃T (t)−wk+1hk+1,kekṽ
k(t)

= −wk+1hk+1,kekṽ
k(t)

(3.15)

Here wk+1 is the last column in Wk and identity e1f̃(t) = VT
k r0(t) is used. Set the

initial approximated solution u0(t) = 0 then compare Equation 3.14 with original

problem Equation 3.4, we can find the analogy such as

wk+1 → b ,−hk+1,kekṽ
k(t)→ g̃(t) (3.16)

We can solve for a corresponding correction equation like Equation 3.14 by replacing

b by wk+1 and g̃(t) by hk+1,kekṽ
k(t). The original solution is sought after by ṽ(t) =

ṽ1(t)− ẽ(t). This process can be conducted recursively as described below.
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Algorithm 2 Recursive correction integration scheme

Input: A,b, g̃(t), toler

Output: y(t), solution to Equation 3.4

l← 0, ṽ(t)← 0,bl ← b, g̃l(t)← g̃(t)

function y(t) = RecursiveCorrection(ṽ,bl, g̃l(t))

Solve for correction equation with Krylov subspace dimension k : ẽl(t)
′ =

−Aẽl(t) + blg̃l(t), ẽl(0) = 0

rl(t) = ‖wk+1hk+1,kekṽ
k(t)‖

if rk < toler then

y(t)← ṽ(t)− ẽl(t)

else

l← l + 1, bl ← wk+1, g̃l(t)← −hk+1,kekṽ
k(t)

y(t)← ṽ(t)− RecursiveCorrection(ẽl(t),bl, g̃l(t))

Here the norm can be understood as either taking several samples in time or

maximal in TL.

Adaptive-recycling Krylov subspace based integration scheme

Since the second stage is still of sequential nature in time, we proposed a adaptive-

recycling exponential integration scheme to reduce the computational cost.
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The solution to Equation 3.5 is

v̄(t) = exp(−tA)v̄(0)

= v̄(0) + tϕ(−t,A)Av̄(0)
(3.17)

,where ϕ(−t, A) = (I − exp(−tA))/(tA). Actually tϕ(−t,A)Av̄(0) solves the follow-

ing equation.

p′(t) = −Ap(t) + Av̄(0), p(0) = 0 (3.18)

Let pk(t) be the Krylov subspace solution to Equation 3.18, the residual can be

written as,

r(t) = −pk(t)
′ − Apk(t) + Av̄(0)

= −hk+1,k ‖Av̄(0)‖wk+1e
T
kϕ(−t,Hk,k)e1

(3.19)

By inspection of Equation 3.19, r(t) depends on t the residual can be evaluated on

the fly as Krylov subspace k grows. Literature something shows link of residual and

error. A proper t corresponding to preset accuracy level can be found by evaluating

ϕ(−t,Hk,k)e1. [89] reveals that residual grows as t increases. The time step estimator

algorithm is designed based on bi-section search and described in Algorithm 3.
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Algorithm 3 Time Step Estimator

Input : Hm, hm+1,m, toler

Output : ∆t

t← tguess(Large enough)

r ← hm+1,meT
m(e−tHme1)

kl = 0, kr = 1.0

while ‖kr − kl‖ >= 1e−6 do

km ← kl+kr
2

r ← hm+1,meT
m(ϕ(−kmt,Hm)e1)

if r < toler then

kl ← km

else

kr ← km

∆t = kmtguess

The Krylov subspaceKk(A,Av̄(0)) can be recycled to advance a few steps(Nrecycle)
forward. Here a approximation is employed such that Kk(A,Av̄(t)) ≈ Kk(A,Av̄(0)).
The schematic of this integration scheme is shown in Figure 3.4 as well as algorithmic
description in Algorithm 4.

Figure 3.4: Schematic of Adaptive-Recycling ϕ integrator
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Algorithm 4 Adaptive-Recycling ϕ integrator

Input : Tend,u(0),A,m,Nrecycle, toler

Output : u(tk), k = 1, ...,

v ← u(0), t=t1

while t < Tend do

w1 ← A ∗ v

AWm ←WmHm,m + hm+1,mwm+1e
T
m

∆t ← TimeStepEstimator(Hm,m, hm+1,m, toler)

ym ← ∆tϕ(−∆t,Hm,m)e1

v← v + Wm ∗ ym

for i = 1, Nrecycle do

x← A ∗ v

g←WT
mx

ym ← ∆tϕ(−∆t,Hm)g

v← v + Wmym

u(tk)← v, k = k + 1

t = t+ ∆t
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3.2 Numerical Performance

3.2.1 Accuracy and Convergence

Recursive correction integration

To verify the algorithm proposed in Algorithm 2, first we define a problem as

dy(t)

dt
= −Ay(t)− Au, y(0) = 0 (3.20)

where A ∈ IR2000×2000 comes from spatial discretization with upwind flux and La-
grange polynomial basis function of a one-dimensional Maxwell problem defined
in x ∈ [−1, 1]. The boundary conditions at x = 1, 1 are set to be PEC. Equa-
tion 3.20 admits a analytic solution y(t) = exp(−tA)u − u, which can be yielded
by high accuracy matrix exponential algorithms. The norm of absolute error can
be then examined by ‖eabs‖ = ‖yanalytic − y‖. Here u can be understood as the
initial condition for homogeneous IVP z(t)′ = −Az(t), z(0) = u. Initial conditions
u = [E(t0),H(t0)]T ; E(t0) = sin(kπx), k = 8, 16, 24 with different frequency compo-
nents are tested respectively. Time stepping schemes like LeapFrog 2nd order(LP2)
and Runge-Kutta 4th order(RK4) are also compared in Table 3.1.

Table 3.1: Runtime Statistics

Methods MxV +ODE solve MxV Runtime(k=8/16/24)

Proposed 1920(24×80)+8000×80×24 5.28/5.28/5.29

LP2 4400(2200×2) 5.57/5.68/5.37

RK4 4400(1100×4) 5.63/5.49/5.6

The corresponding error plots versus time for different frequency components are
shown in Figure 3.5.
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(a) k=8 (b) k=16

(c) k=24

Figure 3.5: Error evolution with various frequency components

Within the same amount of time, recursive correction integration owns the best
accuracy. The convergence history(k = 8 case) of residual with respect to error norm
is illustrated in Figure 3.6. Different choice of Krylov subspace dimension are made.
Here total dimension indicates the counts of Krylov basis combined for each level of
correction as algorithm goes.
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Figure 3.6: Convergence history of initial condition k=8

It is easy to tell that residual actually a good indicator for norm of error. Un-
der different choices of Krylov subspace dimension, the total number basis which is
directly associated with matrix-vector multiplication(MxV) operations ,keeps stable
with the level of correction just being different. The smaller dim(Kk) is, the deeper
level of correction is required. So the dimension can be determined on the fly de-
pending on the memory available. After certain level of correction, it’s only takes a
few more computations to reach higher level of accuracy without notably additional
cost of storage since a Krylov subspace of dimension at most k is only required all
the time. Next 4 levels of accuracy(10−3, 10−4, 10−5, 10−6) are tested with runtime
statistics shown in Table 3.2.

Table 3.2: Runtime Statistics (in sec)

Method MxV + ODE solve(MxV) Runtime

Proposed (240*8)+(1.2k/3.7k/12k/36k)*240*8 3.96/4.93/7.89/16.69

LP2 (N.A.)*2 20.42/64.98/207.03/N.A.

RK4 (0.8k/1.35k/2.41k/4.2k)*4 4.07/7.04/12.5/20.26

Proposed method outperforms the other two schemes in each level of accuracy.
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3.2.2 Application to source dependent problems

We consider three examples to illustrate the advantages of proposed method in
solving source dependent problem here. First S-parameters are evaluated in analysis
of a via pair transmission line, shown in Figure 3.7, between two parallel plates,
which acts as transition between the top layer and bottom layer transmission lines.
The characteristic impedance of each port is set to be 50Ω. The mesh is partitioned
into 12 subdomains with total number of degree of freedoms 1.38 million. A T=0.4ns
simulation period is conducted.

Figure 3.7: Schematic of via pair transmission line

The S-parameters and residual vector r(t) projected to both ports are also mon-

itored in Figure 3.8.

(a) Validation of S-parameters (b) Convergence of residual on ports

Figure 3.8: S-parameters and convergence history of residual on ports
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The run-time statistics of proposed method compared with LP2 is compared in
Table 3.3.

Table 3.3: Computational statistics

Methods MxV Coupling Ode solve Orth Total

Proposed 8.5min 60.5s 159s 263.6s 16.5min

LP2 40min – – – 40min

The second example is a parallel microstrip line excited by rectangular pulses
and the goal is to evalute the crosstalk w.r.t parameters of waveform. The geometric
settings of this model is shown in Figure 3.9

(a) Side view (b) 3D view

Figure 3.9: Geometry of parallel microstrip line

,where w=2mm , s=5mm, h=1.6mm, εr=4.3 and the length of microstrip line is
50mm. One bit of a single rectangular pulse is used to excite port 1. The widths
of the two pulses are set to half of the 300 MHz and 600 MHz signals. The corre-
sponding data rates for each frequency are 600 Mbit/s and 1.2 Gbit/s, respectively.
Smoothing is necessarily applied to remove undesirable high-frequency components
from the signal. The voltages are monitored as shown in Figure 3.10 at through
port(port 3) and coupled port(port 4). The convergence history for each case are
also illustrated. The time domain response of the 1.2 Gbit/s signal is slightly dis-
torted in the beginning at throught port while that of the 600 Mbit/s signal seems
to remain undistorted. The time domain response at port 4 shows that the higher
data rate signal causes the stronger crosstalk on another signal path.
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(a) Voltages at ports (b) History of restarting

Figure 3.10: Ports voltages and convergence of residual

To verify the accuracy, the results yield by 2nd-order LeapFrog time marching
scheme is compared with proposed method w.r.t the number of restarts in Fig-
ure 3.11. The voltages shown corresponds to 1.2Gbit/s scenario.
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(a) Voltages at port 2 (b) Voltages at port 3

(c) Voltage at port 4

Figure 3.11: Ports voltages of parallel microstrip line

The run-time statistics of proposed method compared with LeapFrog scheme is
compared in Table 3.4. 6 subdomains are partitioned and T = 4ns.

Table 3.4: Computational statistics

Methods Matvec Ode solve Orth Total

Proposed work 445.9s 191.1s 474.98s 18.9min

LeapFrog 2× 41.5min – – 83min

Note that, for traditional time stepping method, 2 separate simulations have to
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be conducted corresponding to different excitation. As a compare, the proposed

method just need to run once. The speed-up becomes more significant.

The third application is for modeling high accuracy modeling of microstrip dis-
continuities using time domain reflectometry(TDR). Several factors affect a TDR
system’s ablility to resolve discontinuities, like rise time, settling time and pulse
aberrations of stimuls signal. Two neighboring discontinuities may be indistinguish-
able to the measurement instrument if the distance between them amounts to less
than half the system rise time. In order to illustrate the proposed method perfor-
mance, a step-like discontinuity of microstrip line with mentioned design parameters
is simulated. The settings are listed in Figure 3.12, where Wsub = 12mm,Lsub =
18mm,Wf = 1.5mm,Ws = 4, Ls = 2mm,h = 0.8mm. 5 pulses with different rise
time are launched into port 1.

Figure 3.12: Geometry of discontinuous microstrip line

As shown in Figure 3.13, as the rise time of excitation signal increases from 5psec

to 25psec, the line impedance at the center local of step discontinuity is varied from

64.04 to 61.4Ω. So the line impedance is controllable by the rise time. The time
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dependent line impedance is expressed as,

ρ(t) =
Vref (t)

Vinc(t)
, ZL(t) = Z0

1 + ρ(t)

1− ρ(t)
, (3.21)

where Z0 and ρ are characteristic impedance and reflection coefficient.

(a) 5 pulses with different rising time (b) Resulting line impedance

Figure 3.13: Time domain results of discontinuous microstrip line

The convergence history for each rise time case are shown in Figure 3.14 as well
as the voltage compared with time marching scheme for Trise=5psec case.

(a) Convergence of residual (b) Convergence of voltage of port 1

Figure 3.14: Convergence history of discontinuous microstrip line

The run-time statistics are listed in table Table 3.5
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Table 3.5: Computational statistics

Methods Matvec Ode solve Orth Couple Total

Proposed work 152.6s 70.9s 47.8s 7.6s 4.6min

LeapFrog 5× 6.1min – – – 30.5min

Adaptive-Recycling ϕ integrator

Figure 3.15 gives the residual of Equation 3.20 evolving with time. Clearly, the
monotonically increasing residual curve guarantees the bi-section search works to
find a time step such that the norm of is small enough.

Figure 3.15: Residual evolving with time

In the first example, the number of recycle steps is fixed to 4 and different di-
mensions of Krylov subspace are tested to observe the convergence of error. Here
the time step size is also fixed.
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Figure 3.16: Convergence of error with fixed time step

Concluded from Figure 3.16, for each case of Krylov subspace dimension, adaptive-
recycling ϕ integrator shows fast convergence with respect to step size. And large
dimension of Krylov subspace helps it converge fast. The roll-off at dim(Kk) = 50
case indicates that proposed algorithm reaches the same level of accuracy with the
matrix exponential algorithm. Next, different number of recycle steps is tested. The
convergence of error is shown in Figure 3.17. Here the step size is produced by the
time step estimator.
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Figure 3.17: Convergence of error with various recycle steps

With the increasing of recycle steps, the algorithm losses accuracy although large

dimension of Krylov subspace helps. So in practice, trade-off needs to be made

between accuracy and efficiency.

3.3 Numerical Examples

3.3.1 Repetition unit in 1D: Photonic-Bandgap Microstrip

We consider the time domain simulation of a microstrip photonic-bandgap (PBG)
structure [90]. The geometry of the PBG structure is shown in Figure 3.18. The
thickness h and width w of microstrip are 0.5mm and 19.625mm, respectively. There
are 10 dielectric disks (εdisk = 9) between the microstrip line and the ground plane.
The background permittivity εr = 1. The disk spacing is equal to the microstrip
width and the disk radius is 3.925mm. A broadband (2-8 GHz) , Gaussian modulated
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pulse is launched at the input port. The waveform is described by f̃(t) = cos(ω(t−
t0))exp(− (t−t0)2

τ2
), ω = 4GHz, t0=1ns and τ =0.2ns and also shown in Figure 3.18.

(a) Side view (b) Top view

(c) Waveform of excitation

Figure 3.18: Problem setup for photonic bandgap example

The spatial domain of the PBG microstrip is decomposed intoM = 5 subdomains.

The time period [0, 2ns] is divided into N = 20 time windows with time unit of 0.1ns.

To illustrate the performance of proposed work, we also consider a standard time-

stepping scheme, Leap Frog 2nd order method. The maximum time stepping size is

chosen as 5.8×10−5 ns. Since Tu is set to be 0.1ns, only the first subdomain block is

needed in the source dependent problem. So only 1 process is used to run the job.

To glue the 20 snapshots of field between 0.1ns to 2ns, a integration with adaptive-

recycling ϕ algorithm is carried out on 5 processes and each process spans a task

over 2 or 3 blocks. We have the total field distribution for all 5 sub-domains at

the end of 2ns shown. Here for the adaptive-recycling ϕ integrator, a fixed Krylov

subspace dimension is used instead of time step estimator. The runtime statistics

of this two stages for 0-2ns are summarized in Table 3.6. As a compare, it takes

2440s for LeapFrog scheme, where a nearly 10x speed-up is achieved. The electric
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field plots obtained by using both LeapFrog scheme and proposed work are shown

in Figure 3.19. All experiments are conducted on a workstation with Intel Core

i7-6700HQ.

Table 3.6: Computational statistics(in sec)

Stage Matvec Ode solve Mat-expo Total

Source dependent 9.42 0.52 0.27 10.21

Table 3.7: Computational statistics(in min)

Stage Proc 0 Proc 1 Proc 2 Proc 3 Proc 4 Maximum

Source independent 2.5 4.24 3.08 3.05 2.11 4.24

(a) LF2 (b) Proposed

Figure 3.19: Fields of PBG simulation at 2ns

The rest of the simulation from 2ns to 12ns for calculating S-parameters is con-
ducted on a cluster(Intel(R) Xeon(R) CPU E5-2640,2.60GHz) and higher order of
basis function is used. With the refinement of mesh, construction of Krylov subspace
consumes increasing memory. Various Krylov subspace dimensions are compared.
The run time is also shown in Table 3.8.

Table 3.8: Computational statistics(in sec)

Methods(Krylov dim) Matvec+Orth Mat-expo Total Memory/Gb

Proposed(no restart) 583.8 13.2 597 1.92

Proposed(50) 502.96 7.3 510.26 0.64

Proposed(100) 500.2 8.72 509.2 0.96

LeapFrog 5430 – 5430 0.16
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The calculated S-parameters are plotted in Figure 3.20, and compared to those

from the Rayleigh multipole method [90]. We observe a very good agreement and

also clearly the bandgap effect of this structure.

Figure 3.20: S-parameters of PBG microstrip

3.3.2 Repetition unit in 2D: metasurface antenna

Next we simulate a metasurface antenna array [91], which has repetitions in both
x and y direction. A modulated Gaussian pulse(ω=4GHz, t0 = 1ns, τ=0.25ns),
similar to 1D case above, is launched at port of each unit cell. The setup for array
can be found in Figure 3.21.
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(a) Unit cell (b) Arrangement of array

Figure 3.21: Setup of meta-surface antenna array

9 distinct unit cells are necessary to incorporate all possible boundary conditions.
Each unit cell has 135,574 DoFs. In the setup of space-time building block, a typical
sub-problem spans a 3x3 block array(2x2 or 2x3 if located on the boundaries). Thus
there will be 25 distinct types of scenarios in total. Accordingly, the time unit is set
to be 0.05ns which leads to 40 parallel source dependent sub-problems. Simulation
periods are chosen to be 2ns for both first and second stage. The voltages on each
port of the 11x11 array and surface electric fields are shown in Figure 3.22.
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(a) S11 of 11x11 metasurface antenna array (b) Surface electric field

Figure 3.22: Simulation results of meta-surface antenna array

We can clearly see that antennas in different locations display various radiation
properties. This reveals the necessity of full-wave modeling for antenna array sim-
ulation. For the first stage, the run time statistics is illustrated by Figure 3.23 and
the stopping criterion of residual is set to be 1× 10−12.

Figure 3.23: Stage 1 run time statistics

Each task spans on 3x3(or 2x3, 2x2) blocks. Run time is 50s on average and
a good balance among them is also observed. To run this, a total number of 169
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cores on 11 computing nodes with Intel(R) Xeon(R) CPU E5-2640, 2.6GHz CPU
are used. To study the scaling performance and robustness of proposed work, we
assemble various arrays of size 5x5, 8x8 and 11x11 using the metasurface antenna
unit cell and the state vectors computed from the first stage. The voltages of some
representing unit cells(indexed 5, 61 and 116) are shown in Figure 3.24.

Figure 3.24: Voltages computed from proposed work

A good agreement is observed between proposed work and LeapFrog 2nd scheme.
To consider both the accuracy and efficiency, the number recycle steps is set to be
2. The dimension of Krylov subspace is 120 and stopping criterion for residual is
1 × 10−12. Figure 3.25 lists the step sized computed by the time step estimator
algorithm.
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Figure 3.25: Step sizes for stage 2

The drastic change of step size in the first half indicates the in-take of state
vectors from stage 1 at interfaces of time windows. Lastly, the run time statistics
reveals a roughly 3x speed-up over LeapFrog scheme as in Table 3.9.

Table 3.9: Computational statistics (min)

Array MxV Coupling Orth ODE solve Total LP2

5x5 19.96 1.7 31.4 0.4 53.5 225.4

8x8 20.6 1.4 45.7 0.4 68.1 231.1

11x11 20.2 1.1 48.2 0.4 69.9 220.9
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In this chapter, we extend the parallel in time method for EM-circuit co-simulation.

Modern integrated circuits(IC) have been used in high integration density and very

fast operating speed. In order to accurately simulation both EM fields and circuit

devices, a efficient tool like cosimulation is inevitable. E.g. SPICE model based gen-

eral simulators are considered here for conducting circuit simulation and transient

solvers for EM full-wave simulation. The EM and circuit solvers are coupled via

surface ports under a self-consistent coupling scheme. One challenge is that these

two domains are dominated by two sets of physics and always come in significantly

different scales in terms of spatial unknowns and size of time step. This chapter

develops a parallel in time(PIT) integration scheme for cosimulation and a macro-

modeling approach is also proposed under the PIT framework to further accerate the

cosimulation.

4.1 EM-Circuit Co-simulation Formulation

We use a microstrip line waveguide terminated with a device or circuit network
as a example in Figure 4.1. There are two major parts of this model, EM modeled by
full-wave Maxwell equation and circuit modeled by modified nodal analysis(MNA).

(a)

Figure 4.1: EM-circuit co-simulation model
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The first thing needs to be addressed is the coupling between these two domains.

4.1.1 EM-circuit coupling scheme

Here a self-consistent scheme to couple two parts is considered which ensures
that the voltages and electric currents on the coupling port are equivalent. ICKT =
IEM , V EM = V CKT . The information flows in the way that: a) EM model acts as
voltages source to circuit; (b) circuit model feeds back impressed electric current to
EM model.

(a)

Figure 4.2: Information flow for coupling

Here g(V CKT , V1, V2, ...) is a nonlinear function taking source voltage and voltages

at non-reference nodes of circuit and returning a current flowing through the source

port. J imp is the corresponding impressed current density which drives EM model.For

the other direction, V CKT is equvalent to line integral of electric field at the surface

port. The unknowns for EM model are u = [E, eport,H,hport]T where E,H are dofs

to the interior of simulation domain and eport,hport are associated with the port. For
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the circuit side, u = [V1, V2, ..., Vk] are non-reference nodes’ voltage. Starting from a

steady state at time stamp n, assuming V CKT
n = V EM

n , we want to find V EM
n+1 . March

∆t in time, doing the following:

V CKT
n+1

g−→ ICKTn+1 = IEMn+1
f−→ V EM

n+1 (4.1)

where f , a linear operator, denotes any time integration method for the EM model.

4.1.2 From circuit to EM

Followed by the same time-domain Maxwell equations and discontinusous Galerkin
discretization described in Chapter 2, a surface port boundary condition plays such
a role in the vicinity of the circuit with current source. The surface port is modeled
as planer impedance surface, illustrated in Figure 4.3.

(a)

Figure 4.3: Illustration of surface port

Here we assume two elements Ki and Kj sharing a face ∂Ki ∩ ∂Kj. Starting

from the boundary conditions of the electric and magnetic fields on the port, we can
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obtain the current density on the surface ΓCKT as,

JCKT =
ICKT
w

= n̂i ×Hi + n̂j ×Hj

0 = n̂i × Ei + n̂j × Ej

(4.2)

The electric field is tangenially continuous across the surface port and magnetic

field has a jump. In weak form, the relationship is implemented as residuals in

Equation 4.3,

RH
ΓCKT

= JHKγ − JCKT ∈ H(divτ ,ΓCKT )

RE
ΓCKT

= JEKγ ∈ H(divτ ,ΓCKT )
(4.3)

Due to the dual pairing principle, the term RH
ΓCKT

and RE
ΓCKT

are tested with curl-

conforming functions πtau(w) and πtau(v) to form energy density. Then the weak

form of the surface port related elements is written as ??,∫
Ω

w ·
(
∇× E + µ

∂H

∂t
−M

)
dΩ

−
∫

Ω

v ·
(
∇×H− ε∂E

∂t
− σE− J

)
dΩ

+

∫
∂Fh

{{v}} · (JHKγ − JCKT )ds−
∫
∂Fh

{{w}} · JEKγds = 0

4.1.3 Circuit modeling with State Variables Form

Modified Nodal Analysis(MNA),based on Kirchhoff’s circuit laws, is a typical for-

mulation for SPICE simulations. MNA augments standard nodal analysis equations

with equtions for each voltages source. To model nonlinear circuits, KCL is enforced

at all nonreference nodes and KVL is applied to independent loops. As listed in

Equation 4.4X 0

0 0

ẋsp

i̇v

+

Y BT

B 0

xsp

iv

+

inl(xsp)

0

 =

−is

vs

 (4.4)
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, the unknowns are voltages at each nonreference node(xsp) and currents (iv) flow

through independent voltage sources and inductors. Here, the admittance matrix

X,Y are determined by interconnections between circuit elements. B is determined

by the connection of supplied voltage sources with only 0, ±1 entries. inl(xsp) rep-

resents currents through branches containing nonlinear elements. is,vs denote in-

dependent current/voltage sources. From Equation 4.4 we can easily see that the

rank-deficiency may leads to a nonlinear differential algebraic equation(DAE). When

coupled with EM equations, special tricks are needed to solve DAE system. In order

to maintain the global system as a ODE, state variable (SV) formulation is consid-

ered to describe the behavior of circuit. In SV form, the circuit equation is written

in the general form:

dxSV
dt

= CxSV +Du, (4.5)

where xSV = [Vc, Il]
T is the state variables and u being the input, e.g. the inde-

pendent voltage source. The corresponding unknowns are then voltages across each

capacitor and currents flowing through each inductor. The discretized system of

equation for ?? is then formulated as Equation 4.6,

Mε
∂eporti

∂t
= Seh

port
i − F ii

e h
port
i +BJ

e g(Peporti , V1, ..., Vk, I1, ..., Im)− F ij
e h

port
j

Mµ
∂hporti

∂t
= −Sheporti + F ii

h e
port
i + F ij

h e
port
j

∂Vi
∂t

= gi(Peport, V1, ..., Vk, I1, ..., Im)

∂Ii
∂t

= gi(Peport, V1, ..., Vk, I1, ..., Im)

(4.6)

, where BJ
e = 1

w
·
∫
∂Fh

πτ (v) · l̄ is the matrix projecting IEM to current density and P

is to project eport to voltage across the surface port. l̄ denotes the unit vector along

the length direction of the port. This coupling scheme being self-consistant lies in

that all the unknowns from EM and circuit are described in one set of equations. So

the equality sign is enforced.
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To solve Equation 4.5 with available ODE integration schemes, evaluating the

right-hand-side is a necessary step which is illustrated in the following section.

4.1.4 Right-hand-side evaluation

The physical meaning for right-hand-side of Equation 4.5 is the scaled current
through capacitor(Ic) and voltage across inductor(Vl) when Vc, Il is acknowledged.
So the external behavior of capacitor and inductor is totally determined by state
variables. At time instance tn, a equivalent circuit can be constructed by replacing
all ith capacitor with a voltage source V Ci = Vc and jth inductor with a current
source ILj = Il. A simple illustration can be found in Figure 4.4.

Figure 4.4: Equivalent circuit in right-hand-side evaluation with SPICE op analysis

For general cases, one operating point analysis is preformed to obtain the right-
hand-side Ic and Vl. But for some nonlinear cases, the nonlinear components can
also display dynamic properties. For instance, the SPICE representation of diode
includes transit time(diffusion capacitance) and junction capacitance as shown in
Figure 4.5 [92]
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Figure 4.5: SPICE diode model representation

,where diffusion capacitance Cd is a nonlinear. The impact of such component
could be significant especially in higher frequencies. To see this, Figure 4.6 shows
the difference from the transit time(TT) parameter in a co-simulation of a microstrip
line and circuit in Figure 4.10 with L=1.2nH, C=0.35pF.

(a) With diffusion capacitor (b) Without diffusion capacitor

Figure 4.6: Impact of nonlinear passive component

So for simplicity, the paper deals with TT=0ns(no diffusion capacitance) but

keeps all other nonlinear components.
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4.1.5 State Variable Form in Circuit/Co-simulation

As a demonstration of how state variable approach applied in circuit simulation,
first simply consider a transistor amplifier illustrated in Figure 4.7. The amplifier is
modeled by Ebers-Moll model [93].

(a) Transistor Amplifier (b) Voltage at Node 5

Figure 4.7: Transistor Amplifier circuit and voltages

The SV approach with 3 unknowns is able to reproduce the result by MATLAB’s
ode23t integration scheme. The second example is a co-simulation of 3D microstrip
line connected to circuit shown in as in Figure 4.8.
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(a) Geometry of microstrip line (b) Circuit connected to surface port

(c) Voltages by SV method

Figure 4.8: 3D microstrip line connected to model circuit

With the right-hand-side being evaluated for the circuit side, the system of ODE
in Equation 4.6 can be solved by appropriate integration schemes. Ideally, V EM

n+1 and
V CKT
n+1 should be consistent. But due to the highly non-linear function g, the dif-

ference could be large enough to result nonphysical solutions. We can see that so
long as ∆t is necessarily small, g can be regarded as linear. But this approach would
consume many computational resources. This is another cause of multi-rate nature
of hybrid problem. Traditional space-parallelism is prune to have decreasing parallel
efficiency as the number of parallel processes increases. To show this, two different
density of meshing are used to model this example resulting DOF of 208707(case 1)
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and 82750(case 2) respectively for the EM part. The running time for performing one
integration step and parallel efficiency are recorded in Figure 4.9(a). The efficiency
decreases to very low level with the increase of processes.

(a) Run time and Efficiency (b) Relative efficiency

Figure 4.9: Parallel efficiency for space-only parallel method

The relative efficiency(<50%) when adding 4 times more processes is also illus-

trated in Figure 4.9(b). The DOF per process at 32 processes scenario is 6522 and

2586 respectively. Going more parallel can no longer maintain parallel efficiency espe-

cially when the number of processes is already high, or DOF per process is relatively

small. So there is urge need to develop parallelism in the dimension of time.
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4.2 Parallel-in-time integration for nonlinear EM-

Circuit cosimulation

4.2.1 Parallel-in-time algorithm

The system of Equation 4.6 can be viewed as a nonlinear ODE as,

du

dt
= −Au + B(u)u + f̃(t), u(t0) = u0. (4.7)

Now split the variable as u = v + w, here v and w solve the following system of

equation,

dv

dt
= −Av + B(v + w)v + f̃(t), v(0) = 0, t ∈ [0, T ]

dw

dt
= −Aw, w(0) = u0, t ∈ [0, T ]

(4.8)

Clearly, w solves a linear ODE but with non-zero initial condition, while v solves

for nonlinear, homogeneous ODE. Partition time interval [0, T ] into N time windows

[Tn−1, Tn], a parallel in time method can be directly applied as performing k = 1,2,...

Stage#1 :
dwk

n

dt
= −Awk

n(t), ,wk
n(Tn−1) = vk−1

n−1(Tn−1), t ∈ [Tn−1, T ]

Stage#2 :
dvkn
dt

= −Avkn + B(vkn +
n∑
j=1

wk
j )v + f̃(t), vkn(Tn−1) = 0, t ∈ [Tn−1, Tn]

(4.9)

The algorithm can be described by Figure 4.10
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Figure 4.10: Information flow for coupling

Realize that uk(t) = vkn +
∑n

j=1 +wk
j at t ∈ [Tn−1, Tn], substitute vk with uk, we

have

Stage#1 :
dwk

n

dt
= −Awk

n(t), wk
n(Tn−1) = ukn(Tn−1)−

n−1∑
j−1

wk−1
j (Tn−1), t ∈ [Tn−1, T ](1)

Stage#2 :
dukn
dt

= −Aukn + B(ukn)ukn + f̃(t), ukn(Tn−1) =
n∑
j=1

wk
j (Tn−1), t ∈ [Tn−1, Tn](2)

(4.10)

The nonlinear part provides initial conditions for linear part. The benefit for

this decomposition lies in that u can be solved totally in parallel on time window

[Tn−1, Tn]. The success of this algorithm is determined by the number of iterations
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required to converge and how effective linear part wk
n can be solved on overlapped

windows. It should be mentioned that this framework only exploits parallelism in

time. For solving both (1)(2) in Equation 4.10 decomposition in space is still appli-

cable. For this chapter, we only discuss the performance of parallel in time.

Here provides two simple examples, see Figure 4.11, to illustrate how to extract

linear part w from u. The first case is a microstrip line terminated with a diode-

resistor circuit. Since the reference voltages in the circuit can be directly yielded

from EM, the complete nonlinear system of equation writes as,

Mε
∂eporti

∂t
= Seh

port
i − F ii

e h
port
i +BJ

e g(Peporti )− F ij
e h

port
j

Mµ
∂hporti

∂t
= −Sheporti + F ii

h e
port
i + F ij

h e
port
j

(4.11)

Once the nonlinear term BJ
e g(Peporti ) is removed, the remaining part behaviors just

like open-circuit at the coupling port.

(a) Without passive component

(b) With passive component

Figure 4.11: How to extract linear problem

For the second case where one reference voltage in the circuit is inscribed in the
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system, the system is written as,

Mε
∂eporti

∂t
= Seh

port
i − F ii

e h
port
i +BJ

e g(Peporti − V1)− F ij
e h

port
j

Mµ
∂hporti

∂t
= −Sheporti + F ii

h e
port
i + F ij

h e
port
j

C
∂V1

∂t
= g(Peport − V1)− V1

R

(4.12)

Correspondingly, the linear system includes two separate parts, one is the microstrip

line with a open coupling port, and the other is a RC loop.

The typical communication pattern for space-time grid is illustrated by Fig-
ure 4.12. One significant features is that the space and time dimension are inde-
pendent. This gives us a great flexibility in attribution of computing resources. If
the DOF per space process is large enough, we would still prefer more computing
resources in the space dimension. When the decrease of efficiency is observed, time
dimension would come in to rescue.

Figure 4.12: Communication pattern for space-time grid

4.2.2 Effective Integration Technique for Linear Problem

Stage 1 in Equation 4.10 indicates that the solution to N linear non-homogeneous
problems defined on overlapped time intervals are required. This imposes great im-
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balance in terms of parallelizaion. Also note that only the solutions at time interfaces
are needed. Therefore the choice of integrator determines the over all parallel per-
formance. Numerical study shows that only coarse integrator(high truncation error)
is a good candidate here. To achieve this, recycling φ integrator is considered here.
The work-flow is demonstrated by Figure 4.13 with N=4 assumed and algorithm
description in Algorithm 5.

Figure 4.13: Work-flow of effective integration for linear part
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Algorithm 5 Coarse ϕ integrator at n-th Time Window

Input: wn(tn−1),A, k,N

Output: w(tm),m = n, ..., N − 1

∆t← tn − tn−1

v← wn(tn−1)

w1 ← A ∗ v

AWk ←WkHk,k + hk+1,kwk+1e
T
k

yk ← ∆tϕ(−∆t,Hk,k)e1

v← v + Wk ∗ yk

wn(tn) = v

for i = n+ 1, N do

x← A ∗ v

g←WT
k x

yk ← ∆tϕ(−∆t,Hk)g

v← v + Wkyk

wn(ti)← v

The benefit of Algorithm 5 is that each process constructs the Krylov subspace

once and for the following several steps, only projection is required. Construction of

Krylov subspace is known to be more expansive than projection.
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4.3 Numerical examples

4.3.1 Convergence and Parallel Efficiency study

Since PIT algorithms performs several iterations to converge to true solution,
the convergence rate is studied. The example used here is a 1D transmission line
connected to a half-wave rectifier shown in Figure 4.14. The transmission line is
modeled by discontinuous Galerkin with nodal basis function. To also evaluate the
performance of PIT applied to linear problem, the diode can be replaced by a resistor.

Figure 4.14: 1D Transmission Line example

In both cases, Tend=6ns is divided into 10 time windows. The electrical field,
voltage across capacitor are monitored as well as the convergence VS. iterations in
Figure 4.15 and Figure 4.16.
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(a) Electric field at transmission line (b) Voltage across capacitor

(c) Convergence of error

Figure 4.15: 1D transmission line connected with nonlinear load
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(a) Electric field at transmission line (b) Voltage across capacitor

(c) Convergence of error

Figure 4.16: 1D transmission line connected with linear load

Error decreases with more iterations carried out for both cases, while the linear
one converges faster. After the N-th iteration applied, PIT result converges exactly
to the serial time stepping result. Here it needs to assure that time step for stage 2 is
identical to serial time stepping method’s. Not a full set of iteration is necessary once
the preset error bound is met. This property leaves a good room for performance.
Next the parallel efficiency is studied by refining the mesh creating different DOFs
for EM model. The parallel efficiency is shown below.
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Figure 4.17: Parallel Efficiency of 1D transmission line-half wave rectifier example

The comparison is conducted between running PIT algorithm with 1 and 4 pro-

cesses. Concluded from Figure 4.17 that increase of DOFs per process barely has

impact on the efficiency and it can be maintained at very high level(> 80%). Paral-

lelism in time dimension is capable of achieving good efficiency compared to paral-

lelism in space(PIS) only. But it also worth to point out that, PIT algorithm brings

in additional computational efforts and sacrifice of precision to some degree. A good

combination of parallelism in space and time should be adopted. General guideline is

that PIT should come on top of PIS especially when the DOFs per process is already

small.

4.3.2 Time Stepping Strategy and Balance of Parallelization

The parallel in time algorithm involves running a coarse integrator on the system

of similar dimension with the original problem. As our choice, Algorithm 5 is con-
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sidered. This class of method shows super convergence when the integration time

period is relatively small. Therefore, the strategy for running PIT algorithm is still

time stepping based which means that PIT is applied within a coarse time step. To

demonstrate, the same example in Figure 4.8 is also used. Different step sizes are

employed and shown in Figure 4.18.

(a) Step size = 10ps (b) Step size = 20ps

(c) Step size = 30ps (d) Differences at nonlinear period

Figure 4.18: Impact of step size

In this study, Tend=4ns is divided into time step size of 10,20 and 30ps. Within
each time step, a PIT is run with 2 iterations. With smaller step size, the result
approximates reference better especially at the time period when diode is forward
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biased. The run time for each case on 4 processes are 70.72s, 63.75s and 49.64s.
The more subtle time step is, the more communication over-heads there are. So
there will be a trade-off between performance and accuracy.Algorithm 5 is able to
maintain a good balance among processes considering each sub-problem is defined
on overlapped time period. The runtime for linear subproblem on each process is
listed in Table 4.1. The construction of Krylov subspace takes the majority of time
and a good balance is observed among 4 processes.

Table 4.1: Runtime Statistics of linear subproblem for each process

Proc 0 1 2 3
Construction(s) 36.9 36.6 37.0 36.8

Projection(s) 4.2 2.1 0.002 0.002

4.3.3 Applications

The first application is a full-wave rectifier circuit connected to a spiral electro-
magnetic bandgap structure(EBG) [94]. Each element of this EBG lattice consists
of a square metal patch with a a spiral branch inserted inside, as shown in Fig-
ure 4.19(a). The dimensions are G = 4mm, D = 6mm, W = 60mm, l = 240mm,
h = 10mm and w = 24mm. The simulated S12 is shown in Figure 4.19(d) where
it is below -10dB beyond 700MHz. Next a 500MHz and 1GHz continuous wave are
launched into port 1 and rectifier is connected to port 2. From (e)(f) we can see
that a 1.4V voltage difference is observed in 500MHz case which agrees with physical
principle of silicon diodes whose forward voltage is about 0.7V.
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(a) Geometry of spiral EBG (b) Full-wave bridge
rectifier(Rout=200Ω,C=1pF)

(c) Voltages at port 1,2 (d) Magnitude of S12

(e) Port 2 voltage at 500MHz (f) Port 2 voltage at 1GHz

Figure 4.19: Spiral EBG connected to full-wave rectifier
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The run time statistics are listed in Table 4.2. A two times improvement of
parallel efficiency is observed for different number of iterations with 4 time windows
divided.

Table 4.2: Runtime Statistics of spiral EBG example

# of Iterations 2 3 4
serial 777.2s 1289.3s 1625.6s

PIT(Time/Efficiency) 271.4s/72% 474.8s/68% 645.7/63%
PIS(Time/Efficiency) 537.3s/36% 859.3s/38% 1122.7s/36%

The second application is a microstrip line matching network. A JS8851-AS FET
amplifier is mounted over a gap between port 2(gate) and 3(drain). Four ports have
the same size. The dimension of microstrip line is w = 7.9mm l1 = l2 = 10mm, d =
5mm, l = 25mm and h = 2.54mm and the dielectric constant of substrate is 2.17ε0.
Here amplifier is modeled by small-signal equivalent circuit shown in ??(b). The total
DOF is 237573 for EM and 6 for circuit. To study the broadband characteristics,
a modulated Gaussian source is applied at Port 1. A 25dB gain is observed at
2.2GHz. Note that this is a linear circuit, so 2 iterations of PIT is good enough to
approximate the result. For runtime statistics in Table ??, two times improvement of
parallel efficiency is guaranteed for various iterations when 4 time windows divided.
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(a) Geometry of matching network (b) Small-signal equivalent circuit model
for the JS8851-AS FET amplifier

(c) Voltages at port 1,4

(d) Magnitude of gain (e) Phase of gain

Figure 4.20: Matching network with JS8851-AS FET amplifier
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# of Iterations 2 3 4
serial 957.3s 1464.7s 2004.5s

PIT(Time/Efficiency) 376.5s /64% 565.8s/65% 761.4s/66%
PIS(Time/Efficiency) 641.6s/37% 983s/37% 1336.3s/38%

Table 4.3: Runtime Statistics of microstrip line matching network
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5.1 Introduction

In modeling the complex antenna/array radiations, high computational cost and

inflexibility cause great trouble for conventional CEM solvers. The multi-solver do-

main decomposition(MSDDM) scheme is one of the efficient tools tackle those chal-

lenges. In this scheme, an object is decomposed into separate parts according to

material property and geometry. The major advantages of MSDDM can be summa-

rized into 3 folds: 1) It’s very easy to modify the existing CEM solvers and integrate

into MSDDM’s framework; 2) Individual subdomains can be solved concurrently so

that it can fit into the parallel computing environment,e.g. message passing inter-

face(MPI); 3) Krylov iteration scheme is employed to enhance global convergence. In

this paper, a optimized transmission condition based on Schwartz domain decompo-

sition is proposed in the framework of MSDDM. From the implementation point of

view, the subdomain solvers are treated as black boxes. Numerical example showed

that the optimized transmission condition is facilitated as long as necessary informa-

tion is provided by subdomain solvers. Besides, a hierachical parallel preconditioning

techniques which combines of two classical stationary preconditioners is developed

to best exploit the parallel computing resources available.

5.2 Technical Approach

5.2.1 Boundary Value Problem

Here we consider the domain decomposition(DD) method to solve time harmonic
Maxwell equations. Figure 5.1 illustrates the decomposition for two domains.
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Figure 5.1: Decomposition of domains

Specifically, the DD method is Interior Penalty discontinuous Galerkin method

mentioned in [95]. First define the tangential operators πτ (·) := n × · × n and

γτ (·) := n×·, assuming the outward point normal vector n is along with +z direction.

The boundary value problem is written as

∇× µ−1
r1 ∇× E1 − k2

0εr1E1 = −jk0η0J
imp
1 in Ω1

∇× µ−1
r2 ∇× E2 − k2

0εr2E2 = −jk0η0J
imp
2 in Ω2

πτ (E1) = πτ (E2) on Γ

γτ (µ
−1
r1 ∇× E1) = −γτ (µ−1

r2 ∇× E2) on Γ

γτ (µ
−1
r1 ∇× E1) = jk1µ

−1
r1 πτ (E1) on ∂Ω1

γτ (µ
−1
r2 ∇× E2) = jk2µ

−1
r2 πτ (E2) on ∂Ω2

(5.1)

where Ei ∈ H0(curl,Ωi) is the electric field in sub-domain and simple first order

absorbing boundary condition(ABC) on ∂Ω is assumed. The impressed electric cur-

rent is given such that Jimp
i ∈ H0(div,Ωi). By Galerkin testing procedure, the test

functions reside in the dual space of each residual in above equations. On the in-

terface Γ, there are two sets of fields and constitutive parameters. Particularly, we

choose k̃ = (k1 + k2)/2 and µ̃r = (µr1 +µr1)/2 at Γ, then the middle two relations of

Equation 5.1 is

γτ (µ
−1
r1 ∇× E1)− jk̃µ̃r−1πτ (E1) = −γτ (µ−1

r2 ∇× E2)− jk̃µ̃r−1πτ (E2)

γτ (µ
−1
r2 ∇× E2)− jk̃µ̃r−1πτ (E2) = −γτ (µ−1

r2 ∇× E1)− jk̃µ̃r−1πτ (E1).
(5.2)
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Equation 5.2 is denoted as Robin Type transmission condition(TC). It resembles

first order ABC. Note that TC allows Ei to be discontinuous on Γ and here only

tangential continuity is enforced for Ei and normal continuity for µ−1
ri ∇ × Ei. The

details of weak formulation is listed in [95].

In the context of non-overlapping DD methods, convergence is directly related

to the TC. By including higher order derivatives in the transverse direction, the

convergence can be improved.

5.2.2 Optimized Transmission Condition for MSDDM

The transverse electric transmission condition(TETC) is formulated as [96],

γτ (µ
−1
r1 ∇× E1) + α1πτ (E1) + βSTE(πτ (E1))

= −γτ (µ−1
r2 ∇× E2) + α2πτ (E2) + βSTE(πτ (E2))

γτ (µ
−1
r2 ∇× E2) + α2πτ (E2) + βSTE(πτ (E2))

= −γτ (µ−1
r1 ∇× E1) + α1πτ (E1) + βSTE(πτ (E1))

(5.3)

with complex coefficients α and β to be determined. STE(·) := ∇τ×∇τ× denotes the

transverse electric(TE) operator on tangential direction. Note that the form of TCs

in Equation 5.3 is taken from an approximation to the TE transparent condition,

the exact relation satisfied by a TE-polarized plane wave incident upon an infinite

plane [97].

When the TE term STE(πτ (Ei)) is removed from Equation 5.3, the transmission

condition degenerates to Robin-type. To deal with non-planar interfaces and non-

conformal meshes, a auxiliary unknown is then defined as ji = 1
k0
γτ (µ

−1
ri ∇× Ei) ∈

L2
0(Γij) or H0(div,Γij) depending on the boundary type. The TETC can be written
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as,

k0j1 + α1πτ (E1) + βSTE(πτ (E1)) = −k0j2 + α2πτ (E2) + βSTE(πτ (E2))

k0j2 + α2πτ (E2) + βSTE(πτ (E2)) = −k0j1 + α1πτ (E1) + βSTE(πτ (E1)).
(5.4)

Equation 5.4 is tested with u1 in L2
0(Γ12) resulting,

k0 〈u1, j1〉Γ12
+ α1 〈u1, e1〉Γ12

+ β 〈u1,STE(e1)〉Γ12

= −k0 〈u1, j2〉Γ12
+ α2 〈u1, e2〉Γ12

+ β 〈u1,STE(e2)〉Γ12
,

(5.5)

here ei := πτ (Ei).

In the left hand side, integration by parts can simply TE term as

The testing term on STE in Equation 5.5 gives,

〈u1,STE(e1)〉Γ12
= 〈∇τ × u1,∇τ × e1〉Γ12

(5.6)

From a implementation perspective, any solver with basis function e can form such

a inner product term. Under the framework of MSDDM where each subdomain may

be taken care of by different solvers with various basis function or even unknown

settings. For the right hand side, such a relation may not hold if the other solver’s

basis function is in a different space. In other word, the neighboring subdomain may

not provide ∇τ × e2. The solution here is to rewrite the TE term. First recall that

for a 3D vector u = (u1, u2, u3)T , the curl is defined by: ∇×u = (∂2u3−∂3u2, ∂3u1−

∂1u3, ∂1u2 − ∂2u1)T . Define the trace operator on the interface Γij as ∇τ , we have

∇τ × πτ (ui) = n · (∂1u2 − ∂2u1) = n(n · ∇ × u) (5.7)

. The TE term can be rewritten as,

STE(πτ (Ei)) = ∇τ × (n(n · ∇ × Ei))

= −jωµi∇τ × n(n ·Hi)

= −jωµ∇τ (Hi · n)× n

(5.8)
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The right hand side is available as long as the normal component of magnetic field Hi

is available from neighboring subdomain which is indicated by Equation 5.8. With

such reformulation of TETC, only tangential electric field , normal magnetic field

and current are needed in the implementation.

5.2.3 Hierarchical parallel preconditioning

In this section, we present a adaptive hierarchical parallel preconditioning tech-

nique which takes advantage of the division of the subdomains on computing nodes.

Let’s assume there are p nodes with Nj sub-domains on each node. On the first

level, the matrix is divided based on the partition of subdomains reside in separate

nodes. Consider the case where there are p = 2 parallel computing nodes, the matrix

A is written as:A = [K1,1,D1,2; D2,1,K2,2], where the subdomain matrices Ki,i and

coupling matrices Ci,j are defined as:

K1,1 =


A1 . . . C1,N1

...
. . .

...

CN1,1 . . . AN1

K2,2 =


B1 . . . C1,N2

...
. . .

...

CN2,1 . . . BN2


The off-diagonal blocks Di,j indicates the coupling matrices between subdomains

on separated nodes.

D1,2 =


D1,1 . . . D1,N2

...
. . .

...

DN1,1 . . . DN1,N2

D2,1 =


D1,1 . . . D1,N1

...
. . .

...

DN2,1 . . . DN2,N1


Matrices Ai(Bi) are subdomains distributed to the same computing node. The first

level preconditioner MJ is of Jacobi type which is applied to the subblock Ki,i and

accounts for the coupling between subdomains in different nodes. The application

of MJ can be written in a matrix-vector multiplication formulation as illustrated by
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line 9 in Algorithm 6. The second level preconditioner MGS is of Gauss-Seidel type

which only accounts for the coupling between subdomains within same computing

node. This algorithm can be easily extended to p > 2 cases.

Algorithm 6 Hierarchical parallel matrix-vector multiplication

Input: Ai, Ci,j,M

Output: R = M−1AX

X0 ← X

for Node j = 1, p do . in parallel

for i = 1, Nj do

ti = 0

for k ∈ neighbour(i) do

if k 6∈ Node(j) then

ti ← ti +Di,kX
0
k

else

ti ← ti + Ci,kXk

Xi ← A−1
i ti

Ri ← X0
i −Xi
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5.3 Numerical Experiments

5.3.1 Accuracy and Far Field RCS

A Vivaldi antenna array with 6 elements opearting at 9 GHz is simulated. The
surface current distribution and the far field radar cross section (RCS) are shown in
Figure 5.2.

(a) Surface Current (b) RCS

Figure 5.2: Currents and RCS of Vivaldi array

The RCS of our method shows good consistency with the one from conventional

FEM solver.

5.3.2 Convergence Performance of hierarchical preconditioner

The convergence history and run time statistics are illustrated in Figure 5.3.
The curve ”Robin-6”(or ”TETC-6”) denotes MSDDM with Robin-type(or TETC)
transmission condition on 6 computing nodes. In this case, 6 antenna elements are
distributed to each node and the hybrid preconditioner degenerates to pure Jacobi
type.
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(a) Convergence of residual (b) Run time statistics

Figure 5.3: Performance of hierarchical preconditioner

With the increasing of computing nodes, the hierachical preconditioner improve

the convergence performance. Meanwhile, TETC decreases the iterations required

by half compared with Robin-type transmission condition.

So far we have addressed the need for a fast and parallel multi-solvers in solving

complex antenna simulation problems. The work results in optimized transmission

condition under MSDDM framework which demands least requirement for subdo-

main solvers. Besides, a hierarchical preconditioning technique is developed with

great adaptability to parallel computing environments. Moreover, this work has a

great potential for multi-scale, multi-physics problems.
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5.4 Platform-Aware In-Situ Antenna and Meta-

material Analysis and Design

Modern military and commercial EM systems are routinely equipped with mul-

tiple antennas serving for radar and wireless communications. The computational

electromagnetics (CEM) has emerged as a powerful and indispensable tool to evalu-

ate the in-situ performance and co-site interference. These simulations are enabled

by fast and rigorous numerical solutions of Maxwell’s Equations as well as rapid ad-

vances in high-performance computing (HPC) systems. On present-day HPC clus-

ters, the in-situ antenna performance on high-fidelity platforms of electrical length

of the order of 1000 wavelengths can be analyzed within a couple of hours.

The aim of this section is to address this pressing and challenging engineering

need. For many in-situ antenna design and parameter studies, it is typical that those

antennas are only allowed to be mounted on certain parts of the platform. Namely,

the computational domain can be decomposed into large fixed parts and small por-

tions involving the antenna design. The observation inspires us to investigate a highly

efficient, reduced order in-situ antenna analysis framework.

Key ingredients are summarized as follows: (1) The discontinuous Galerkin (DG)

boundary element (BE) method [98] and geometry-aware domain decomposition

(DD) method [99] are employed to facilitate a modular design-oriented decompo-

sition. (2) A novel platform Green’s function (PGF) is introduced on the outer

surface of those antennas. The PGF is calculated once in the offline phase to charac-

terize the coupling with large, fixed platform. It can be reused for all future in-situ

computation. (3) In the online phase, rapid solution for multi-query antenna de-

sign needs is achieved by a Schwarz DD solver of the reduced order system. The

computational costs are the same as the free-space radiation.
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5.4.1 Problem decomposition

Consider the in-situ analysis of two antennas on the high-definition platform, as

illustrated in Figure 5.4. The problem can be decomposed into three sub-regions:

sub-regions Ω1 and Ω2 contain two antennas, sub-region Ω3 is electrically large PEC

platform. We have used cubical surfaces, Γ31 and Γ32, to facilitate the decomposition.

The size of the surfaces is determined by the prescribed surface area where the

antennas are allowed to be mounted.

 Ω2

 Γ31

 Γ32

 Ω3

 Ω1

Figure 5.4: DD based model reduction for in-situ antenna analysis.

The finite element (FE) method is used to discretized the volume domain of Ω1

and Ω2, and the DG boundary element method is applied to the exterior surface of

Ω1 and Ω2 and platform Ω3. The resulting system matrix can be written as:



AFE
1 N1

N T
1 ABE

1


CBE

12 CBE
13

CBE
21

AFE
2 N2

N T
2 ABE

2


CBE

23

CBE
31 CBE

32
ABI

3


. (5.9)
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The resulting sub-domain FE matrices, AFE
m , m =1,2, have complex nonlinear

dependency on a few design parameters (εm, µm, rm, etc.). The sub-domain BE

matrices ABE
m , m =1,2,3, and coupling matrices CBE

mn are resulting from free-space

Green’s function, and has no parametric dependency.

Evidently, the above non-overlapping and non-conforming DG and DD methods

lead to a modular design-oriented decomposition. The modification of antenna types,

parameters, locations in the design stage is reflected in local and sparse FE matrices,

which are decoupled from exterior BE matrices. Nevertheless, every time antenna

design is modified, we still need to solve the entire system matrix. That is where the

platform Green’s function comes into play.

5.4.2 Platform Green’s function

The PGF is evaluated on the artificial surfaces, Γ3 = Γ31 ∪ Γ32, in the offline

computing phase. Once calculated, the large fixed platform is rigorously represented

by the PGF. The direct calculation of the PGF matrix requires the solution of the

large platform Ω3 with respect to individual unit source currents on Γ3. Recognizing

the coupling between antennas and platform is considerably low-rank, we proposed

a novel alternating and random interpolative decomposition (AR-ID) to select the

skeleton source currents from the original ones on the exterior surface Γ3. The AR-

ID calculation can be achieved locally per antenna sub-system and embarrassingly

in parallel. The reduced model of in-situ antenna system can be written as:

AFE
1 N1

N T
1 ÃBE

1


C̃BE

12

C̃BE
21

AFE
2 N2

N T
2 ÃBE

2






xFE

1

xBE
1

xFE
2

xBE
2

 =


bFE

1

0

bFE
2

0

 . (5.10)
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The updated BE matrices consist of the free-space GF matrices and the AR-ID

representation of PGF matrices:

ÃBE
1 = ABE

1 −Rn1×k1
13 · Sk1×k1

11 ·Rk1×n1
31 , (5.11)

C̃BE
12 = CBE

12 −Rn1×k1
13 · Sk1×k2

12 ·Rk2×n2
32︸ ︷︷ ︸

Platform GF matrix

, (5.12)

where Skm×kn
mn = Bkm×n3

m3 ·
[
ABE

3

]−1 · Bn3×kn
3n . The n1, n2, n3 are the number of BE

unknowns on antennas and platform. The k1 and k2 are skeleton BE unknowns.

During the design stage (online computing), Equation 5.10 is solved by Krylov

iterative methods with an additive Schwarz preconditioner [100]. We remark that the

online computing complexity does not depend on the size of the in-situ platform. As

a result, in-situ design and optimization of multi-antenna systems can be performed

at the same cost as the free-space radiation.

5.4.3 Illustration

We consider a metasurface antenna [101] mounted on the top surface of a PEC

platform, as shown in Figure 5.5. In the offline calculation, we first generate separate

BE meshes on the exterior surface of antenna and the platform. The PGF matrix

is then constructed and assembled in the AR-ID representation as in Equation 5.11.

We note that the PGF matrix is introduced to characterize the coupling with the

platform only, and separately compressed with the free-space GF matrix. Thereby,

the rank of the PGF matrix is extremely low, as the skeleton BE unknowns in

Figure 5.6(b), and the free-space GF matrix can still be compressed with the fast

multipole method. In the online phase, we generate the volume meshes for different

antennas independently. The FE matrices are combined with the same GF matrices

in Equation 5.11. The in-situ radiation patterns are shown in Figure 5.7.
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Metasurface 
AntennaIn-situ 

platform

Figure 5.5: Example of a metasurface antenna on PEC platform.

(a) BE unknowns: n = 859 (b) skeleton BE unknowns: k = 42

Figure 5.6: Illustration of a data-sparse representation of PGF.

(a) Patch antenna (b) Patch antenna 
with uniform EBG

(c) Patch antenna 
with NUA EBG

Figure 5.7: Radiation pattern of in-situ antennas at 550MHz.
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The complete process can be summaried by the flow chart in Figure 5.8.

Figure 5.8: Flow chart of platform Green’s function method

5.5 Numerical Examples

Rapid analysis for multiple antennas on ship mast

In this example, interference among 4 mounted antennas at frequency 450MHz is

studied. There are 1 fat dipole antenna, 1 monopole antenna array with 4 elements

and 2 patched antennas mounting on separate locations on a ship mast as shown

in Figure 5.9. The ship is modeled by boundary element method and is partitioned

into 12 subdomains. The first step is to obtain the platform Green’s function. The

DOFs and skeletons unknowns for each components are listed in the Table 5.1.
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fatdipole 

patch 1  

patch 2  

monopoles 

(a) Schemeatic of ship and antennas (b) Skeleton unknowns of fat dipole’s air-
box

Figure 5.9: Setup of ship and antennas problem

Table 5.1: Object dimensions

Object fatdipole patch1 patch2 monopole ship body

FE DOFs 31563 118672 118672 54043 NA

BE DOFs 1669 2953 2953 1803 164352

skeletons(J/M) 262/254 252/243 243/239 93/97 NA

In the online stage, four antennas are turned on one at a time and S11 are recorded.

The simulation and reference results are listed in Figure 5.10 and Table 5.2. Approx-

imately 240 times speed-up is achieved.

110



Chapter 5. Parallel and fast methods for solving time harmonic Maxwell equations

(a) Surface current on antennas (b) Surface current on ship body

(c) Convergence history of residual

Figure 5.10: Simulation results of antennas and ship

Table 5.2: Simulation results (reference / this work)

Excitation fatdipole patch1 patch2 monopole
S-parameter 0.81 / 0.81 0.44 / 0.42 0.45 / 0.45 0.56 / 0.56

DD iterations 80 / 2 59 / 2 52 / 2 41 / 1
Runtime (s) 1712 / 4 1297 / 5 1061 / 4 852 / 3
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Platform-aware design parameter sweep

In this part we show a example for design parameter sweep with platform Green’s
functions available. Similary to the last example, the PEC ground for fat dipole
antenna is replaced by electric bandgap metasurface as in Figure 5.11. The parameter
for sweep for sweep is substrate’s dielectric constant(εr) and 60 points within range
[2, 16] are studied. For single simulation, the runtime is 6s as compare to 2500s in
non-PGF case.

(a) Fat dipole antenna on EBG

(b) S11 (c) Field patterns

Figure 5.11: Simulation results of parameter sweep
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In this dissertation, we have developed several parallel algorithms for compu-

tational electromagnetics in both time and frequency domain based on the idea of

domain decomposition, reduce-order modeling, parallel in time and on-line/off-line

separation. The goal is to make better use of computing resources, either reduce

simulation-to-result-time or improve scaling efficiency. Several applications are also

investigated to verify the effectiveness of these algorithms.

In Chapter 2, a space-time parallel domain decomposition algorithm for transient

analysis is developed. To assist the decomposition of problem, Krylov subspace

based matrix exponential integrators are investigated. Also we proposed a heuristic

strategy for pole selection. The results indicate a improvement of parallel efficiency

over parallel-in-space-only method through representative numerical examples. The

efficiency can reach more than 80% on 96 cores .

In Chapter 3, we developed a space-time domain decomposition and building

block methodology to increase the concurrency and efficiency for time domain EM

simulations by taking advantage of the repetition in both spatial and temporal do-

mains. Based on the decomposition of the original problem, various integration

methods are proposed respectively. The proposed method is particularly suitable for

multi-scale, locally periodic EM problems with millions of time steps in temporal

dimension. The advancements are verified in simulation of photonic bandgap mi-

crostrip structure and meta-surface antenna. Approximately 10 times speed-up is

observed in 1D repetition units and 3 times speed-up in 2D repetition units.

In Chapter 4, parallel-in-time algorithm is extended to electromagnetic circuit

co-simulation problems by linear/nonlinear decomposition. First, a state-variable

form of co-simulation is developed to formulate a system of nonlinear ODE. Next,

a iterative refinement scheme is proposed to perform parallel-in-time. Some prac-

tices in implementation are also addressed. Finally, a effective coarse ϕ integrator

is designed for linear sub-problem. Numerical examples verify that parallel-in-time
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algorithm applied in co-simulation displays twice better parallel efficiency over tra-

ditional parallel-in-space-only method.

In Chapter 5, an optimized transmission condition under MSDDM framework

which demands least information exchange from neighboring subdomain solvers is

first proposed. A hierarchical parallel preconditioning technique is also developed

to utilize computing resource available in a more flexible way. To demonstrate the

accuracy and advantages, a Vivaldi array is simulated. The RCS result shows that the

accuracy of proposed method is guaranteed. The convergence and run time behave

exactly like expected. Next, to address the pressing challenging in in-situ antenna

design, a novel platform Green’s function is proposed. With this work, complex

problem can be decomposed into plug-in-play components and PGF matrices are

reusable for computing. A large ship mounted with several antennas is simulated.

Results show that the on-line computation can achieve 240 times speed-up without

compromising accuracy. Parameter sweep becomes efficient due to the reusability of

most computationally intensive coupling part.

The future directions of this work include incorporation of higher order transmis-

sion condition(transverse magnetic term) under the MSDDM framework. For the

platform Green’s function, how to speed-up the off-line stage computations would

be the future work. For the co-simulation problems, the next step would be the

intelligent space-time grid attribution.
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