
Documentation for Docker Installation
and Usage

Release 1.0

Advanced Computational Electromagnetic Model (ACEM) group

Jun 17, 2024

CONTENTS

i

ii

Documentation for Docker Installation and Usage, Release 1.0

Docker is a platform for developing, shipping, and running applications. It uses containerization technology to package
software and its dependencies into standardized units called containers. These containers are lightweight, portable, and
isolated, allowing applications to run consistently across different environments, from development to production.

With Docker, developers can build, ship, and deploy applications faster and more efficiently by eliminating compati-
bility issues between different systems. Docker simplifies the process of managing and scaling applications, making it
easier to deploy and update software in any environment, whether it’s on-premises, in the cloud, or hybrid.

Overall, Docker revolutionizes the way applications are developed, deployed, and managed, enabling teams to innovate
more rapidly and reliably.

CONTENTS 1

Documentation for Docker Installation and Usage, Release 1.0

2 CONTENTS

CHAPTER

ONE

MOTIVATION FOR CONTAINERS

To see why containers are useful, let us look at the following 2 scenarios.

Scenario Traditional Instructions With Docker
Development To set up the development environ-

ment, install these libraries and run
these scripts

“Run docker compose up”

Deployment To run the software, prepare Ubuntu
of version 22.02. Install these de-
pendencies and run the software

“Run container image with these op-
tions”

3

Documentation for Docker Installation and Usage, Release 1.0

4 Chapter 1. Motivation for Containers

CHAPTER

TWO

EVOLUTION OF VIRTUALIZATION

In modern computing, various technologies cater to different needs and scenarios. Bare metal, virtual machines, and
containers represent three fundamental approaches to deploying and managing applications, each with its own set of
advantages and use cases.

2.1 1. Bare Metal

Bare metal refers to the traditional method of running applications directly on physical servers without any virtualization
layer. In this setup, the operating system interacts directly with the underlying hardware. Bare metal environments
offer maximum performance and control since all resources are dedicated to the application. They are ideal for high-
performance workloads where every bit of computational power counts.

2.2 2. Virtual Machines (VMs)

Virtual machines emulate physical hardware within a host server, allowing multiple operating systems and applications
to run independently on the same physical hardware. Each VM runs its own guest operating system, providing strong
isolation from other VMs. VMs offer flexibility, enabling different operating systems and configurations to coexist on
the same hardware. They are commonly used for server consolidation, testing, and development environments.

When using VM, a hypervisor is usually needed. It is a software or firmware layer that enables the creation and
management of virtual machines (VMs) on physical hardware. It sits between the hardware and the operating systems
(OS) running on the VMs, facilitating the sharing of physical resources among multiple virtual environments.

There are two main types of hypervisors:

5

Documentation for Docker Installation and Usage, Release 1.0

a. Type 1 Hypervisor (Bare Metal Hypervisor):

Type 1 hypervisors run directly on the physical hardware without the need for a host operating system. They are
often referred to as “bare metal” hypervisors because they have direct access to the underlying hardware. Examples
include AWS Nitro System, VMware vSphere, and Microsoft Hyper-V. Type 1 hypervisors provide efficient and high-
performance virtualization, making them suitable for enterprise-level deployments and cloud computing environments.

b. Type 2 Hypervisor (Hosted Hypervisor):

Type 2 hypervisors run on top of a host operating system, which means they rely on the underlying OS for hardware
access. These hypervisors are commonly used on desktop or workstation environments for development, testing, and
running multiple operating systems simultaneously. Examples include Oracle VirtualBox, VMware Workstation, and
Parallels Desktop. While Type 2 hypervisors offer ease of use and flexibility, they may introduce some performance
overhead due to the additional layer of the host OS.

6 Chapter 2. Evolution of Virtualization

Documentation for Docker Installation and Usage, Release 1.0

2.3 3. Containers

Containers are lightweight, portable, and isolated environments for running applications and their dependencies. Unlike
VMs, containers share the host operating system’s kernel, which reduces overhead and improves efficiency. Containers
provide fast deployment times and scalability, making them ideal for microservices architectures, continuous integration
and deployment (CI/CD) pipelines, and DevOps practices.

Table 1: Comparison Between Bare Metal, Virtual Machines, and
Containers

Aspect Bare Metal Virtual Machines Containers
Isolation No isolation between applica-

tions.
Strong isolation between VMs. Isolated containers with shared

OS kernel.
Resource
Utilization

Utilizes all resources of the
physical server.

Resources are divided among
VMs.

Lightweight, shares OS re-
sources, minimal overhead.

Perfor-
mance

Offers highest performance as
there’s no overhead.

Slightly reduced performance
due to virtualization layer.

Near-native performance, mini-
mal overhead.

Scalability Scalability is limited by physi-
cal hardware constraints.

Scalable, but constrained by
host’s resources.

Highly scalable, can run numer-
ous containers on a host.

Deploy-
ment
Time

Typically longer deployment
times due to hardware setup.

Longer deployment times due
to virtualization setup.

Very fast deployment times due
to lightweight nature.

Flexibility Less flexible as hardware con-
figurations are fixed.

More flexible due to virtual
hardware configurations.

Highly flexible, can package
and run various apps.

Resource
Overhead

No overhead as resources are
dedicated to the system.

Overhead from virtualization
layer and guest OS.

Minimal overhead as containers
share host resources.

Use Cases Suitable for high-performance
applications.

Used for testing, development,
and server consolidation.

Ideal for microservices, CI/CD
pipelines, and DevOps prac-
tices.

continues on next page

2.3. 3. Containers 7

Documentation for Docker Installation and Usage, Release 1.0

Table 1 – continued from previous page
Aspect Bare Metal Virtual Machines Containers
Depen-
dency
manage-
ment

Bad Good Good

2.3.1 Contents

Docker Desktop

Docker Desktop is a powerful tool that simplifies the development, deployment, and management of applications using
containers. Here’s an introduction to Docker Desktop:

What is Docker Desktop?

Docker Desktop is an application for both Mac and Windows operating systems that enables developers to create,
deploy, and manage applications using Docker containers. It provides an easy-to-use interface for working with Docker
containers, images, volumes, and networks.

Key Features

1. Containerization: Docker Desktop utilizes containerization technology to package applications and their de-
pendencies into lightweight, portable containers. This allows developers to isolate applications from their envi-
ronment and ensures consistent behavior across different computing environments.

2. Graphical User Interface (GUI): Docker Desktop comes with a user-friendly GUI that allows developers to
perform container-related tasks such as creating, managing, and monitoring containers using a visual interface.
This makes it easy for developers to interact with Docker without needing to use the command line.

3. Integrated Development Environment (IDE) Integration: Docker Desktop seamlessly integrates with popular
IDEs such as Visual Studio Code, allowing developers to build, debug, and test containerized applications directly
from their development environment.

4. Multi-Platform Support: Docker Desktop supports both Mac and Windows operating systems, allowing de-
velopers to build and run containerized applications on their preferred platform without needing to worry about
compatibility issues.

5. Local Development Environment: Docker Desktop provides a local development environment that closely mir-
rors production environments, allowing developers to build and test applications in an environment that closely
resembles where they will eventually be deployed.

6. Automatic Updates: Docker Desktop regularly receives updates and new features, ensuring that developers have
access to the latest Docker capabilities and improvements.

8 Chapter 2. Evolution of Virtualization

Documentation for Docker Installation and Usage, Release 1.0

Docker Desktop Architecture

Docker Desktop is a comprehensive package offered by Docker, providing both a graphical user interface (GUI) and
a command-line interface (CLI). It serves as a unified platform for developers to manage their Docker containers and
workflows seamlessly. One of its key features is its inclusion of a Linux virtual machine, which acts as the runtime
environment for Docker containers on non-Linux systems such as Windows and macOS.

Note: For Windows, it is reuqired that the user install Windows Subsystem for Linux (WSL) seperately from the
installation of Docker Desktop.

This virtual machine wraps around Docker’s core components, including the CLI and the Docker API at the server
side, facilitating the creation, management, and deployment of containers. Additionally, Docker Desktop includes the
Docker Daemon, which is responsible for managing container lifecycle and interacting with the operating system’s
kernel.

While in a Linux environment, working directly with the Docker Engine, a lighter version of Docker, is often sufficient.
However, for Windows users, especially those on Windows 11, Docker Desktop is recommended. This recommenda-
tion is primarily due to compatibility reasons, especially for users requiring NVIDIA GPU support for containerized
applications.

In summary, Docker Desktop provides a unified solution for Docker container management, combining a user-friendly
interface with essential tools and runtime environments to streamline the development and deployment of containerized
applications across different operating systems.

2.3. 3. Containers 9

Documentation for Docker Installation and Usage, Release 1.0

Difference between images and containers

Container

• Execution Instance: A container is a runtime instance of an image. It’s a lightweight, standalone, and executable
package that encapsulates all the dependencies required to run a piece of software.

• Isolation: Containers provide process isolation, ensuring that applications running within them are isolated from
one another and from the host system.

• Dynamic: Containers can be started, stopped, moved, and deleted dynamically. They are ephemeral by nature,
meaning they can be created, destroyed, and replaced rapidly.

• Runtime Environment: Each container runs in its own isolated environment, including its own filesystem,
networking, and process space.

Image

• Blueprint: An image is a static, immutable blueprint used to create containers. It’s a snapshot of a container
that includes the application code, runtime, libraries, dependencies, and other configuration needed to run the
software.

• Build Artifact: Images are created either manually or through automated build processes. They are stored in a
registry and serve as the foundation for creating containers.

• Reusable: Images can be shared, reused, and distributed across different environments and systems. They pro-
vide a consistent environment for running applications regardless of the underlying infrastructure.

• Layered Structure: Docker images are composed of multiple layers, with each layer representing a filesystem
change. This layered structure enables efficient storage, distribution, and reuse of images.

Key Differences

1. Statefulness: Containers are dynamic and stateful, while images are static and stateless. Containers can be
modified and retain changes during runtime, whereas images remain immutable.

2. Lifecycle: Containers have a lifecycle—they can be created, started, stopped, paused, and deleted. Images, on
the other hand, do not have a lifecycle; they are static artifacts used to create containers.

3. Composition: Images serve as the building blocks for containers. Multiple containers can be instantiated from
the same image, each running independently with its own isolated environment.

4. Persistence: Containers are ephemeral, meaning any changes made inside a container only persist as long as the
container is running. Images, being immutable, preserve the state of the filesystem at the time of creation.

In essence, containers are the runtime instances of images, while images are the blueprints used to create containers.
They work together to enable the efficient deployment, management, and execution of applications in a containerized
environment.

Installation in Windows

Generally, enabling virtualization from the BIOS and installing Windows Subsystem for Linux (WSL) are crucial steps
for setting up Docker Desktop on Windows machines. Here’s an updated summary of the general steps for Windows
installation, including these prerequisites and the links you provided:

1. Enable Virtualization from BIOS: Before installing Docker Desktop, ensure that virtualization is
enabled in your system’s BIOS settings. This step is crucial for Docker Desktop to function
properly on Windows machines. Refer to this link for instructions on how to enable virtual-
ization: [Hardware-Assisted Virtualization and Data Execution Protection](https://forums.docker.com/t/
hardware-assisted-virtualization-and-data-execution-protection-must-be-enabled-in-the-bios/109073).

10 Chapter 2. Evolution of Virtualization

https://forums.docker.com/t/hardware-assisted-virtualization-and-data-execution-protection-must-be-enabled-in-the-bios/109073
https://forums.docker.com/t/hardware-assisted-virtualization-and-data-execution-protection-must-be-enabled-in-the-bios/109073

Documentation for Docker Installation and Usage, Release 1.0

2. Install Windows Subsystem for Linux (WSL): Docker Desktop relies on WSL to run Linux containers on
Windows. Install WSL by following the instructions provided in this link: [Install Windows Subsystem for
Linux (WSL)](https://learn.microsoft.com/en-us/windows/wsl/install).

3. Download Docker Desktop Installer: Visit the official Docker website and navigate to the Windows installation
page. From there, download the Docker Desktop installer executable.

4. Run the Installer: After downloading the installer, double-click on it to launch the installation wizard.

5. Follow Installation Instructions: Follow the on-screen instructions provided by the installation wizard. This
includes accepting the license agreement, choosing installation options, and specifying the installation location.

6. System Requirements Check: During the installation process, Docker Desktop may perform a system require-
ments check to ensure your system meets the necessary prerequisites for installation.

7. Enable Hyper-V (if required): Docker Desktop for Windows may require Hyper-V to be enabled. (It can also
work with WSL) If it’s not already enabled, the installer will prompt you to enable it. This step might require a
system reboot.

8. Configuration: Once the installation is complete, Docker Desktop may require additional configuration, such
as configuring shared drives or network settings.

9. Launch Docker Desktop: After successful installation and configuration, Docker Desktop can be launched from
the Start menu or desktop shortcut.

10. Sign in (if required): Depending on your Docker configuration, you may need to sign in to your Docker account
during the initial setup. Sign-in is usually optional.

11. Verify Installation: To ensure Docker Desktop is installed correctly, you can open a command prompt or Pow-
erShell window and run docker –version to verify the Docker CLI version.

12. Start Using Docker: With Docker Desktop installed and running, you’re ready to start building, running, and
managing containers on your Windows system. To use Docker CLI, users will have to start Docker Desktop.

By following these steps, including enabling virtualization from the BIOS and installing WSL, you can successfully
install Docker Desktop on your Windows machine and leverage the benefits of containerization for your development
projects.

Enable Virtualization for Windows Machine

Accessing the BIOS (Basic Input/Output System) varies slightly depending on your computer’s manufacturer and
model. Here’s a general guide on how to access the BIOS on most Windows computers:

1. Shut Down Your Computer: Ensure that your computer is fully powered off, not just in sleep or hibernate
mode.

2. Start Your Computer: Press the power button to turn on your computer.

3. Start Tapping the BIOS Key: Immediately after pressing the power button, start tapping the appropriate key to
enter the BIOS. The BIOS key varies depending on your computer’s manufacturer. Common keys include: - F2
- F10 - F12 - Esc - Delete - Enter

4. Check for BIOS Key: If you’re unsure which key to press, check your computer’s manual or the manufacturer’s
website. Sometimes, the BIOS key is displayed briefly on the screen during startup.

5. Enter BIOS Setup: Continuously tapping the BIOS key should bring you to the BIOS setup screen. This screen
typically has a blue or black background with various options and settings.

6. Navigate BIOS Menu: Once inside the BIOS setup, you can navigate using the arrow keys on your keyboard.
Be cautious when making changes in the BIOS, as incorrect settings can affect the stability and performance of
your computer.

2.3. 3. Containers 11

https://learn.microsoft.com/en-us/windows/wsl/install

Documentation for Docker Installation and Usage, Release 1.0

7. Enable Virtualization: Look for settings related to virtualization (e.g., Intel Virtualization Technology, AMD-
V) in the BIOS setup. Depending on your BIOS version and layout, virtualization settings may be located under
different menus such as “Advanced,” “Security,” or “CPU Configuration.” Enable virtualization if it’s disabled.

8. Save and Exit: After making changes, save your settings and exit the BIOS setup. This process is usually done
by pressing the appropriate key (often labeled as “Save & Exit” or similar) and confirming your choice.

9. Restart Your Computer: Once you’ve exited the BIOS setup, your computer will restart.

10. Verify Virtualization: After restarting, you can verify if virtualization is enabled by checking your computer’s
system information or BIOS settings.

Remember, accessing the BIOS can vary depending on your computer’s manufacturer and model, so if you’re unsure,
refer to your computer’s manual or the manufacturer’s website for specific instructions.

Installing WSL

To install Windows Subsystem for Linux (WSL) and manage its settings, follow these steps:

1. Install WSL: Open PowerShell or Windows Command Prompt as an administrator and run the command ‘’wsl
–install”. This command enables the necessary features to run WSL and installs the default Ubuntu distribution
of Linux. After running the command, restart your machine.

2. Check WSL Version: To check which version of WSL you are running and view your installed Linux distribu-
tions, use the command ‘’wsl -l -v” in PowerShell or Command Prompt.

3. Set Default WSL Version: If you want to set the default version to WSL 1 or WSL 2, use the command ‘’wsl
–set-default-version <Version#>”, replacing <Version#> with either 1 or 2.

4. Set Default Linux Distribution: To set the default Linux distribution used with the ‘’wsl” command, enter ‘’wsl
-s <DistributionName>” or ‘’wsl –set-default <DistributionName>”, replacing ‘’<DistributionName>” with the
name of the Linux distribution you want to use.

Following these steps allows you to easily install and manage Windows Subsystem for Linux (WSL) on your Windows
machine, enabling you to run Linux commands and utilities alongside your Windows environment.

Installation in Linux

In general, Docker Engine can be installed on Ubuntu Linux using the instructions provided in the official Docker
documentation at https://docs.docker.com/engine/install/ubuntu/. This documentation outlines the steps necessary to
install Docker Engine on an Ubuntu system, ensuring that you have the latest version of Docker available for your use.

1. Set up Docker’s apt repository.

Add Docker's official GPG key:
sudo apt-get update
sudo apt-get install ca-certificates curl
sudo install -m 0755 -d /etc/apt/keyrings
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.
→˓asc
sudo chmod a+r /etc/apt/keyrings/docker.asc

Add the repository to Apt sources:
echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc] https:/

→˓/download.docker.com/linux/ubuntu \
(continues on next page)

12 Chapter 2. Evolution of Virtualization

https://docs.docker.com/engine/install/ubuntu/

Documentation for Docker Installation and Usage, Release 1.0

(continued from previous page)

$(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

sudo apt-get update

2. To install the latest version, run:

sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-
→˓compose-plugin

3. Verify that the Docker Engine installation is successful by running the hello-world image.

sudo docker run hello-world

Supported Operating Systems

Docker Desktop is available for installation on the following operating systems:

1. Windows 10/11: Docker Desktop is compatible with Windows 10 and Windows 11 operating systems. It lever-
ages the native Hyper-V virtualization technology on Windows to run containers.

Warning: To ensure NVIDIA GPU compatibility, please use the latest updated Windows 10 or Windows 11.
When we tested it with Windows 10 on our machine (not with the latest patches), the code ran into memory errors.
However, after updating to Windows 11, the software ran without issues.

More information can be found in the following links:

• NVIDIA Container Toolkit Issue #226

• NVIDIA Developer Forum Thread

2. Mac: Docker Desktop is compatible with macOS, allowing Mac users to build and manage containers seamlessly
using the Docker Desktop application.

3. Linux (Ubuntu Distro 22 and above): Docker Desktop is supported on Linux systems running Ubuntu distri-
butions version 22 and above. It provides a convenient way for Linux users to utilize Docker containers within
their development workflow.

Note: For Linux Ubuntu Distro 20, we can only install Docker Engine, which is sufficient for most cases.

Docker Engine

Docker Engine is a powerful tool that simplifies the process of creating, deploying, and managing applications using
containers. Here’s an introduction to Docker Engine and its basic functionalities:

2.3. 3. Containers 13

https://github.com/NVIDIA/nvidia-container-toolkit/issues/226
https://forums.developer.nvidia.com/t/pinned-memory-size-problem/13740

Documentation for Docker Installation and Usage, Release 1.0

What is Docker Engine?

Docker Engine is the core component of Docker, a platform that enables developers to package applications and their
dependencies into lightweight containers. These containers can then be deployed consistently across different environ-
ments, whether it’s a developer’s laptop, a testing server, or a production system.

Basic Functionalities of Docker Engine

1. Containerization: Docker Engine allows you to create and manage containers, which are isolated environments
that package an application and its dependencies. Containers ensure consistency in runtime environments across
different platforms.

2. Image Management: Docker uses images as templates to create containers. Docker Engine allows you to build,
push, and pull images from Docker registries (like Docker Hub or private registries). Images are typically defined
using a Dockerfile, which specifies the environment and setup instructions for the application.

3. Container Lifecycle Management: Docker Engine provides commands to start, stop, restart, and remove con-
tainers. It also manages the lifecycle of containers, including monitoring their status and resource usage.

4. Networking: Docker Engine facilitates networking between containers and between containers and the outside
world. It provides mechanisms for containers to communicate with each other and with external networks, as
well as configuring networking options like ports and IP addresses.

5. Storage Management: Docker Engine manages storage volumes that persist data generated by containers. It
supports various storage drivers and allows you to attach volumes to containers, enabling data persistence and
sharing data between containers and the host system.

6. Resource Isolation and Utilization: Docker Engine uses Linux kernel features (such as namespaces and control
groups) to provide lightweight isolation and resource utilization for containers. This ensures that containers run
efficiently without interfering with each other or with the host system.

7. Integration with Orchestration Tools: Docker Engine can be integrated with orchestration tools like Docker
Swarm and Kubernetes for managing containerized applications at scale. Orchestration tools automate container
deployment, scaling, and load balancing across multiple hosts.

Key Benefits of Docker Engine

• Consistency: Docker ensures consistency between development, testing, and production environments by en-
capsulating applications and dependencies into containers.

• Efficiency: Containers are lightweight and share the host system’s kernel, reducing overhead and improving
performance compared to traditional virtual machines.

• Portability: Docker containers can run on any platform that supports Docker, making it easy to move applications
between different environments.

• Isolation: Containers provide a level of isolation that enhances security and stability, as each container operates
independently of others on the same host.

14 Chapter 2. Evolution of Virtualization

Documentation for Docker Installation and Usage, Release 1.0

Basic Steps to build Docker images

1. Create a Dockerfile that provides instructions to build Docker image.

Fig. 1: Placing Dockerfile in the directory where we want to create Docker image

We can examine the contents of the Dockerfile.

We’re creating a Docker image by starting from an existing Docker image that includes a UNIX environment with
CUDA runtime. Initially, we pull the base image from Docker’s official repository. Specifically, we can locate suitable
base images by searching on Docker Hub (https://hub.docker.com/search?q=nvidia%2Fcuda).

→˓--
Step 1 : Import a base image from online repository
FROM nvidia/cuda:12.5.0-devel-ubuntu22.04
FROM nvidia/cuda:12.4.0-devel-ubuntu22.04

In addition, setting ENV DEBIAN_FRONTEND=noninteractive in a Dockerfile is a directive that adjusts the environ-
ment variable DEBIAN_FRONTEND within the Docker container during the image build process.

• Non-interactive Environment

Debian-based Linux distributions, including many Docker base images, use DEBIAN_FRONTEND to determine how
certain package management tools (like apt-get) interact with users. Setting DEBIAN_FRONTEND=noninteractive
tells these tools to run in a non-interactive mode. In this mode, the tools assume default behavior for prompts that
would normally require user input, such as during package installation or configuration.

• Avoiding User Prompts

During Docker image builds, it’s crucial to automate as much as possible to ensure consistency and reproducibility.
Without setting DEBIAN_FRONTEND=noninteractive, package installations might prompt for user input (e.g., to
confirm installation, choose configuration options). This interaction halts the build process unless explicitly handled
in advance.

• Common Usage in Dockerfiles

In Dockerfiles, especially those designed for automated builds (CI/CD pipelines, batch processes), it’s typical to include
ENV DEBIAN_FRONTEND=noninteractive early on. This ensures that subsequent commands relying on package
management tools proceed without waiting for user input.

→˓--
Step 2 : Suppress Interactive Prompts from Debian
ENV DEBIAN_FRONTEND=noninteractive

Next, we will need to install packages, libraries and set the environment variables that we need to compile or run
Maxwell-TD.

his Dockerfile snippet outlines steps for setting up a Docker image with various libraries and tools typically required
for scientific computing and development environments. Let’s break down each part:

2.3. 3. Containers 15

https://hub.docker.com/search?q=nvidia%2Fcuda
https://hub.docker.com/search?q=nvidia%2Fcuda

Documentation for Docker Installation and Usage, Release 1.0

Fig. 2: Find base images online via Docker Hub <https://hub.docker.com/search?q=nvidia%2Fcuda>

16 Chapter 2. Evolution of Virtualization

Documentation for Docker Installation and Usage, Release 1.0

• Update system and install libraries

– Purpose: Updates the package list and installs a set of essential libraries and tools required for com-
piling and building various applications.

– Packages Installed:

∗ build-essential, g++, gcc: Compiler tools and libraries.

∗ cmake, gfortran: Build and Fortran compiler.

∗ Various development libraries (libopenblas-dev, liblapack-dev, libfftw3-dev, etc.) for numerical
computations, linear algebra, and scientific computing.

∗ libvtk7-dev: Libraries for 3D computer graphics, visualization, and image processing.

∗ libgomp1, libomp-dev, libpthread-stubs0-dev: Libraries for multi-threading support.

• Install Compilers
-Purpose: Ensures that g++ and gcc are installed. These are essential compilers for C++ and C program-
ming languages, often needed for compiling native code.

• Install Python and pip
-Purpose: Installs Python 3 and pip (Python package installer), which are essential for Python-based ap-
plications and managing Python dependencies.

• Copy current directory to docker image
-Purpose: Sets the working directory inside the Docker image to /dgtd and copies all files from the current
directory (presumably where the Dockerfile resides) into the /dgtd directory inside the Docker image.

• Install Python dependencies
-Purpose: Installs Python dependencies listed in requirements.txt file located in the /dgtd directory.
The --no-cache-dir flag ensures that no cached packages are used during installation, which can be
important for Docker images to maintain consistency and avoid unexpected behavior.

• Set Path for libraries and CUDA
-Purpose: Sets environment variables related to CUDA (a parallel computing platform and programming
model) if CUDA is used in the project. These variables define paths to CUDA libraries, binaries, headers,
and compiler (nvcc).

→˓--
Step 3 : Installing required packages and setting up environment variables

Update system and install libraries
RUN apt-get update && apt-get install -y \

build-essential \
cmake \
gfortran \
libopenblas-dev \
liblapack-dev \
libfftw3-dev \
libmetis-dev \
libvtk7-dev \
libgomp1 \
libomp-dev \
libblas-dev \
libpthread-stubs0-dev \
&& rm -rf /var/lib/apt/lists/*

(continues on next page)

2.3. 3. Containers 17

Documentation for Docker Installation and Usage, Release 1.0

(continued from previous page)

Install Compilers
RUN apt-get update && apt-get install -y g++ gcc

Install Python and pip
RUN apt-get install -y python3 python3-pip

Copy current directory to docker image
WORKDIR dgtd
COPY . .

Install Python dependencies
RUN pip install --no-cache-dir -v -r /dgtd/requirements.txt

Set Path for libraries and CUDA
ENV CUDA_HOME /usr/local/cuda
ENV LD_LIBRARY_PATH ${CUDA_HOME}/lib64
ENV PATH ${CUDA_HOME}/:bin:${PATH}
ENV CPATH ${CUDA_HOME}/include:${CPATH}
ENV CUDACXX ${CUDA_HOME}/bin/nvcc

Finally, we can compile a program using cmake and make, and then sets up the Docker container to start a Bash shell
upon running. CMD ["bash"] sets the default command to run inside the container. When the container is started
without specifying a command, it will automatically launch a Bash shell.

→˓--
Step 4 : Compiling Program
RUN ls -l && mkdir build && cd build && cmake .. && make -j 4
CMD ["bash"]

2. Use the docker build command to build the Docker image from your Dockerfile.

Once you have created your Dockerfile and saved it in your project directory, you can build a Docker image using the
docker build command. Here’s how you would do it:

docker build -t maxwell_td_image .

• docker build: This command tells Docker to build an image from a Dockerfile.

• -t maxwell_td_image: The -t flag is used to tag the image with a name (maxwell_td_image in this case). This
name can be whatever you choose and is used to refer to this specific image later on.

• .: This specifies the build context. The dot indicates that the Dockerfile and any other files needed for building
the image are located in the current directory.

18 Chapter 2. Evolution of Virtualization

Documentation for Docker Installation and Usage, Release 1.0

Fig. 3: Run docker build to build Docker image

How to check images

To verify if a Docker image has been successfully built on your local system, you can use the docker images command.
Here’s how you can do it:

• Open your terminal (Command Prompt on Windows or Terminal on macOS/Linux).

• Run the following command

docker images
docker images ls

This command will list all Docker images that are currently present on your local system. Each image listed will have
columns showing its repository, tag, image ID, creation date, and size.

• Finding your image

Look through the list for the image you just built. If it was successfully built, it should appear in the list. Check the
repository and tag names to identify your specific image. The repository name will likely be the name you assigned to
it in your Dockerfile, and the tag will be latest or another tag you specified.

• Confirming successful build

If your image appears in the list with the correct details (repository name, tag, etc.), it indicates that Docker successfully
built and stored the image on your local machine.

Fig. 4: Check Docker image

2.3. 3. Containers 19

Documentation for Docker Installation and Usage, Release 1.0

How to save built image locally

To save a Docker image locally as a tar archive, you’ll use the docker save command. This command packages the
Docker image into a tarball archive that can be transferred to other machines or stored for backup purposes. Here’s
how you can do it:

• Open your terminal (Command Prompt on Windows or Terminal on macOS/Linux).

• Run the following command

docker save -o <output-file-name>.zip <image-name>

Replace <output-file-name>.zip with the desired name for your zip archive file.

<image-name>: This specifies the Docker image you want to save.

• Confirmation:

After running the command, Docker will package the specified image into zip named <output-file-name>.zip. You
should see the zipfile (<output-file-name>.zip) in your current directory unless you specified a different path for the
output.

Fig. 5: Save Docker image

Fig. 6: Resulting zipped Docker image

20 Chapter 2. Evolution of Virtualization

Documentation for Docker Installation and Usage, Release 1.0

Note:

• Transportability: The generated zip can be transferred to another machine or stored for future use. This is useful
for deploying Docker images across different environments without needing to rebuild them.

• File Size: Depending on the size of your Docker image, the resulting zip archive can be quite large. Ensure
you have enough disk space and consider compression techniques if transferring over networks with limited
bandwidth.

• Loading the Image: To use the saved zip file on another machine, you’ll need to load it into Docker using the
docker load command. Here’s how you can do that:

docker load -i <path/to/your/image.tar>

Replace <path/to/your/image.tar> with the actual path to your saved tar archive file.

Managing Docker Resources

Cleaning Up Unused Resources

To clean up any dangling resources (images, containers, volumes, networks), use the following command:

docker system prune

To remove stopped containers and all unused images (not just dangling), add the -a flag:

docker system prune -a

Removing Docker Images

To remove specific images, list them using docker images -a and then delete them with docker rmi:

docker images -a # List all images
docker rmi Image Image # Remove specific images by ID or tag

To remove dangling images, use:

docker image prune

Removing Docker Containers

To remove specific containers, list them using docker ps -a and then delete them with docker rm:

docker ps -a # List all containers
docker rm ID_or_Name ID_or_Name # Remove specific containers by ID or name

To remove all exited containers, use:

docker rm $(docker ps -a -f status=exited -q)

Removing Docker Volumes

To remove specific volumes, list them using docker volume ls and then delete them with docker volume rm:

docker volume ls # List all volumes
docker volume rm volume_name volume_name # Remove specific volumes by name

2.3. 3. Containers 21

Documentation for Docker Installation and Usage, Release 1.0

To remove dangling volumes, use:

docker volume prune

User Manual (Windows System)

Step-by-Step installation in Windows

Welcome to the user manual for setting up and using Docker on a Windows system. This guide will provide compre-
hensive instructions to help you install and configure Docker Desktop on Windows, activate virtualization in BIOS,
install WSL (Windows Subsystem for Linux), import Docker images, mount user data, and run Docker containers.
Additionally, it includes pointers and tips to address common questions and issues that users may encounter.

Activate Virtualization in BIOS

To enable virtualization, you’ll need to access the BIOS settings during startup. Here’s how:

1. Power on your computer.

2. Keep an eye on the initial boot screen.

3. When you see the screen, press the F2 / F10 / F12 / Esc / Delete / Enter key to enter the BIOS set-
tings.

Fig. 7: Screen when we boot up the machine. Press F2 / F10 / F12 / Esc / Delete / Enter

Once inside the BIOS settings:

22 Chapter 2. Evolution of Virtualization

Documentation for Docker Installation and Usage, Release 1.0

4. Navigate through the BIOS menus using the arrow keys. Look for the section typically labeled Advanced,
Advanced Settings or CPU Configuration.

or

4. Alternatively, some BIOS versions allow you to search for settings. Look for a search bar or a similar feature
where you can type virtualization or VT-x (for Intel processors) / AMD-V (for AMD processors).

Fig. 8: BIOS settings screen.

Once you locate the virtualization options within these sections, you can proceed to enable them. This step is crucial
for utilizing virtualization features such as running virtual machines or other virtualization-based applications on your
computer. After making the necessary changes, remember to save your settings and exit the BIOS.

5. Change the setting from Disabled to Enabled using the appropriate key (usually Enter or the + key).

6. Save changes and exit BIOS

Your computer will restart with virtualization support enabled.

Install WSL

Here are the simplified instructions for installing Windows Subsystem for Linux (WSL) and verifying its installation:

Installing Windows Subsystem for Linux (WSL)

1. Open PowerShell as Administrator

2. Install WSL: Run the following command to install WSL: wsl --install. Follow any prompts or confirma-
tions that appear during the installation process.

3. Wait for Installation to Complete: Allow the installation process to finish. This may take some time depending
on your internet speed.

2.3. 3. Containers 23

Documentation for Docker Installation and Usage, Release 1.0

Fig. 9: Turn on Virtualization.

Fig. 10: Install Windows Subsystem for Linux (WSL)

24 Chapter 2. Evolution of Virtualization

Documentation for Docker Installation and Usage, Release 1.0

4. Check WSL Version: Run the following command to check the installed WSL versions and their respective
distributions: wsl -l -v This command lists all installed Linux distributions and their associated WSL versions
(1 or 2).

Fig. 11: Check if WSL is properly installed

Following these steps ensures that you install Windows Subsystem for Linux (WSL) and confirm its proper installation
on your Windows system.

Install Docker Desktop in Windows

1. Download Docker Desktop from Docker’s official website (https://www.docker.com/get-started/).

Fig. 12: Download Docker Desktop online

2. Once downloaded, locate the installer file (e.g., DockerDesktopInstaller.exe) and double-click to launch
it.

2.3. 3. Containers 25

https://www.docker.com/get-started/
https://www.docker.com/get-started/

Documentation for Docker Installation and Usage, Release 1.0

3. Follow the prompts provided by the Docker Desktop installer to complete the installation process. This may
involve accepting terms and conditions and choosing installation preferences.

Fig. 13: Docker Desktop Installer

Fig. 14: Installing Docker Desktop

4. After installation, a Docker Desktop shortcut will appear on your desktop. The necessary components to run
Maxwell-TD Docker images include Docker Desktop itself, Windows PowerShell for running CLI commands,
and a designated working folder containing Docker images and user data (e.g., geometry information).

5. Launch Docker Desktop by double-clicking the Docker Desktop shortcut on your desktop.

6. Upon first launch, Docker Desktop may prompt you to accept terms and conditions. Agree to proceed with using
the application.

7. You can continue without logging into Docker Desktop if prompted, and optionally skip any survey presented
during initial setup.

Currently, the local repository in Docker Desktop is empty. To proceed, we must upload the compiled image for
Maxwell-TD. This requires using the PowerShell console, as the GUI does not support managing local Docker images
directly and defaults to searching online repositories for Docker images.

26 Chapter 2. Evolution of Virtualization

Documentation for Docker Installation and Usage, Release 1.0

Fig. 15: Finish installing Docker Desktop

Import Docker Image

Next, we need to mount the zipped Docker image onto the Windows system. Since this action cannot be performed
using the Docker Desktop GUI, we’ll need to use the console terminal instead.

In the designated working folder, you will find a zipped Docker image file and an “examples” folder containing user-
defined data.

To load the Docker image, execute the command docker load --input <PATH to zipped docker image>.
This process will take some time, and you can verify its completion by using docker images in the console.

The loaded Docker image will also be visible both in Docker Desktop.

Mounting User data and running Docker image

Finally, we are ready to run the Docker image. You can use a PowerShell script with administrative privileges to execute
the Docker image. We have prepared a script file named runDocker.ps1 that can be executed in the console terminal.

To run the script and start the Docker image, follow these steps:

1. Open PowerShell as Administrator

2. Navigate to Script Directory: Use the cd command to navigate to the directory where runDocker.ps1 is
located.

3. Execute the Script:

• Run the script by typing .\runDocker.ps1 and press Enter.

2.3. 3. Containers 27

Documentation for Docker Installation and Usage, Release 1.0

Fig. 16: All the data/folders/apps needed to run Maxwell-TD Docker image

28 Chapter 2. Evolution of Virtualization

Documentation for Docker Installation and Usage, Release 1.0

Fig. 17: Accept the terms and conditions

• The script will mount the folder containing user-defined data into the Docker Server environment.

Note:

• When running the Docker image, any data saved onto the mounted filesystem will persist. However, other modi-
fications, such as custom installations of packages, will be temporary and will disappear after you exit the Docker
session.

• Treat the Docker image as a saved state of a customized environment.

Let’s break down the lines in the PowerShell script to understand the necessary steps for running the Docker image.
This will clarify what is needed for execution.

• $imageName:

This variable defines the name of the Docker image that you want to run. In this case, it is set to maxwell_td_image.
Users should not change this variable if they intend to run Maxwell-TD.

• $containerName:

This variable specifies the name of the container that will run the Docker image. You can run multiple containers from
the same image concurrently, so each running instance needs a unique name. Users can customize this variable to suit
their naming conventions.

• $hostVolumePath:

This variable holds the path to the working folder on the Windows system. This folder contains essential files such as
geometry files for simulation models and scripts for setting simulation parameters. Users must update this path to point
to their specific working folder.

2.3. 3. Containers 29

Documentation for Docker Installation and Usage, Release 1.0

Fig. 18: Continue without logging in

30 Chapter 2. Evolution of Virtualization

Documentation for Docker Installation and Usage, Release 1.0

Fig. 19: Skip Survey

2.3. 3. Containers 31

Documentation for Docker Installation and Usage, Release 1.0

Fig. 20: Image local Repository

32 Chapter 2. Evolution of Virtualization

Documentation for Docker Installation and Usage, Release 1.0

Fig. 21: Location of Maxwell-TD Docker Image (Zipped)

Fig. 22: Load and check Docker Image

2.3. 3. Containers 33

Documentation for Docker Installation and Usage, Release 1.0

Fig. 23: Loaded Docker Image can be seen in Docker Desktop

Fig. 24: Use PowerShell Script to run Docker Image

34 Chapter 2. Evolution of Virtualization

Documentation for Docker Installation and Usage, Release 1.0

• $containerVolumePath:

This variable defines the path within the Docker container (running on Linux environment) where the host volume
($hostVolumePath) will be mounted. In this script, it is set to /dgtd/model/. It is recommended that users do not
change this variable unless necessary, to ensure compatibility with the Docker image’s expected mount point.

Fig. 25: User-defined parameters to change location of User data

Next, the script proceeds to execute several commands to display the paths and names. It also checks the CUDA
version installed on the Windows device. Afterward, it runs the Docker command docker run --rm --gpus all
-it --name ${containerName} -v ${hostVolumePath}:${containerVolumePath} ${imageName}.

Explanation of Docker Command Flags

• docker run: This command starts a new Docker container.

• --rm: Automatically removes the container when it exits. Useful for temporary containers.

• --gpus all: Enables access to all GPUs in the container.

• -it: Allocates a pseudo-TTY and keeps stdin open. Allows interactive terminal access.

• --name ${containerName}: Assigns a name to the container instance based on the value stored in the
$containerName variable.

• -v ${hostVolumePath}:${containerVolumePath}: Mounts a volume from the host machine
(Windows) into the Docker container. ${hostVolumePath} is the path on the host system, and
${containerVolumePath} is the path inside the container where the volume will be mounted.

• ${imageName}: Specifies the Docker image to use for creating the container.

Additional Information

• The --rm flag ensures that the container is automatically removed after it stops running, helping to manage
resources efficiently.

• --gpus all allows the Docker container to access all available GPUs on the host machine, which is crucial
for applications that require GPU acceleration.

• -it enables interactive mode with a terminal session, which is useful for interacting directly with the
container if needed.

This Docker command, when executed within the PowerShell script, sets up and runs the Docker container
named ${containerName} with GPU support, mounts necessary volumes, and utilizes the specified Docker
image ${imageName} for the Maxwell-TD application. Adjust ${containerName}, ${hostVolumePath},
${containerVolumePath}, and ${imageName} as per your specific environment and requirements.

Note: When opening a Windows text file in a Unix environment, extra \r characters at the end of each line can cause
errors such as /bin/bash^M: bad interpreter: No such file or directory. This is because Unix-based
systems expect lines to end with \n (newline) instead of \r\n (carriage return followed by newline) used in Windows.

To fix this issue, you can convert the line endings from Windows format to Unix format using utilities like dos2unix,
which removes the extra \r characters. Alternatively, you can use the included function Remove-CarriageReturns

2.3. 3. Containers 35

Documentation for Docker Installation and Usage, Release 1.0

Fig. 26: Commands to run Docker image

in runDocker.ps1 to process the files. Once corrected, your script should execute correctly within Docker or any
Unix-based environment without encountering interpreter errors.

To run the script, navigate to the directory where runDocker.ps1 is located and execute ./runDocker.ps1. The
script will display the CUDA toolkit version and open a BASH shell in the Docker container with maxwell_td_image.
This environment simulates a Linux environment.

How to use Maxwell-TD

Upon starting the Docker container, you will be in the /dgtd/ directory, where the Discontinuous Galerkin Time-
Domain (DGTD) code is located. The compiled code can be found in the /dgtd/build/ directory, with the executables
named maxwelltd_CUDA_LTS_DOUBLEpre_FLOATpro and maxwelltd_CUDA_LTS_DOUBLEpre_FLOATpro-. User
data, mounted from the Windows filesystem, is available in the /dgtd/model/ directory. Before running the simula-
tion, the compiled executable must be copied to the simulation folder (/dgtd/model/MaxwellTD_data/). This can
be done by executing the following command:

cp /dgtd/build/maxwelltd_CUDA_LTS_DOUBLEpre_FLOATpro* /dgtd/model/MaxwellTD_data/

Simulation files for the MaxwellTD model are located in the directory /dgtd/model/MaxwellTD_data. Additionally,
we have included CST reference data for the same simulation model in the folder CST_data. A Python script named
compare_maxwelltd_CST.py has been provided to facilitate extraction and comparison of data between the DGTD
simulation and CST data.

To run the DGTD simulation, we can navigate to /dgtd/model/MaxwellTD_data/ and run the shell script
CUDA_LTS_RUN.sh.

36 Chapter 2. Evolution of Virtualization

Documentation for Docker Installation and Usage, Release 1.0

Fig. 27: Miscellaneous function to treat textfiles from Windows System (Optional)

2.3. 3. Containers 37

Documentation for Docker Installation and Usage, Release 1.0

Fig. 28: Running PowerShell Script

Fig. 29: Local Directory in Docker Image

Fig. 30: Simulation folder

38 Chapter 2. Evolution of Virtualization

Documentation for Docker Installation and Usage, Release 1.0

./CUDA_LTS_RUN.sh

Fig. 31: Running Simulation script

This will initiate the DGTD simulation.

Following the completion of the simulation, you can execute the Python script compare_maxwelltd_CST.py to com-
pare the results with those obtained from the CST simulation.

python3 compare_maxwelltd_CST.py

Common issues

Incompatible GPU drivers/toolkit

It’s essential to verify that your Windows device has the correct CUDA toolkit installed to run Maxwell-TD. You can
check the CUDA toolkit version by using ‘nvidia-smi’ in the console terminal. The minimum required version to run
Maxwell-TD is CUDA toolkit 12.4.

If you need to update your CUDA toolkit, you can visit the NVIDIA website (https://developer.nvidia.com/
cuda-toolkit). Click on ‘NVIDIA CUDA Toolkit Download’ to access the latest version. Alternatively, if you re-
quire an earlier version, you can navigate to ‘Archive of Previous CUDA Releases’ on the NVIDIA website to find the
specific CUDA toolkit version you need.

Follow the download and installation instructions provided on the NVIDIA website to update or install the CUDA
toolkit on your Windows device. This ensures that Maxwell-TD and other CUDA-dependent applications can function
correctly.

Windows Version

Make sure your Windows 10 or 11 system meets the following requirements:

• WSL Version: Ensure WSL version 1.1.3.0 or newer.

• Windows 11: 64-bit Home or Pro version 21H2 or later, or Enterprise or Education version 21H2 or later.

• Windows 10: 64-bit Home or Pro version 22H2 (build 19045) or later, or Enterprise or Education version 22H2
(build 19045) or later. The minimum supported version is Home or Pro 21H2 (build 19044) or later, or Enterprise
or Education 21H2 (build 19044) or later.

Note:

• Docker Desktop on Windows is supported only on versions of Windows that are still actively serviced by Mi-
crosoft. It is not compatible with Windows Server versions like Windows Server 2019 or Windows Server 2022.

2.3. 3. Containers 39

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit

Documentation for Docker Installation and Usage, Release 1.0

Fig. 32: Simulating running

40 Chapter 2. Evolution of Virtualization

Documentation for Docker Installation and Usage, Release 1.0

Fig. 33: End of simulation

Fig. 34: Running post-processing PYTHON script

2.3. 3. Containers 41

Documentation for Docker Installation and Usage, Release 1.0

Fig. 35: Check CUDA toolkit version

42 Chapter 2. Evolution of Virtualization

Documentation for Docker Installation and Usage, Release 1.0

Fig. 36: NVIDIA website to download CUDA toolkit

Fig. 37: NVIDIA CUDA toolkit download

2.3. 3. Containers 43

Documentation for Docker Installation and Usage, Release 1.0

Fig. 38: NVIDIA CUDA toolkit (Latest version)

Fig. 39: NVIDIA CUDA toolkit (Earlier versions)

44 Chapter 2. Evolution of Virtualization

Documentation for Docker Installation and Usage, Release 1.0

• Containers and images created with Docker Desktop are shared across all user accounts on the same machine, as
they use a common VM for building and running containers. However, sharing containers and images between
user accounts is not supported when using the Docker Desktop WSL 2 backend.

Sufficient Memory to upload image

Make sure your system has adequate storage space for the image. The current image requires 10GB for storage while
zipped. Once extracted, it occupies an additional 10GB on your system, although it remains hidden from regular users.
You can view these hidden images and containers using Docker Desktop.

Fig. 40: View all containers or image on Docker Desktop

Users can remove any unwanted images or containers using the ‘delete’ button.

If necessary, resort to command-line operations to reclaim system resources. Execute these commands in a PowerShell
console with administrative privileges.

Purging All Unused or Dangling Resources
docker system prune

Remove stopped containers and all unused images
docker system prune -a

Removing Docker Images

Remove Specific Images
List all images (including intermediate layers)
docker images -a

Remove specific image(s) using their ID or tag
(continues on next page)

2.3. 3. Containers 45

Documentation for Docker Installation and Usage, Release 1.0

Fig. 41: Delete if not needed to free up space

(continued from previous page)

docker rmi <image_id_or_name>

Remove Dangling Images
List dangling images
docker images -f dangling=true

Remove dangling images
docker image prune

Remove Images Matching a Pattern
List images matching a pattern (using grep)
docker images -a | grep "pattern"

Remove images matching a pattern using awk and xargs
docker images -a | grep "pattern" | awk '{print $1":"$2}' | xargs docker rmi

Remove All Images
Remove all Docker images
docker rmi $(docker images -a -q)

Removing Containers

Remove Specific Containers
List all containers (including stopped ones)
docker ps -a

(continues on next page)

46 Chapter 2. Evolution of Virtualization

Documentation for Docker Installation and Usage, Release 1.0

(continued from previous page)

Remove specific container(s)
docker rm <container_id_or_name>

Remove All Exited Containers
List all exited containers
docker ps -a -f status=exited

Remove all exited containers
docker rm $(docker ps -a -f status=exited -q)

Remove Containers Matching a Pattern
List containers matching a pattern (using grep)
docker ps -a | grep "pattern"

Remove containers matching a pattern using awk and xargs
docker ps -a | grep "pattern" | awk '{print $1}' | xargs docker rm

Stop and Remove All Containers
Stop all containers
docker stop $(docker ps -a -q)

Remove all containers
docker rm $(docker ps -a -q)

BIOS settings

To enable Docker server virtualization on Windows, it’s crucial to ensure that virtualization is enabled in your com-
puter’s BIOS settings. This setting can only be modified by restarting your machine and accessing the BIOS config-
uration. Virtualization support in BIOS allows Windows to utilize Docker server features effectively. It’s a necessary
step to ensure Docker containers run efficiently on your system.

Change Simulation Parameters

To modify simulation parameters, you can edit the CUDA_LTS_RUN.sh shell script. This script contains flags or vari-
ables that control various aspects of the DGTD simulation. The script includes comments or descriptions to explain
the variables’ or flags’ purpose.

echo "==========="
echo "EXECUTABLE"
EXE="./maxwelltd_CUDA_LTS_DOUBLEpre_FLOATpro"
echo $EXE
echo "FileName"
echo "==========="

0. [EXE]
1. Filename: Simulation Filename
2. Freq: Central Modulation Frequency (MHz)
3. Planewave Waveform (Excitation Type): (0)Time Harmonic (1)Gauss (2)Neumann (3)␣
→˓Modulated Gauss;

(continues on next page)

2.3. 3. Containers 47

Documentation for Docker Installation and Usage, Release 1.0

(continued from previous page)

4. Port Waveform (0) Time Harmonic Pulse (1) Gaussian Pulse
5. Tdelay: Delay of excitation pulse (sec)
6. Tau: Width of pulse (sec)
7. FinalTime: Termination Time (sec)
8. Gamma (Penalty) --> 1 upwind , 0 central
9. VTU --> 0 (YES), 1 (NO)
#10. Surface Field Output BC Surfaces --> (0) Off (1) PEC only (2) FieldPlane only (3)␣
→˓FieldPlane and PEC
#11. Surface Output Types --> (0) Field (1) Current (2) Field and Current
#12. Poly order --> (1) First Order (2) Second Order
#13. Free Space Comparison(Analytical): (0) True and (1) False
#14. SAMPLINGRATE : parameter of Pade approximation
#15. PADE : (0) Pade mode is Off (2) Pade mode is on

FILENAME=cylinder_cr1.75
FREQ=2650
PLANEWAVEFLAG=1
PORTFLAG=1
TD=2.5e-9
TAU=2.5e-10
FINALTIME=25e-8
GAMMA=0.025
VTU=1
SURFFIELDOUTBCSURFS=0
SURFOUTTYPES=0
POLYORDER=2
ANALYTICAL=1
SAMPLINGRATE=12.5
PADE=2

rm *.log
rm *.vtu
rm AnalyticalIncidentField*
rm Probes_*
rm *.TD*
rm -r ./TimeDomainVoltages
$EXE $FILENAME $FREQ $PLANEWAVEFLAG $PORTFLAG $TD $TAU $FINALTIME $GAMMA $VTU
→˓$SURFFIELDOUTBCSURFS $SURFOUTTYPES $POLYORDER $ANALYTICAL $SAMPLINGRATE $PADE | tee -a␣
→˓compute.log
rm -r ./VTU_LTS
mkdir ./VTU_LTS
mv *.vtu ./VTU_LTS
rm -r ./PROBES
mkdir ./PROBES
mv *.csv ./PROBES
mv *.TD* ./PROBES
mv *.log ./PROBES

48 Chapter 2. Evolution of Virtualization

