update prof bio

main
IncheolJung 2 months ago
parent 0ece9638ce
commit 5dee8047f7
  1. 1
      .gitignore
  2. 126
      _site/404.html
  3. 89
      _site/applications/SIEMI/index.html
  4. 168
      _site/applications/index.html
  5. 102
      _site/applications/reverberation-chamber/index.html
  6. 92
      _site/applications/statistical-channel/index.html
  7. 516
      _site/assets/css/styles.css
  8. 1
      _site/assets/css/styles.css.map
  9. BIN
      _site/assets/images/news/Brooklyn6G.JPEG
  10. BIN
      _site/assets/images/news/EMC2019.png
  11. BIN
      _site/assets/images/news/EMC2024.png
  12. BIN
      _site/assets/images/news/EuCAP2022.jpg
  13. BIN
      _site/assets/images/news/GlobalEMYoungScientist.jpg
  14. BIN
      _site/assets/images/news/GlobalEMYoungScientist_cropped.png
  15. BIN
      _site/assets/images/news/IEEE_TEMC_Best_Paper.jpg
  16. BIN
      _site/assets/images/news/IEEE_TEMC_Best_Paper.png
  17. BIN
      _site/assets/images/news/NEMO2024.jpg
  18. BIN
      _site/assets/images/news/fellowships.jpg
  19. BIN
      _site/assets/images/research/1010ABQDowntownAntenna.png
  20. BIN
      _site/assets/images/research/ABQFullWave.png
  21. BIN
      _site/assets/images/research/CarrierAntenna.png
  22. BIN
      _site/assets/images/research/DDOverview.png
  23. BIN
      _site/assets/images/research/ICCavityCase.png
  24. BIN
      _site/assets/images/research/IC_COE_Cavity_Result2.png
  25. BIN
      _site/assets/images/research/Intra-System-EMIEMC/IEMI-1.png
  26. BIN
      _site/assets/images/research/Intra-System-EMIEMC/IEMI-2.png
  27. BIN
      _site/assets/images/research/Intra-System-EMIEMC/SI-1.png
  28. BIN
      _site/assets/images/research/Intra-System-EMIEMC/SI-2.png
  29. BIN
      _site/assets/images/research/Motivation.png
  30. BIN
      _site/assets/images/research/ParallelStrategy.png
  31. BIN
      _site/assets/images/research/ProblemStatement.jpg
  32. BIN
      _site/assets/images/research/Quantum-RIS.png
  33. BIN
      _site/assets/images/research/RC/Cable.png
  34. BIN
      _site/assets/images/research/RC/Chamber.pdf
  35. BIN
      _site/assets/images/research/RC/ICCavityCase.png
  36. BIN
      _site/assets/images/research/RC/IC_COE_Cavity_Result2.png
  37. BIN
      _site/assets/images/research/RC/IEMI-1.png
  38. BIN
      _site/assets/images/research/RC/IEMI-2.png
  39. BIN
      _site/assets/images/research/RC/Q-1.png
  40. BIN
      _site/assets/images/research/RC/Q-2.png
  41. BIN
      _site/assets/images/research/RC/Q-3.png
  42. BIN
      _site/assets/images/research/RC/TwoAntennas1.png
  43. BIN
      _site/assets/images/research/RC/TwoAntennas2.png
  44. BIN
      _site/assets/images/research/ResearchOverview2019.png
  45. BIN
      _site/assets/images/research/SGF-Motivation.png
  46. BIN
      _site/assets/images/research/SGF-derivation.png
  47. BIN
      _site/assets/images/research/SGFComm.png
  48. BIN
      _site/assets/images/research/TwoAntennas1.png
  49. BIN
      _site/assets/images/research/TwoAntennas2.png
  50. BIN
      _site/assets/images/research/Wireless-Channel-indoor/MIMO-Problem-statement.jpg
  51. BIN
      _site/assets/images/research/Wireless-Channel-indoor/Vision2.pdf
  52. BIN
      _site/assets/images/research/Wireless-Channel/Figure1.jpg
  53. BIN
      _site/assets/images/research/Wireless-Channel/Figure1.pdf
  54. BIN
      _site/assets/images/research/Wireless-Channel/Figure1.png
  55. BIN
      _site/assets/images/research/Wireless-Channel/Figure10.pdf
  56. BIN
      _site/assets/images/research/Wireless-Channel/Figure11.pdf
  57. BIN
      _site/assets/images/research/Wireless-Channel/Figure12.pdf
  58. BIN
      _site/assets/images/research/Wireless-Channel/Figure13.pdf
  59. BIN
      _site/assets/images/research/Wireless-Channel/Figure14.pdf
  60. BIN
      _site/assets/images/research/Wireless-Channel/Figure15.pdf
  61. BIN
      _site/assets/images/research/Wireless-Channel/Figure2.pdf
  62. BIN
      _site/assets/images/research/Wireless-Channel/Figure3.pdf
  63. BIN
      _site/assets/images/research/Wireless-Channel/Figure4.pdf
  64. BIN
      _site/assets/images/research/Wireless-Channel/Figure5.pdf
  65. BIN
      _site/assets/images/research/Wireless-Channel/Figure6.pdf
  66. BIN
      _site/assets/images/research/Wireless-Channel/Figure7.pdf
  67. BIN
      _site/assets/images/research/Wireless-Channel/Figure8a.pdf
  68. BIN
      _site/assets/images/research/Wireless-Channel/Figure8b.pdf
  69. BIN
      _site/assets/images/research/Wireless-Channel/Figure9.pdf
  70. BIN
      _site/assets/images/research/Wireless-Channel/Wireless-Channel-Modeling1.png
  71. BIN
      _site/assets/images/research/Wireless-Channel/Wireless-Channel-Modeling2.png
  72. BIN
      _site/assets/images/slideshow/antenna_analysis.png
  73. BIN
      _site/assets/images/slideshow/city_scale_channel.png
  74. BIN
      _site/assets/images/slideshow/ece_building.jpg
  75. BIN
      _site/assets/images/slideshow/smart_radio.png
  76. BIN
      _site/assets/images/slideshow/statistical_wave_physics.png
  77. BIN
      _site/assets/images/team/zhen-peng-profile.png
  78. BIN
      _site/assets/images/team/zhen-peng.png
  79. BIN
      _site/favicon.ico
  80. 260
      _site/index.html
  81. 513
      _site/publications/index.html
  82. 111
      _site/research/domain-decomposition/index.html
  83. 65
      _site/research/electromagnetic-information-theory/index.html
  84. 70
      _site/research/extreme-scale-electromagnetic-modeling/index.html
  85. 66
      _site/research/first-principles-channel-model/index.html
  86. 177
      _site/research/index.html
  87. 90
      _site/research/physics-oriented-statistical-wave-analysis/index.html
  88. 94
      _site/research/quantum-optimization-RIS/index.html
  89. 153
      _site/team/index.html
  90. 188
      _site/team/zhen-peng.html

1
.gitignore vendored

@ -1,4 +1,3 @@
_site
.sass-cache .sass-cache
.jekyll-cache .jekyll-cache
.jekyll-metadata .jekyll-metadata

@ -0,0 +1,126 @@
<!DOCTYPE html>
<html class="clearScroll" lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1"><!-- Begin Jekyll SEO tag v2.8.0 -->
<title> | ACEM</title>
<meta name="generator" content="Jekyll v4.3.2" />
<meta property="og:title" content="ACEM" />
<meta property="og:locale" content="en_US" />
<meta name="description" content=" Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<meta property="og:description" content=" Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<link rel="canonical" href="http://localhost:4000" />
<meta property="og:url" content="http://localhost:4000" />
<meta property="og:site_name" content="ACEM" />
<meta property="og:type" content="website" />
<meta name="twitter:card" content="summary" />
<meta property="twitter:title" content="ACEM" />
<script type="application/ld+json">{"@context":"https://schema.org","@type":"WebSite","description":" Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign.","name":"ACEM Page","url":"http://localhost:4000/"}</script>
<!-- End Jekyll SEO tag -->
<!-- Font loading -->
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Montserrat:ital,wght@0,100;0,200;0,400;0,600;0,800;1,400&display=swap" rel="stylesheet">
<link rel="stylesheet" href="/assets/css/styles.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title=" | ACEM" />
</head>
<body>
<nav>
<div class="separator orange"></div>
<ul class="clearScroll">
<div id="logo">
<a href="/" alt="Advanced Computational Electromagnetics (ACEM) Research Group">ACEM</a>
</div>
<div id="navItems"><li ><a href="/">Home</a></li><li ><a href="/research/">Research</a></li><li ><a href="/applications/">Applications</a></li><li ><a href="/publications/">Publications</a></li><li ><a href="/team/">Team</a></li></div>
</ul>
</nav>
<style>
#slideshow img, span {
animation: slideshow 50s infinite;
opacity: 0;
}
@keyframes slideshow {
4.0% {opacity: 1;}
20.0% {opacity: 1;}
24.0% {opacity: 0;}
}
#slideshow .orange {
position: relative;
top: 100%;
}
#slideshow img:nth-child(1) { animation-delay: 0s; }
#slideshow span:nth-child(6) { animation-delay: 0s; }
#slideshow img:nth-child(2) { animation-delay: 10s; }
#slideshow span:nth-child(7) { animation-delay: 10s; }
#slideshow img:nth-child(3) { animation-delay: 20s; }
#slideshow span:nth-child(8) { animation-delay: 20s; }
#slideshow img:nth-child(4) { animation-delay: 30s; }
#slideshow span:nth-child(9) { animation-delay: 30s; }
#slideshow img:nth-child(5) { animation-delay: 40s; }
#slideshow span:nth-child(10) { animation-delay: 40s; }
</style>
<div id="slideshowContainer">
<div id="slideshow"><img src="/assets/images/slideshow/ece_building.jpg" alt="Electrical Engineering Building"><img src="/assets/images/slideshow/antenna_analysis.png" alt="Platform-level In-Situ and Co-Site Antenna Analysis"><img src="/assets/images/slideshow/city_scale_channel.png" alt="Wireless Channel Modeling at the City Scale"><img src="/assets/images/slideshow/smart_radio.png" alt="Quantum-Assisted Smart Radio Environment"><img src="/assets/images/slideshow/statistical_wave_physics.png" alt="Statistical Wave Physics in Information Transmission"><span alt="Electrical Engineering Building">Electrical Engineering Building</span><span alt="Platform-level In-Situ and Co-Site Antenna Analysis">Platform-level In-Situ and Co-Site Antenna Analysis</span><span alt="Wireless Channel Modeling at the City Scale">Wireless Channel Modeling at the City Scale</span><span alt="Quantum-Assisted Smart Radio Environment">Quantum-Assisted Smart Radio Environment</span><span alt="Statistical Wave Physics in Information Transmission">Statistical Wave Physics in Information Transmission</span><div class="separator orange"></div>
</div>
</div>
<div id="bannerContent" class="content">
<div class="nonItems">
<svg height="100%" width="100%" viewBox="0 0 5 1" class="downAccent" preserveAspectRatio="none">
<path d="M 0 0 V 0.2 C 1 0.5 4 0.5 5 0.2 V 0">
</svg>
<div>
<style type="text/css" media="screen">
.container {
margin: 10px auto;
max-width: 600px;
text-align: center;
}
h1 {
padding-left: 0 !important;
font-size: 4em;
line-height: 1;
letter-spacing: -1px;
}
#bannerContent {
background-color: #E8E9EA;
padding-bottom: 6em;
}
footer {
position: absolute;
}
svg {
display: none;
}
</style>
<div class="container">
<h1>404</h1>
<p><strong>Page not found :(</strong></p>
<p>The requested page could not be found.</p>
</div>
</div>
</div></div>
<footer>
<div id="footer">
<p>Links for Members:</p>
<div><a href="https://git.acem.ece.illinois.edu/">Gitea</a></div>
</div>
<p id="author">Made by Kenneth Jao</p>
</footer>
</body>
</html>

@ -0,0 +1,89 @@
<!DOCTYPE html>
<html class="clearScroll" lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1"><!-- Begin Jekyll SEO tag v2.8.0 -->
<title>Full-Wave Field Solvers for Signal Integrity (SI) and EM Interference (EMI) Analysis of Product-level Integrated Circuits (ICs) and Electronics | ACEM</title>
<meta name="generator" content="Jekyll v4.3.2" />
<meta property="og:title" content="ACEM" />
<meta property="og:locale" content="en_US" />
<meta name="description" content="Full-Wave Field Solvers for Signal Integrity (SI) and EM Interference (EMI) Analysis of Product-level Integrated Circuits (ICs) and Electronics Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<meta property="og:description" content="Full-Wave Field Solvers for Signal Integrity (SI) and EM Interference (EMI) Analysis of Product-level Integrated Circuits (ICs) and Electronics Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<link rel="canonical" href="http://localhost:4000" />
<meta property="og:url" content="http://localhost:4000" />
<meta property="og:site_name" content="ACEM" />
<meta property="og:type" content="website" />
<meta name="twitter:card" content="summary" />
<meta property="twitter:title" content="ACEM" />
<script type="application/ld+json">{"@context":"https://schema.org","@type":"WebSite","description":"Full-Wave Field Solvers for Signal Integrity (SI) and EM Interference (EMI) Analysis of Product-level Integrated Circuits (ICs) and Electronics Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign.","name":"ACEM Full-Wave Field Solvers for Signal Integrity (SI) and EM Interference (EMI) Analysis of Product-level Integrated Circuits (ICs) and Electronics Page","url":"http://localhost:4000/full-wave field solvers for signal integrity (si) and em interference (emi) analysis of product-level integrated circuits (ics) and electronics"}</script>
<!-- End Jekyll SEO tag -->
<!-- Font loading -->
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Montserrat:ital,wght@0,100;0,200;0,400;0,600;0,800;1,400&display=swap" rel="stylesheet">
<link rel="stylesheet" href="/assets/css/styles.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Full-Wave Field Solvers for Signal Integrity (SI) and EM Interference (EMI) Analysis of Product-level Integrated Circuits (ICs) and Electronics | ACEM" />
</head>
<body>
<nav>
<div class="separator orange"></div>
<ul class="clearScroll">
<div id="logo">
<a href="/" alt="Advanced Computational Electromagnetics (ACEM) Research Group">ACEM</a>
</div>
<div id="navItems"><li ><a href="/">Home</a></li><li ><a href="/research/">Research</a></li><li class="current"><a href="/applications/">Applications</a></li><li ><a href="/publications/">Publications</a></li><li ><a href="/team/">Team</a></li></div>
</ul>
</nav>
<div id="postContent" class="content">
<svg height="100%" width="100%" viewBox="0 0 5 3.5" class="upAccent" preserveAspectRatio="none">
<path d="M 0 0 V 2 C 1 3.5 4 3.5 5 2 V 0">
</svg>
<div>
<h1 id="full-wave-field-solvers-for-signal-integrity-si-and-em-interference-emi-analysis-of-product-level-integrated-circuits-ics-and-electronics">Full-Wave Field Solvers for Signal Integrity (SI) and EM Interference (EMI) Analysis of Product-level Integrated Circuits (ICs) and Electronics</h1>
<h2 id="signal-integrity-analysis-of-3d-ibm-plasma-package">Signal Integrity Analysis of 3D IBM Plasma Package</h2>
<p>The example shown is a real-life IC package benchmark set by IBM at the 15th Conference on Electrical Performance of Electronic Package (EPEP) during a special session on “Parallelization of EM Full-Wave Solvers for Product-Level Problems”. This package includes an eight-layer structure: ground/mounting pads (SURFACE), signal (FC3), ground (FC2), signal (FC1), signal (BC1), power (BC2), signal (BC3), and ground/mounting pads (BASE).</p>
<p><img src="/assets/images/research/Intra-System-EMIEMC/SI-1.png" alt="SI-1" /></p>
<p>We propose a systematic full-wave numerical approach, based on a nonconformal finite-element domain decomposition method (DDM) for 3-D real-life circuit/package simulations. First, an automatic domain partitioning strategy is utilized to divide the entire model into a number of sub-domains. Each sub-domain is then meshed independently with adaptive mesh refinement. Next, a nonoverlapping DDM is adopted to efficiently solve the finite-element matrix equation. And a model-order reduction technique is exploited to compute the multiport spectral responses. SI effects such as signal delay, coupling, and reflection are simulated on a product-level package benchmark. Finally, numerical results verify the an</p>
<p><img src="/assets/images/research/Intra-System-EMIEMC/SI-2.png" alt="SI-2" /> </p>
<h4 id="f-guo-et-al-the-ieee-eps-packaging-benchmark-suite-2021-ieee-30th-conference-on-electrical-performance-of-electronic-packaging-and-systems-epeps-austin-tx-usa-2021-pp-1-4-doi-101109epeps5134120219609142">F. Guo et al., “The IEEE EPS Packaging Benchmark Suite,” 2021 IEEE 30th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), Austin, TX, USA, 2021, pp. 1-4, doi: 10.1109/EPEPS51341.2021.9609142.</h4>
<h4 id="y-shao-z-peng-and-j--f-lee-full-wave-real-life-3-d-package-signal-integrity-analysis-using-nonconformal-domain-decomposition-method-in-ieee-transactions-on-microwave-theory-and-techniques-vol-59-no-2-pp-230-241-feb-2011">Y. Shao, Z. Peng and J. -F. Lee, “Full-Wave Real-Life 3-D Package Signal Integrity Analysis Using Nonconformal Domain Decomposition Method,” in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 2, pp. 230-241, Feb. 2011.</h4>
<h2 id="intrasystem-electromagnetic-interference-analysis-of-ic-and-electronics">Intrasystem Electromagnetic Interference Analysis of IC and Electronics</h2>
<p>Next-generation electronic systems are evolving rapidly to achieve greater functionality and lower cost with smaller sizes. The resulting EMI among different components within a system may significantly affect the in-situ performance of individual components. To accurately characterize the intrasystem EMI, mutual interactions of 3-D interconnects, packages, printed circuit boards (PCBs), and systems must be considered simultaneously. Nevertheless, individual subsystems exhibit vast differences in aspect ratios (the ratio of wavelength to feature size). Computational resources required for the EM field-based modeling of such an extreme multiscale problem are prohibitively expensive.</p>
<p><img src="/assets/images/research/Intra-System-EMIEMC/IEMI-1.png" alt="IEMI-1" /> </p>
<p>The objective of this work is to develop high-fidelity and high-performance full-wave solvers for scalable EM simulations of IC and electronics. The emphasis is placed on advancing parallel algorithms that are provably scalable and facilitating a design-through-analysis paradigm for emerging and future electronic systems.</p>
<p>The proposed method follows a hierarchical geometry-based domain partitioning strategy. The electronic system is first divided into case, board, and package subsystems. Each subsystem may be further decomposed into subdomains, where local repetitions and periodicities can be exploited. The domain partitioning between subsystems does not need to be shape-conforming, and the discretizations do not require to be matching. Thus, model preparation and mesh generation can be performed concurrently and are naturally parallelizable.</p>
<p>Subsequently, these subsystems are coupled to one another via the representation formula (distant subsystems) and TCs (adjacent subsystems). A Schwarz iterative process is used to adjust boundary conditions for subsystem problems until the solution converges. It is expected to be a suitable paradigm not only for the high-fidelity system-level simulation that is accurate across the full-scale range, but also for the integration of the state-of-the-art solvers from each subproblem into a powerful solution suite.</p>
<p><img src="/assets/images/research/Intra-System-EMIEMC/IEMI-2.png" alt="IEMI-1" /></p>
<h4 id="z-peng-y-shao-h-w-gao-s-wang-and-s-lin-high-fidelity-high-performance-computational-algorithms-for-intrasystem-electromagnetic-interference-analysis-of-ic-and-electronics-ieee-transactions-on-components-packaging-and-manufacturing-technology-vol-pp-no-99-pp-116-2017">Z. Peng, Y. Shao, H. W. Gao, S. Wang, and S. Lin, “High-fidelity, high-performance computational algorithms for intrasystem electromagnetic interference analysis of IC and electronics,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. PP, no. 99, pp. 1–16, 2017.</h4>
</div>
</div>
<footer>
<div id="footer">
<p>Links for Members:</p>
<div><a href="https://git.acem.ece.illinois.edu/">Gitea</a></div>
</div>
<p id="author">Made by Kenneth Jao</p>
</footer>
</body>
</html>

@ -0,0 +1,168 @@
<!DOCTYPE html>
<html class="clearScroll" lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1"><!-- Begin Jekyll SEO tag v2.8.0 -->
<title>Applications | ACEM</title>
<meta name="generator" content="Jekyll v4.3.2" />
<meta property="og:title" content="ACEM" />
<meta property="og:locale" content="en_US" />
<meta name="description" content="Applications Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<meta property="og:description" content="Applications Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<link rel="canonical" href="http://localhost:4000" />
<meta property="og:url" content="http://localhost:4000" />
<meta property="og:site_name" content="ACEM" />
<meta property="og:type" content="website" />
<meta name="twitter:card" content="summary" />
<meta property="twitter:title" content="ACEM" />
<script type="application/ld+json">{"@context":"https://schema.org","@type":"WebSite","description":"Applications Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign.","name":"ACEM Applications Page","url":"http://localhost:4000/applications"}</script>
<!-- End Jekyll SEO tag -->
<!-- Font loading -->
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Montserrat:ital,wght@0,100;0,200;0,400;0,600;0,800;1,400&display=swap" rel="stylesheet">
<link rel="stylesheet" href="/assets/css/styles.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Applications | ACEM" />
</head>
<body>
<nav>
<div class="separator orange"></div>
<ul class="clearScroll">
<div id="logo">
<a href="/" alt="Advanced Computational Electromagnetics (ACEM) Research Group">ACEM</a>
</div>
<div id="navItems"><li ><a href="/">Home</a></li><li ><a href="/research/">Research</a></li><li class="current"><a href="/applications/">Applications</a></li><li ><a href="/publications/">Publications</a></li><li ><a href="/team/">Team</a></li></div>
</ul>
</nav>
<style>
#slideshow img, span {
animation: slideshow 50s infinite;
opacity: 0;
}
@keyframes slideshow {
4.0% {opacity: 1;}
20.0% {opacity: 1;}
24.0% {opacity: 0;}
}
#slideshow .orange {
position: relative;
top: 100%;
}
#slideshow img:nth-child(1) { animation-delay: 0s; }
#slideshow span:nth-child(6) { animation-delay: 0s; }
#slideshow img:nth-child(2) { animation-delay: 10s; }
#slideshow span:nth-child(7) { animation-delay: 10s; }
#slideshow img:nth-child(3) { animation-delay: 20s; }
#slideshow span:nth-child(8) { animation-delay: 20s; }
#slideshow img:nth-child(4) { animation-delay: 30s; }
#slideshow span:nth-child(9) { animation-delay: 30s; }
#slideshow img:nth-child(5) { animation-delay: 40s; }
#slideshow span:nth-child(10) { animation-delay: 40s; }
</style>
<div id="slideshowContainer">
<div id="slideshow"><img src="/assets/images/slideshow/ece_building.jpg" alt="Electrical Engineering Building"><img src="/assets/images/slideshow/antenna_analysis.png" alt="Platform-level In-Situ and Co-Site Antenna Analysis"><img src="/assets/images/slideshow/city_scale_channel.png" alt="Wireless Channel Modeling at the City Scale"><img src="/assets/images/slideshow/smart_radio.png" alt="Quantum-Assisted Smart Radio Environment"><img src="/assets/images/slideshow/statistical_wave_physics.png" alt="Statistical Wave Physics in Information Transmission"><span alt="Electrical Engineering Building">Electrical Engineering Building</span><span alt="Platform-level In-Situ and Co-Site Antenna Analysis">Platform-level In-Situ and Co-Site Antenna Analysis</span><span alt="Wireless Channel Modeling at the City Scale">Wireless Channel Modeling at the City Scale</span><span alt="Quantum-Assisted Smart Radio Environment">Quantum-Assisted Smart Radio Environment</span><span alt="Statistical Wave Physics in Information Transmission">Statistical Wave Physics in Information Transmission</span><div class="separator orange"></div>
</div>
</div><div class="topCard">
<div>
<h1>TOPICS</h1>
<p>We tackle a broad set of problems relating to the electromagnetic phenomena, from antennas and propagation, to electromagnetic interference/compatiblity, to wireless communication.</p>
</div>
</div>
<div id="bannerContent" class="content">
<div class="nonItems">
<svg height="100%" width="100%" viewBox="0 0 5 1" class="downAccent" preserveAspectRatio="none">
<path d="M 0 0 V 0.2 C 1 0.5 4 0.5 5 0.2 V 0">
</svg>
<div>
<h1 class="centerHeading" id="engineering-applications">Engineering Applications</h1>
</div>
</div><div class="item"><div class="itemScroll clearScroll">
<div class="itemInner">
<div class="description">
<h2 id="full-wave-field-solvers-for-signal-integrity-si-and-em-interference-emi-analysis-of-product-level-integrated-circuits-ics-and-electronics">Full-Wave Field Solvers for Signal Integrity (SI) and EM Interference (EMI) Analysis of Product-Level Integrated Circuits (ICs) and Electronics</h2>
<p>Ever-increasing complexity in high-speed electronic devices and systems presents significant computational challenges in numerical analysis in terms of desired accuracy, efficiency, and scalable parallelism. We investigate high-resolution, high-performance full-wave field solvers for scalable electromagnetic simulations of product-level integrated circuits (ICs) and electronics.</p>
<p><a href="/applications/SIEMI/">Read More</a></p>
</div>
<div class="image">
<img src="/assets/images/research/Intra-System-EMIEMC/IEMI-2.png" alt="IEMIMotivation" />
</div>
</div>
</div>
</div><div class="item"><svg height="100%" width="100%" viewBox="0 0 5 1" class="upAccent" preserveAspectRatio="none">
<path d="M 0 1 V 0.8 C 1 0.5 4 0.5 5 0.8 V 1">
</svg>
<svg height="100%" width="100%" viewBox="0 0 5 1" class="downAccent" preserveAspectRatio="none">
<path d="M 0 0 V 0.2 C 1 0.5 4 0.5 5 0.2 V 0">
</svg><div class="itemScroll clearScroll">
<div class="itemInner">
<div class="description">
<h2 id="stochastic-wave-model-statistically-replicating-reverberation-chambers">Stochastic Wave Model Statistically Replicating Reverberation Chambers</h2>
<p>We present a novel physics-oriented statistical representation for complex multipath environments, and develop a hybrid deterministic and stochastic formulation incorporating component-specific features. The advancements lead to a stochastic wave model statistically replicating mode-stirred reverberation chambers, and establish an imperative design-under-chaos capability for electronic devices and systems. The research work is evaluated and validated through representative experiments.</p>
<p><a href="/applications/reverberation-chamber/">Read More</a></p>
</div>
<div class="image">
<img src="/assets/images/research/RC/IC_COE_Cavity_Result2.png" alt="RCMotivation" />
</div>
</div>
</div>
</div><div class="item"><div class="itemScroll clearScroll">
<div class="itemInner">
<div class="description">
<h2 id="deterministic-and-statistical-modeling-of-wireless-channel">Deterministic and Statistical Modeling of Wireless Channel</h2>
<p>We present a full-wave field-based computational methodology for radio wave propagation in complex urban environments. Both transmitting/receiving antennas and propagation environments are modeled by first-principles calculations. System-level, large scene analysis is enabled by scalable, ultra-parallel algorithms on emerging high-performance computing platforms. The proposed computational framework is verified and validated with semi-analytical models and representative measurements.</p>
<p><a href="/applications/statistical-channel/">Read More</a></p>
</div>
<div class="image">
<img src="/assets/images/research/ABQFullWave.png" alt="Wireless" />
</div>
</div>
</div>
</div></div>
<footer>
<div id="footer">
<p>Links for Members:</p>
<div><a href="https://git.acem.ece.illinois.edu/">Gitea</a></div>
</div>
<p id="author">Made by Kenneth Jao</p>
</footer>
</body>
</html>

@ -0,0 +1,102 @@
<!DOCTYPE html>
<html class="clearScroll" lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1"><!-- Begin Jekyll SEO tag v2.8.0 -->
<title>Stochastic Wave Model Statistically Replicating Reverberation Chambers | ACEM</title>
<meta name="generator" content="Jekyll v4.3.2" />
<meta property="og:title" content="ACEM" />
<meta property="og:locale" content="en_US" />
<meta name="description" content="Stochastic Wave Model Statistically Replicating Reverberation Chambers Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<meta property="og:description" content="Stochastic Wave Model Statistically Replicating Reverberation Chambers Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<link rel="canonical" href="http://localhost:4000" />
<meta property="og:url" content="http://localhost:4000" />
<meta property="og:site_name" content="ACEM" />
<meta property="og:type" content="website" />
<meta name="twitter:card" content="summary" />
<meta property="twitter:title" content="ACEM" />
<script type="application/ld+json">{"@context":"https://schema.org","@type":"WebSite","description":"Stochastic Wave Model Statistically Replicating Reverberation Chambers Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign.","name":"ACEM Stochastic Wave Model Statistically Replicating Reverberation Chambers Page","url":"http://localhost:4000/stochastic wave model statistically replicating reverberation chambers"}</script>
<!-- End Jekyll SEO tag -->
<!-- Font loading -->
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Montserrat:ital,wght@0,100;0,200;0,400;0,600;0,800;1,400&display=swap" rel="stylesheet">
<link rel="stylesheet" href="/assets/css/styles.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Stochastic Wave Model Statistically Replicating Reverberation Chambers | ACEM" />
</head>
<body>
<nav>
<div class="separator orange"></div>
<ul class="clearScroll">
<div id="logo">
<a href="/" alt="Advanced Computational Electromagnetics (ACEM) Research Group">ACEM</a>
</div>
<div id="navItems"><li ><a href="/">Home</a></li><li ><a href="/research/">Research</a></li><li class="current"><a href="/applications/">Applications</a></li><li ><a href="/publications/">Publications</a></li><li ><a href="/team/">Team</a></li></div>
</ul>
</nav>
<div id="postContent" class="content">
<svg height="100%" width="100%" viewBox="0 0 5 3.5" class="upAccent" preserveAspectRatio="none">
<path d="M 0 0 V 2 C 1 3.5 4 3.5 5 2 V 0">
</svg>
<div>
<h1 id="stochastic-wave-model-statistically-replicating-reverberation-chambers">Stochastic Wave Model Statistically Replicating Reverberation Chambers</h1>
<p>The pervasiveness of smart cities and burgeoning Internet of Things (IoT) enable a more and more connected world. A key challenge emerging is the analysis, design, and deployment of electronic devices and systems in increasingly sophisticated electromagnetic (EM) environments. In the literature, the mode-stirred reverberation chamber (MSRC) has been used as a standard laboratory facility for the immunity, emission, and susceptibility of electronic components to complex random fields.
The fundamental question answered in this work is: can we investigate fundamental computational algorithms to replicate complex multipath environments, such that the design and optimization of electronics can be performed in the resulting virtual experimental facility?</p>
<p>The main contributions of this work are twofold. Firstly, we investigate a vector dyadic stochastic Green’s function (SGF), which stands for the fundamental solution of wave equations in the wave-chaotic environment. A stochastic integral equation (SIE) formulation is developed next for the statistical characterization of wave interactions within wave-chaotic systems. Secondly, in order to incorporate component-specific characteristics, we investigate a hybrid deterministic and stochastic formulation. The electronic components are formulated in first- principles using finite element (FE) methods, and large complex environments are modeled statistically using the SIE with SGF.</p>
<p>The advancements establish an imperative simulation-driven, design-under-chaos (noise) capability. Virtual experiment, design, and optimization of electronics are performed under randomized, diffuse EM fields, beyond the confines of the laboratory MSRC and measurements.</p>
<p>In the following, we will discuss the application of the stochastic DGF approach to four well-known problems of interest: 1) EM radiation and emission in complicated enclosures, 2) stochastic EM field coupling to conducting wires with loads, 3) aperture coupling/excitation of large cavities from an external plane wave source, 4) Statistical Characterization of Cavity Quality Factor.</p>
<h2 id="application-i-em-radiation-and-emission-in-complicated-enclosures">Application I: EM radiation and emission in complicated enclosures</h2>
<p><img src="/assets/images/research/RC/TwoAntennas1.png" alt="A-1" /></p>
<p><img src="/assets/images/research/RC/TwoAntennas2.png" alt="A-2" /> </p>
<h2 id="application-ii-stochastic-em-field-coupling-to-conducting-wires-with-loads">Application II: Stochastic EM field coupling to conducting wires with loads</h2>
<p>Wires and cables are routinely used in electronic systems to interconnect antennas, printed circuit boards, and electronic components. They often introduce additional coupling paths from external IEMI sources to sensitive circuitry inside computer enclosures. Thereby, it is important to study the mechanism of wire coupling and interference from the external RF sources.</p>
<p>We remark that as the stochastic Green’s function and integral equation methods are used to model the metal wire, both transmission line physics and high-frequency field coupling are modeled correctly. Furthermore, the proposed S-DGF rigorously integrates both the coherent propagation from apertures to conducting wires, and incoherent diffuse coupling due to multiple rays bounced from the cavity wall. Therefore, the statistical prediction of conducting wire pickup incorporates the relative location and orientation between apertures and wires, which is another unique aspect of the proposed work.</p>
<p><img src="/assets/images/research/RC/Cable.png" alt="A-3" /></p>
<h2 id="application-iii-aperture-couplingexcitation-of-large-cavities-from-an-external-plane-wave-source">Application III: Aperture coupling/excitation of large cavities from an external plane wave source</h2>
<p>In many practical electronic systems, the enclosure may be open to the outside with multiple apertures in the cavity wall. Given the incident external RF radiation, the size and shape of the aperture determine the amount of EM power coupled into the cavity. Therefore, it is important to quantitatively study the site-specific aperture excitation and coupling.</p>
<p><img src="/assets/images/research/RC/IEMI-1.png" alt="A-4" /> </p>
<p><img src="/assets/images/research/RC/IEMI-2.png" alt="A-5" /> </p>
<h2 id="application-iv-statistical-characterization-of-cavity-quality-factor">Application IV: Statistical Characterization of Cavity Quality Factor</h2>
<p>The cavity quality factor (Q-factor) is a fundamental parameter in analyzing the field properties of confined electromagnetic (EM) environments. To analyze stochastic EM fields in large enclosures, there has been a strong interest in characterizing the cavity quality factor in terms of a probability density function (PDF).</p>
<p>Whereas previous work has focused on the Q-factor statistics for cavities with homogeneous, distributed losses (i.e. uniform dielectric loss and cavity wall loss), there has been little discussion of the statistical cavity Q-factor due to localized losses (e.g. aperture leakage, absorptive loading). In this work, we have solved this problem elegantly by using a newly developed stochastic Green’s function approach. The statistical predictions are validated by numerical simulations and experimental results.</p>
<p><img src="/assets/images/research/RC/Q-1.png" alt="A-6" /></p>
<p><img src="/assets/images/research/RC/Q-2.png" alt="A-7" /> </p>
<p><img src="/assets/images/research/RC/Q-3.png" alt="A-8" /></p>
</div>
</div>
<footer>
<div id="footer">
<p>Links for Members:</p>
<div><a href="https://git.acem.ece.illinois.edu/">Gitea</a></div>
</div>
<p id="author">Made by Kenneth Jao</p>
</footer>
</body>
</html>

@ -0,0 +1,92 @@
<!DOCTYPE html>
<html class="clearScroll" lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1"><!-- Begin Jekyll SEO tag v2.8.0 -->
<title>Electromagnetic Information Theory for Wireless Communication | ACEM</title>
<meta name="generator" content="Jekyll v4.3.2" />
<meta property="og:title" content="ACEM" />
<meta property="og:locale" content="en_US" />
<meta name="description" content="Electromagnetic Information Theory for Wireless Communication Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<meta property="og:description" content="Electromagnetic Information Theory for Wireless Communication Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<link rel="canonical" href="http://localhost:4000" />
<meta property="og:url" content="http://localhost:4000" />
<meta property="og:site_name" content="ACEM" />
<meta property="og:type" content="website" />
<meta name="twitter:card" content="summary" />
<meta property="twitter:title" content="ACEM" />
<script type="application/ld+json">{"@context":"https://schema.org","@type":"WebSite","description":"Electromagnetic Information Theory for Wireless Communication Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign.","name":"ACEM Electromagnetic Information Theory for Wireless Communication Page","url":"http://localhost:4000/electromagnetic information theory for wireless communication"}</script>
<!-- End Jekyll SEO tag -->
<!-- Font loading -->
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Montserrat:ital,wght@0,100;0,200;0,400;0,600;0,800;1,400&display=swap" rel="stylesheet">
<link rel="stylesheet" href="/assets/css/styles.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Electromagnetic Information Theory for Wireless Communication | ACEM" />
</head>
<body>
<nav>
<div class="separator orange"></div>
<ul class="clearScroll">
<div id="logo">
<a href="/" alt="Advanced Computational Electromagnetics (ACEM) Research Group">ACEM</a>
</div>
<div id="navItems"><li ><a href="/">Home</a></li><li ><a href="/research/">Research</a></li><li class="current"><a href="/applications/">Applications</a></li><li ><a href="/publications/">Publications</a></li><li ><a href="/team/">Team</a></li></div>
</ul>
</nav>
<div id="postContent" class="content">
<svg height="100%" width="100%" viewBox="0 0 5 3.5" class="upAccent" preserveAspectRatio="none">
<path d="M 0 0 V 2 C 1 3.5 4 3.5 5 2 V 0">
</svg>
<div>
<h1 id="deterministic-and-statitical-modeling-of-wireless-channel">Deterministic and Statitical Modeling of Wireless Channel</h1>
<p>Wireless communications are expected to take place in increasingly complicated scenarios, such as dense urban, forest, tunnel and other cluttered environments. A key emerging challenge is to understand the physics and characteristics of wave propagation in these environments, which is critical for the analysis, design, and application of advanced mobile and wireless communication systems.</p>
<p>Growing sophistication in wireless communication systems, as well as the increasing demand for network capacity have driven the evolution of propagation models. Taking the cellular network for example, the progression of channel models is summarized in Fig. 1. We notice that rapidly increasing features, higher spatial resolutions, and expended use cases are developed in order to better approximate the real-world propagation scenarios. Namely, the channel models are consistently evolving towards higher fidelity predictions.</p>
<p><img src="/assets/images/research/Wireless-Channel/Figure1.jpg" alt="ProblemStatement" /></p>
<h2 id="full-wave-field-based-wireless-channel-modeling-at-the-city-scale">Full-wave Field-based Wireless Channel Modeling at the City Scale</h2>
<p>We present a full-wave field-based computational methodology for radio wave propagation in complex urban environments. Both transmitting/receiving antennas and propagation environments are modeled by first-principles calculations. System-level, large scene analysis is enabled by scalable, ultra-parallel algorithms on emerging high-performance computing platforms. By simultaneously considering mutual interactions of Tx/Rx antennas, ground stations, and operational environments, this work provides a reliable performance assessment of massive MIMO systems. The advancements are expected to improve the understanding of propagation physics, to predict the wireless channel’s behavior, and to maintain a high level of confidence in next-generation mobile and wireless communication systems. The proposed computational framework is verified and validated with semi-analytical models and representative measurements.</p>
<p><img src="/assets/images/research/Wireless-Channel/Wireless-Channel-Modeling1.png" alt="Channel1" /></p>
<p><img src="/assets/images/research/Wireless-Channel/Wireless-Channel-Modeling2.png" alt="Channel2" /></p>
<h4 id="b-mackie-mason-y-shao-a-greenwood-and-z-peng-supercomputing-enabled-first-principles-analysis-of-radio-wave-propagation-in-urban-environments-inieee-transactions-on-antennas-and-propagation-vol-66-no-12-pp-6606-6617-dec-2018">B. MacKie-Mason, Y. Shao, A. Greenwood and Z. Peng, “Supercomputing-Enabled First-Principles Analysis of Radio Wave Propagation in Urban Environments,” in IEEE Transactions on Antennas and Propagation, vol. 66, no. 12, pp. 6606-6617, Dec. 2018.</h4>
<h4 id="b-mackie-mason-a-greenwood-and-zhen-peng--adaptive-and-parallel-surface-integral-equation-solvers-for-very-large-scale-electromagnetic-modeling-and-simulation-invited-paper-progress-in-electromagnetics-research-vol-154-143-162-2015">B. MacKie-Mason, A. Greenwood and Zhen Peng , “Adaptive and Parallel Surface Integral Equation Solvers for Very Large-Scale Electromagnetic Modeling and Simulation (Invited Paper),” Progress In Electromagnetics Research, Vol. 154, 143-162, 2015.</h4>
<h4 id="x--m-pan-w--c-pi-m--l-yang-z-peng-and-x--q-sheng-solving-problems-with-over-one-billion-unknowns-by-the-mlfma-in-ieee-transactions-on-antennas-and-propagation-vol-60-no-5-pp-2571-2574-may-2012">X. -M. Pan, W. -C. Pi, M. -L. Yang, Z. Peng and X. -Q. Sheng, “Solving Problems With Over One Billion Unknowns by the MLFMA,” in IEEE Transactions on Antennas and Propagation, vol. 60, no. 5, pp. 2571-2574, May 2012</h4>
<h4 id="h--w-gao-z-peng-and-x--q-sheng-a-geometry-aware-domain-decomposition-preconditioning-for-hybrid-finite-element-boundary-integral-method-inieee-transactions-on-antennas-and-propagation-vol-65-no-4-pp-1875-1885-april-2017">H. -W. Gao, Z. Peng and X. -Q. Sheng, “A Geometry-Aware Domain Decomposition Preconditioning for Hybrid Finite Element-Boundary Integral Method,” in IEEE Transactions on Antennas and Propagation, vol. 65, no. 4, pp. 1875-1885, April 2017</h4>
<h4 id="z-peng-and-j--f-lee-non-conformal-domain-decomposition-method-with-mixed-true-second-order-transmission-condition-for-solving-large-finite-antenna-arrays-inieee-transactions-on-antennas-and-propagation-vol-59-no-5-pp-1638-1651-may-2011">Z. Peng and J. -F. Lee, “Non-Conformal Domain Decomposition Method With Mixed True Second Order Transmission Condition for Solving Large Finite Antenna Arrays,” in IEEE Transactions on Antennas and Propagation, vol. 59, no. 5, pp. 1638-1651, May 2011</h4>
<h2 id="electromagneticinformation-theory-for-wireless-communication">Electromagnetic Information Theory for Wireless Communication</h2>
<p>Electromagnetic field theory provides the fundamental physics of wireless communications. Over the pastdecades, EM theory has played a significant role in the design, performance assessment, and deployment planningof wireless devices and systems. Meanwhile, ever increasing demands for the network capacity in wireless communications have pushed the data rate towards and beyond multi-Gigabits per second (Gbps). Massive distributed arrays, mm-wave bands, network densification, and new waveforms serve as promising and powerfuloptions for achieving these rates. One limiting factor preventing these emerging wireless systemsfrom realizing their full potential is our understanding of the physical layer. Specifically, our ability to faithfully model the physics of wireless signal propagation channels in diverse and complex environments.</p>
<p>The objective of this research is to investigate electromagnetic information theory for wireless communication through complicated diffuse mulitpath environments. Applications include indoor radio channels, dense urban cells, transmission through diffusive random media and disordered media, etc. The objective is attained by cutting across traditional disciplinary boundaries between electromagnetic theory, wave chaos physics, random statistical analysis and information theory. The methodology is to first establish fundamental statistical representations of diffuse multipath media, then integrate component-specificfeatures of transmitters and receivers, and finally encode the governing physics into the mathematical information theory. </p>
<p><img src="/assets/images/research/ProblemStatement.jpg" alt="ProblemStatement" /></p>
<p><img src="/assets/images/research/SGFComm.png" alt="SGFComm" /></p>
</div>
</div>
<footer>
<div id="footer">
<p>Links for Members:</p>
<div><a href="https://git.acem.ece.illinois.edu/">Gitea</a></div>
</div>
<p id="author">Made by Kenneth Jao</p>
</footer>
</body>
</html>

@ -0,0 +1,516 @@
/** Element Setup **/
html {
overflow-x: hidden;
}
html, body {
width: 100%;
height: 100%;
margin: 0;
padding: 0;
background-color: #E8E9EA;
}
body {
display: flex;
flex-direction: column;
}
h1, h2, h3, h4, h5, h6, a, li, span, p {
font-family: "Montserrat", sans-serif;
z-index: 2;
}
h1 {
font-weight: 800;
}
h2 {
font-weight: 600;
}
h3 {
font-weight: 600;
text-decoration: underline;
}
h4 {
font-weight: 400;
font-style: italic;
text-decoration: underline;
}
h5, h6 {
font-variant: small-caps;
}
h6 {
font-color: #525252;
}
svg {
pointer-events: none;
}
.separator {
width: 100%;
height: 0.5em;
z-index: 5;
}
.orange {
background-color: #FF5F0F;
}
.blue {
background-color: #13294B;
}
a {
font-weight: 400;
color: #0455A4;
}
a, a:hover, a:visited, a:active {
text-decoration: none;
}
.clearScroll {
scrollbar-width: none;
}
.clearScroll::-webkit-scrollbar {
width: 10px;
height: 5px;
background-color: rgba(0, 0, 0, 0);
}
.clearScroll::-webkit-scrollbar-thumb {
background: rgba(0, 0, 0, 0.15);
border-radius: 50px;
}
/* Navigation */
nav {
position: sticky;
top: 0;
margin: 0;
padding: 0;
width: 100%;
height: 4em;
z-index: 10;
background-color: #E8E9EA;
box-shadow: 0 0.25rem 0.25rem rgba(0, 0, 0, 0.5);
}
nav a, nav a:hover, nav a:visited, nav a:active {
color: inherit;
}
nav ul {
width: 98%;
margin: 0 auto 0 auto;
padding: 0;
height: 3.5em;
display: flex;
justify-content: space-between;
overflow-x: auto;
overflow-y: hidden;
white-space: nowrap;
}
nav ul #logo {
font-family: "Montserrat", sans-serif;
font-weight: 400;
font-size: 1.5em;
padding: 0.55em;
float: left;
}
nav ul #navItems {
margin-left: 3em;
}
nav ul li {
width: 10em;
height: 100%;
display: inline-block;
font-size: 1em;
background-color: #E8E9EA;
text-align: center;
list-style-type: none;
cursor: pointer;
transition: background-color ease-in-out 0.1s;
}
nav ul li a {
display: inline-block;
padding: 1.1em 0 1.1em 0;
width: 100%;
font-weight: 400;
font-variant: normal;
}
nav ul li:hover {
background-color: #dbdcde;
}
nav ul li:active {
background-color: #cdd0d2;
}
.current {
background-color: #FF5F0F;
color: #E8E9EA;
}
.current:hover {
background-color: #f55200;
}
/* Slideshow */
#slideshowContainer {
width: 100%;
height: 30em;
}
#slideshow {
position: relative;
top: 0;
left: 0;
width: 100%;
height: 30em;
}
#slideshow img {
position: absolute;
width: 100%;
height: 100%;
object-fit: cover;
}
#slideshow span {
position: absolute;
top: 1em;
right: 2%;
background-color: rgba(0, 0, 0, 0.8);
color: #E8E9EA;
font-weight: 200;
z-order: 10;
padding: 0.5em;
}
@keyframes slideUp {
from {
transform: translateY(2em);
opacity: 0;
}
to {
transform: translateY(0);
opacity: 1;
}
}
/* Top Card */
.topCard {
position: absolute;
top: 20em;
left: 0;
right: 0;
width: 20em;
height: 19em;
margin: 0 auto 0 auto;
text-align: center;
z-index: 5;
animation: slideUp 0.5s;
filter: drop-shadow(0.25em 0.3em 0.4em rgba(0, 0, 0, 0.8));
}
.topCard div {
height: 100%;
padding: 2em;
clip-path: polygon(0 0, 100% 0, 100% 70%, 50% 100%, 0 70%);
background-color: rgba(19, 41, 75, 0.8);
display: flex;
flex-direction: column;
justify-content: space-between;
}
.topCard div h1 {
margin: 0;
font-weight: 100;
font-size: 3.8em;
color: #E8E9EA;
}
.topCard div p {
margin: 0 auto 4.5em 0;
font-weight: 400;
font-size: 1em;
color: #cdd0d2;
}
/* Content */
.content {
width: 100%;
margin: 0 auto 0 auto;
position: relative;
flex-grow: 1;
left: 0;
right: 0;
background-color: #E8E9EA;
}
.content h1, .content h2, .content h3, .content h4, .content h5, .content h6, .content p, .content a, .content img {
animation: slideUp 0.5s;
}
.content svg {
position: absolute;
width: 100%;
height: 10em;
fill: rgba(4, 85, 164, 0.1);
left: 0;
z-index: 1;
}
.content .upAccent {
top: 0;
transform: translateY(-10em);
}
.content .downAccent {
bottom: 0;
transform: translateY(10em);
}
#bannerContent > h1 {
padding: 1em 2em 0 2em;
text-align: center;
}
#bannerContent {
padding-top: 6em !important;
background-color: rgba(4, 85, 164, 0.1);
}
#bannerContent .downCircle {
position: absolute;
fill: rgba(4, 85, 164, 0.1);
left: 0;
}
#bannerContent .item {
width: 100%;
min-height: 25em;
padding-top: 5em;
padding-bottom: 5em;
position: relative;
}
#bannerContent .item .itemScroll {
overflow-x: auto;
position: relative;
z-index: 2;
}
#bannerContent .item .itemScroll .itemInner {
width: 100%;
min-width: 60em;
padding: 2em 0 2em 0;
display: flex;
flex-direction: row;
justify-content: space-evenly;
align-items: center;
}
#bannerContent .item .itemScroll .itemInner .description {
width: 40%;
height: 100%;
display: flex;
flex-direction: column;
justify-content: center;
text-align: left;
white-space: normal;
}
#bannerContent .item .itemScroll .itemInner .description h2 {
width: 100%;
margin: 0;
font-size: 2em;
}
#bannerContent .item .itemScroll .itemInner .description p {
width: 100%;
font-size: 1.2em;
margin: 0.5em 0 0.5em 0;
}
#bannerContent .item .itemScroll .itemInner .description p:last-child {
text-align: right;
}
#bannerContent .item .itemScroll .itemInner .description a {
margin-right: 1em;
padding: 0.8em;
font-size: 0.8em;
background-color: #436cd8;
color: #E8E9EA;
border-radius: 13px;
transition: background-color ease-in-out 0.1s;
}
#bannerContent .item .itemScroll .itemInner .description a:hover {
background-color: #2852c0;
}
#bannerContent .item .itemScroll .itemInner .description a:active {
background-color: #2349ab;
}
#bannerContent .item .itemScroll .itemInner .image {
width: 20em;
padding-bottom: 20em;
position: relative;
z-index: 20;
}
#bannerContent .item .itemScroll .itemInner img {
position: absolute;
width: 100%;
height: 100%;
top: 0;
bottom: 0;
left: 0;
right: 0;
object-fit: cover;
border-radius: 50%;
border: 5px solid rgba(31, 64, 150, 0.3);
}
#bannerContent .item:nth-child(2) .upAccent {
transform: translateY(0);
}
#bannerContent .item:nth-child(odd) {
padding-bottom: 2em;
padding-top: 2em;
}
#bannerContent .item:nth-child(odd) .itemScroll {
direction: rtl;
}
#bannerContent .item:nth-child(odd) .itemScroll h2, #bannerContent .item:nth-child(odd) .itemScroll p {
direction: ltr;
}
#bannerContent > div:nth-child(even) {
background-color: #E8E9EA;
}
#postContent {
width: 100%;
}
#postContent svg {
width: 100%;
height: 15em;
top: 0;
transform: translateY(0);
z-index: 0;
}
#postContent > div {
position: relative;
max-width: 85em;
padding: 0 4em 0 4em;
margin: 4em auto 4em auto;
z-index: 1;
}
#postContent img {
display: block;
margin: auto;
padding: 1em;
width: 85%;
background-color: rgba(0, 0, 0, 0.05);
border-radius: 10px;
}
.nonItems {
position: relative;
width: 100%;
padding: 2em 0 2em 0;
}
.nonItems > div {
margin: auto;
padding: 0 4em 0 4em;
max-width: 90em;
}
.nonItems img {
display: block;
margin: auto;
padding: 1em;
width: 85%;
background-color: rgba(0, 0, 0, 0.05);
border-radius: 10px;
}
.smallItemList {
display: flex;
flex-wrap: wrap;
justify-content: left;
flex-grow: 1;
align-items: center;
}
.smallItemList h2, .smallItemList h3, .smallItemList h4, .smallItemList h5, .smallItemList h6 {
font-size: 1.2em;
font-weight: 600;
text-decoration: none;
margin: 0.5em 0 0 0;
padding: 1em 0.5em 0em 0.5em;
border-top: 3px solid rgba(0, 0, 0, 0.1);
width: 100%;
}
.smallItemList p {
margin: 0;
padding: 0.5em;
}
.smallItemList .textCol {
width: 60%;
}
.smallItemList .imgCol {
width: 30%;
}
.smallItemList .textColsmallerimg {
width: 70%;
}
.smallItemList .imgColsmallerimg {
width: 20%;
}
.smallItemList img {
width: 100%;
}
/* Footer */
footer {
position: relative;
bottom: 0;
width: 100%;
height: 15em;
background-color: #13294B;
color: #E8E9EA;
font-size: 0.8em;
}
footer #footer {
margin: 0 auto 0 auto;
height: 11.5em;
width: 90%;
border-bottom: 1px solid #E8E9EA;
display: flex;
flex-flow: column;
justify-content: center;
}
footer #footer div {
display: flex;
flex-flow: row wrap;
justify-content: center;
}
footer #footer p {
color: #A5A8AA;
width: 100%;
text-align: center;
}
footer #footer a {
margin: 0 0.5em 0 0.5em;
padding: 0.5em;
border-radius: 3px;
border: 1px solid #E8E9EA;
background-color: #13294B;
transition: background-color ease-in-out 0.3s;
}
footer #footer a, footer #footer a:visited {
color: inherit;
}
footer #footer a:hover {
background-color: #1d3f74;
}
footer #footer a:active {
background-color: #224a88;
}
footer #author {
width: 90%;
margin: 1em auto 1em auto;
text-align: right;
color: #A5A8AA;
}
.centerHeading {
text-align: center;
margin-bottom: -1em;
}
/*# sourceMappingURL=styles.css.map */

File diff suppressed because one or more lines are too long

Binary file not shown.

After

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 121 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 166 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 185 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 267 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 154 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 201 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 563 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 463 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 666 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.5 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 621 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 455 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.5 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 722 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 396 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 186 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 621 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 455 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 690 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 973 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 565 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 547 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 155 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 314 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 271 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 547 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 155 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 792 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 96 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.5 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.7 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 335 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 216 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.4 KiB

@ -0,0 +1,260 @@
<!DOCTYPE html>
<html class="clearScroll" lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1"><!-- Begin Jekyll SEO tag v2.8.0 -->
<title>Home | ACEM</title>
<meta name="generator" content="Jekyll v4.3.2" />
<meta property="og:title" content="ACEM" />
<meta property="og:locale" content="en_US" />
<meta name="description" content="Home Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<meta property="og:description" content="Home Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<link rel="canonical" href="http://localhost:4000" />
<meta property="og:url" content="http://localhost:4000" />
<meta property="og:site_name" content="ACEM" />
<meta property="og:type" content="website" />
<meta name="twitter:card" content="summary" />
<meta property="twitter:title" content="ACEM" />
<script type="application/ld+json">{"@context":"https://schema.org","@type":"WebSite","description":"Home Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign.","name":"ACEM Home Page","url":"http://localhost:4000"}</script>
<!-- End Jekyll SEO tag -->
<!-- Font loading -->
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Montserrat:ital,wght@0,100;0,200;0,400;0,600;0,800;1,400&display=swap" rel="stylesheet">
<link rel="stylesheet" href="/assets/css/styles.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Home | ACEM" />
</head>
<body>
<nav>
<div class="separator orange"></div>
<ul class="clearScroll">
<div id="logo">
<a href="/" alt="Advanced Computational Electromagnetics (ACEM) Research Group">ACEM</a>
</div>
<div id="navItems"><li class="current"><a href="/">Home</a></li><li ><a href="/research/">Research</a></li><li ><a href="/applications/">Applications</a></li><li ><a href="/publications/">Publications</a></li><li ><a href="/team/">Team</a></li></div>
</ul>
</nav>
<style>
#slideshow img, span {
animation: slideshow 50s infinite;
opacity: 0;
}
@keyframes slideshow {
4.0% {opacity: 1;}
20.0% {opacity: 1;}
24.0% {opacity: 0;}
}
#slideshow .orange {
position: relative;
top: 100%;
}
#slideshow img:nth-child(1) { animation-delay: 0s; }
#slideshow span:nth-child(6) { animation-delay: 0s; }
#slideshow img:nth-child(2) { animation-delay: 10s; }
#slideshow span:nth-child(7) { animation-delay: 10s; }
#slideshow img:nth-child(3) { animation-delay: 20s; }
#slideshow span:nth-child(8) { animation-delay: 20s; }
#slideshow img:nth-child(4) { animation-delay: 30s; }
#slideshow span:nth-child(9) { animation-delay: 30s; }
#slideshow img:nth-child(5) { animation-delay: 40s; }
#slideshow span:nth-child(10) { animation-delay: 40s; }
</style>
<div id="slideshowContainer">
<div id="slideshow"><img src="/assets/images/slideshow/ece_building.jpg" alt="Electrical Engineering Building"><img src="/assets/images/slideshow/antenna_analysis.png" alt="Platform-level In-Situ and Co-Site Antenna Analysis"><img src="/assets/images/slideshow/city_scale_channel.png" alt="Wireless Channel Modeling at the City Scale"><img src="/assets/images/slideshow/smart_radio.png" alt="Quantum-Assisted Smart Radio Environment"><img src="/assets/images/slideshow/statistical_wave_physics.png" alt="Statistical Wave Physics in Information Transmission"><span alt="Electrical Engineering Building">Electrical Engineering Building</span><span alt="Platform-level In-Situ and Co-Site Antenna Analysis">Platform-level In-Situ and Co-Site Antenna Analysis</span><span alt="Wireless Channel Modeling at the City Scale">Wireless Channel Modeling at the City Scale</span><span alt="Quantum-Assisted Smart Radio Environment">Quantum-Assisted Smart Radio Environment</span><span alt="Statistical Wave Physics in Information Transmission">Statistical Wave Physics in Information Transmission</span><div class="separator orange"></div>
</div>
</div><div class="topCard">
<div>
<h1>MISSION</h1>
<p>Our research is centered on investigating mathematical and computational models to further the understanding, prediction, and control of classical, chaotic, and quantum wave phenomena.</p>
</div>
</div>
<div id="bannerContent" class="content">
<div class="nonItems">
<svg height="100%" width="100%" viewBox="0 0 5 1" class="downAccent" preserveAspectRatio="none">
<path d="M 0 0 V 0.2 C 1 0.5 4 0.5 5 0.2 V 0">
</svg>
<div>
<h1 id="about-us">About Us</h1>
<p>Welcome to the Advanced and Applied Computational Electromagnetics (ACEM) Group, led by Prof. Zhen Peng at ECE Illinois, UIUC. Our core research centers on the pursuit of mathematical and computational models that enable the prediction and discovery of classical and quantum electrodynamic phenomena. These models empower the design and optimization of novel electromagnetic systems at unprecedented scales, and contribute through education to the advancement of understanding. Recent applications of our work include physical layer modeling and innovations in NextG Wireless, electrical analysis for heterogeneous integration, and intra-system EMI/EMC in complex electrical systems.</p>
</div>
</div><div class="nonItems"><div>
<h1 id="group-news">Group News</h1>
<div class="smallItemList">
<h2 id="keynote-speaker-at-nemo2024">2024 Keynote Speaker at NEMO’2024</h2>
<p class="textCol">Prof. Zhen Peng was invited to give a Keynote talk at the IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (<a href="https://nemo-ieee.org">NEMO’2024</a>). The title of the talk is: Domain Decomposition Methodology for Solving Maxwell’s Equations at Scale. Prof. Peng extends his gratitude to the organizing committee (Prof. Roni Khazaka, Prof. Natalia Nikolova, and Prof. Zhizhang Chen) for this invitation.</p>
<p class="imgCol"><img src="/assets/images/news/NEMO2024.jpg" alt="NEMO2024" /></p>
<h2 id="best-emc-symposium-paper-award-2nd-place">2024 Best EMC Symposium Paper Award (2nd Place)</h2>
<p class="textCol">We are honored to receive the Best EMC Symposium Paper Award (Honorable Mention) at the 2024 IEEE International Symposium on Electromagnetic Compatibility, Signal &amp; Power Integrity (EMC+SIPI). This prestigious award recognizes the most outstanding papers presented at the IEEE EMC Symposium. Out of all the accepted papers at the 2024 symposium, two were selected for this recognition. Our paper was awarded Honorable Mention, which is equivalent to second place.
<br /><br />
The award-winning paper, titled “Fusion of Parameterized and Physics-Oriented Statistical Surrogate Models for EM Coupling on Wires in Complex Electronic Enclosures,” was co-authored by Shen Lin, Sangrui Luo, Yang Shao, Bisrat Addissie, Zachary Drikas, and Zhen Peng.</p>
<p class="imgCol"><img src="/assets/images/news/EMC2024.png" alt="BestEMCSymposiumPaperAward" /></p>
<h2 id="globalem-young-scientist-award">2024, GlobalEM Young Scientist Award</h2>
<p class="textCol">Dr. Shen Lin received the Young Scientist Award at the 2024 Global Electromagnetics Conference (GlobalEM 2024) for his outstanding research achievement in computational and statistical electromagnetics.</p>
<p class="imgCol"><img src="/assets/images/news/GlobalEMYoungScientist_cropped.png" alt="YoungScientistAward" /></p>
<h2 id="honorable-mention-award-in-student-paper-competition-at-ieee-ap-s-symposium">2024, Honorable Mention Award in Student Paper Competition at IEEE AP-S Symposium</h2>
<p>Qi Jian Lim received the 2024 IEEE Antennas and Propagation Symposium Student Paper Competition Honorable Mention Award. The title of the paper is “Swarm-based Antenna Array Synthesis through Spin-based Bifurcation Algorithm”.</p>
<h2 id="plenary-speaker-at-aces">2024, Plenary Speaker at ACES</h2>
<p>Prof. Zhen Peng delivered a plenary talk at the International Applied Computational Electromagnetics Society (ACES) Symposium. The title of the talk is: Taming Chaos into Order: Exploring Statistical Wave Analysis in Electromagnetics. Prof. Peng extends his gratitude to the organizing committee for this invitation.</p>
<h2 id="richard-b-schulz-award-for-the-best-transactions-paper-in-ieee-temc-2nd-place">2024, Richard B. Schulz Award for the Best Transactions Paper in IEEE TEMC (2nd Place)</h2>
<p class="textCol">Our paper, Predicting Statistical Wave Physics in Complex Enclosures: A Stochastic Dyadic Green’s Function Approach, received 2023 Richard B. Schulz Best Transactions Paper (Honorable Mention) at IEEE Transactions on Electromagnetic Compatibility (IEEE T-EMC).
<br /><br />
The <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7870609">Richard B. Schulz Award</a> recognizes the outstanding paper published in the IEEE T-EMC, with two papers selected each year: the Best Transaction Paper, and the Honorable Mention Transaction Paper (HMTP), which represents the second best Transaction paper.
<br /><br />
This paper is selected from 208 papers published in 2023 IEEE T-EMC through a rigorous review and consideration of the editorial board. The award will be presented at the annual IEEE EMC+SIPI Symposium during the Awards Luncheon.
<br /><br />
The work is in collaboration with Profs. Steven Anlage and Thomas Antonsen at University of Maryland, and Drs. Zachary Drikas and Bisrat Addissie at Naval Research Laboratories.
we extend our sincere appreciation to our sponsors from the National Science Foundation (NSF), the Office of Naval Research (ONR), and the Defense Advanced Research Projects Agency (DARPA) for their support and funding.</p>
<p class="imgCol"><img src="/assets/images/news/IEEE_TEMC_Best_Paper.jpg" alt="IEEE_TEMC" /></p>
<h2 id="student-fellowships-and-awards">2024, Student Fellowships and Awards</h2>
<p class="textCol">Four members of our group had the pleasure to receive fellowships and awards for their outstanding research.
On the left, Incheol (Aiden) Jung received the <a href="https://ece.illinois.edu/academics/grad/fellowships/henderson">James M. Henderson Fellowship</a>. In the center, Gonzalo Núñez Muñoz received the <a href="https://ece.illinois.edu/academics/grad/fellowships/knight">A.R. “Buck” Knight Fellowship</a>. On the right, Qi Jian Lim received the <a href="https://ece.illinois.edu/academics/grad/awards/mittra">Raj Mittra Outstanding Research Award</a>. Ge Cao (not in image) also won the Promise of Excellence Fellowship. Congratulations to all of them!</p>
<p class="imgCol"><img src="/assets/images/news/fellowships.jpg" alt="Fellowships" /></p>
<h2 id="ieee-ap-s-distinguished-lecturer">2024, IEEE AP-S Distinguished Lecturer</h2>
<p>Prof. Zhen Peng is honored to serve as an IEEE Antennas and Propagation (AP-S) Society Distinguished Lecturer for 2024-2026. The IEEE AP-S Distinguished Lecturer Program (DLP) provides experts, the Distinguished Lecturers (DLs), who are financially supported to visit active AP-S Chapters around the world and give lectures on topics of interest and importance to the antennas and propagation community.</p>
<p>Titles of talks are: (1) Physics-oriented Statistical Wave Analysis Integrating Order and Chaos, (2) Domain Decomposition Methodology for Solving Maxwell’s Equations at Scale, (3) Empowering Smart Radio Environments with Quantum Computing and Optimization.</p>
<h2 id="experimental-demo-at-brooklyn-6g-summit">2023, Experimental Demo at Brooklyn 6G Summit</h2>
<p class="textCol">Our group conducted a live experimental demo at the Brooklyn 6G Summit. In this demo, we presented a hybrid classical-quantum computing framework for solving the joint channel estimation and optimization problem for RIS-assisted wireless communications. Our demonstration included transmitter and receiver antennas with no line-of-sight link while using an RIS to create a virtual line-of-sight link. The antennas are connected to USRP N210 Software Defined Radio (SDR). An interactive interface is provided to plot in real time the configuration of the RIS, channel gain, received constellation, and decoded message data.
<br /><br />
The work is in collaboration with Amitava Ghosh and Frederick Vook in the Radio Interface Group at Nokia Standards, Gabriele Gradoni at the University of Surrey, and GreenerWave.</p>
<p class="imgCol"><img src="/assets/images/news/Brooklyn6G.JPEG" alt="Experimental Demo at Brooklyn 6G Summit" /></p>
<h2 id="best-student-paper-award-2nd-prize-at-nemo2023">2023, Best Student Paper Award (2nd prize) at NEMO’2023</h2>
<p>Charles Ross received the Best Student Paper Award (2nd prize) at the IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). The title of the paper is “A Hybrid Classical-Quantum Computing Framework for RIS-assisted Wireless Network”.</p>
<p>In this paper, we proposed and experimentally validated a quantum-assisted computing framework that allows for ultra-fast optimization of RIS-assisted smart radio environment. By leveraging the computing power of quantum adiabatic evolution and mathematics of tensor contraction, the onsite optimization of RIS configuration can be performed rapidly using only feedback (received power) at wireless endpoints. The outcomes enable the possibility of ultrafast joint channel estimation - optimization in dynamic wireless environments.</p>
<h2 id="dr-eric-k-walton-graduate-award-at-ece-illinois">2023, Dr. Eric K. Walton Graduate Award at ECE Illinois</h2>
<p>Charles Ross has been chosen as the recipient of the 2022-2023 Dr. Eric K. Walton Graduate Award. This award is presented to a graduate student in the Department of Electrical and Computer Engineering who has demonstrated excellence in research in the area of antennae design, radar studies, or radio waves.</p>
<h2 id="young-scientist-award-at-the-ursi-gass-2023">2023, Young Scientist Award at the URSI GASS 2023</h2>
<p>Dr. Shen Lin received a Young Scientist Award at the XXXVth URSI General Assembly and Scientific Symposium (URSI GASS 2023). The Young Scientist Awards recognize an international group of individuals making innovative contributions and discoveries in multidiscipline research related to electromagnetic fields and waves.</p>
<h2 id="best-student-paper-award-honorable-mention-at-ursi-gass-2023">2023, Best Student Paper Award (Honorable mention) at URSI GASS 2023</h2>
<p>Qi Jian Lim received a Best Student Paper Honorable Mention Award at URSI GASS 2023. The title of the paper is “Heuristic Quantum Optimization for Engineering Reconfigurable Intelligent Surfaces in Smart Radio Environments”. In this paper, we demonstrate the scaling advantage of a hybrid classical-quantum optimization algorithm compared to state-of-the-art classical optimizer.</p>
<h2 id="ieee-antennas-and-propagation-society-ap-s-fellowship">2023, IEEE Antennas and Propagation Society (AP-S) Fellowship</h2>
<p>Congratulations to Shen Lin for being selected for the IEEE Antennas and Propagation Society (AP-S) Fellowship</p>
<h2 id="best-paper-award-finalist-at-ieee-emc-symposium">2023, Best Paper Award Finalist at IEEE EMC Symposium </h2>
<p>Our paper, “Statistical Characterization of Cavity Quality Factor via the Stochastic Green’s Function Approach” entered into the 2023 Best EMC Symposium Paper Finalist in the 2023 IEEE International Symposium on Electromagnetic Compatibility, Signal &amp; Power Integrity. </p>
<h2 id="honorable-mention-award-in-student-paper-competition-atieee-ap-s-symposium">2023, Honorable Mention Award in Student Paper Competition at IEEE AP-S Symposium</h2>
<p>Qi Jian Lim received the 2023 IEEE Antennas and Propagation Symposium Student Paper Competition Honorable Mention Award. The title of the paper is “Full-Wave Simulation of a 10,000-element Reconfigurable Intelligent Surface with a Single Workstation Computer”.</p>
<h2 id="honorable-mention-award-in-student-paper-competition-atieee-ap-s-symposium-1">2023, Honorable Mention Award in Student Paper Competition at IEEE AP-S Symposium</h2>
<p>Sangrui Luo received the 2023 IEEE Antennas and Propagation Symposium Student Paper Competition Honorable Mention Award. The title of the paper is “A Hybrid Predictive Model for the Spatial-Spectral Analysis of Wave Physics in Complex Enclosures”. </p>
<h2 id="ticra-euraap-grant-awardee-at-eucap-2023">2023, TICRA-EurAAP Grant Awardee at EuCAP 2023</h2>
<p>Congratulations to Qi Jian Lim for being selected as one of the eight awardees of the TICRA-EurAAP Grants at 17th European Conference on Antennas and Propagation.</p>
<h2 id="best-electromagnetics-paper-award-at-16th-european-conference-on-antennas-and-propagation">2022, Best Electromagnetics Paper Award at 16th European Conference on Antennas and Propagation</h2>
<p class="textCol">Our Paper “Quantum-Assisted Combinatorial Optimization of Reconfigurable Intelligent Surfaces” (Qi Jian Lim, Charles Ross, Gabriele Gradoni, and Zhen Peng) received the Best Electromagnetics Paper Award at the 16th European Conference on Antennas and Propagation (EuCAP2022).<br /><br />
We proposed a physics-based optimization approach for reconfigurable intelligent surfaces, inspired by the quantum mechanical physics of correlated spins. The new idea is grounded on the isomorphism between the electromagnetic scattered power and Ising Hamiltonian. Thereby, the problem of optimizing phase configuration is converted into finding the ground state of the target Ising Hamiltonian. Under this framework, we successfully demonstrated the feasibility of combinatorial optimization for weighted beamforming and diffusive scattering applications.</p>
<p class="imgCol"><img src="/assets/images/news/EuCAP2022.jpg" alt="EuCAP2022" /></p>
<h2 id="best-paper-award-finalist-at-ieee-emc-symposium-1">2022, Best Paper Award Finalist at IEEE EMC Symposium </h2>
<p>Our paper, “On the Vectorial Property of Stochastic Dyadic Green’s Function in Complex Electronic Enclosures” entered into the 2022 Best EMC Symposium Paper Finalist in the 2022 IEEE International Symposium on Electromagnetic Compatibility, Signal &amp; Power Integrity. </p>
<h2 id="yuen-t-lo-outstanding-research-award">2022, Yuen T. Lo Outstanding Research Award</h2>
<p>Shen Lin received the <a href="https://ece.illinois.edu/academics/grad/awards/lo">Yuen T. Lo Outstanding Research Award</a> in the Department of Electrical &amp; Computer Engineering (ECE) at the University of Illinois at Urbana-Champaign (UIUC). Congratulations to Shen!</p>
<h2 id="best-conference-paper-award-at-30th-electrical-performance-of-electronic-packaging-and-system">2021, Best Conference Paper Award at 30th Electrical Performance of Electronic Packaging and System</h2>
<p>Our Paper “On the Statistical Analysis of Space-Time Wave Physics in Complex Enclosures” (Shen Lin and Zhen Peng) received the Best Paper Award at 30th Electrical Performance of Electronic Packaging and System (EPEPS2021). </p>
<p>We proposed a physics-oriented, mathematically tractable statistical wave model, named the space-time stochastic Green’s function, for analyzing the wave physics of high-frequency reverberation within complex confined electromagnetic environments. The model characterizes both spatial and temporal variations and correlations of wave fields without the need for detailed knowledge of the complex environment. Experimental results are supplied to validate the proposed work.</p>
<h2 id="honorable-mention-award-and-final-list-in-student-paper-competition-atieee-ap-s-symposium">2021, Honorable Mention Award and Final list in Student Paper Competition at IEEE AP-S Symposium</h2>
<p>Shen Lin received the 2021 IEEE Antennas and Propagation Symposium Student Paper Competition Honorable Mention Award. The title of the paper is “A Space-Time Stochastic Green’s Function Method for Statistical Analysis of Wave Physics in Ray-Chaotic Enclosures”.</p>
<h2 id="rd-place-winner-in-student-paper-competition-at-ieee-ap-s-symposium">2020, 3rd Place Winner in Student Paper Competition at IEEE AP-S Symposium</h2>
<p>Our Paper “Statistical Analysis of Information Transmission in Ray-Chaotic Enclosures: A Stochastic Green’s Function Approach” (Shen Lin and Zhen Peng) won the 3rd place in Student Paper Competition (SPC) at 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting (2020 IEEE AP-S). A total of 203 student papers entered into the SPC this year.</p>
<p>There has been much interest in studying the physics of wireless channels in strongly scattering, indoor environments displaying ray chaotic dynamics. This paper presents a physics-based mathematical model, so-called stochastic Green’s function, built upon Wigner’s random matrix theory and Berry random wave hypothesis. The work can be used to characterize the channel capacity, spatial correlation, and coherence bandwidth based on macroscopic knowledge of the propagation environment.</p>
<h2 id="best-conference-paper-award-at-28th-electrical-performance-of-electronic-packaging-and-system">2019, Best Conference Paper Award at 28th Electrical Performance of Electronic Packaging and System</h2>
<p>Our Paper “A Novel Space-Time Building Block Methodology for Transient Electromagnetic Analysis” (Shu Wang and Zhen Peng) received the Best Paper Award at 28th Electrical Performance of Electronic Packaging and System (EPEPS2019). </p>
<p>We proposed a space-time building block methodology for efficient time-domain analysis of multi-scale, locally periodic structures. By leveraging the principles of linear superposition and space-time causality in wave physics, the 4D simulation domain is represented by a few space-time building blocks, which are constructed upon 3D spatial unit cell and 1D time unit. The work results in novel time-evolution schemes, which exhibit high-order accuracy and achieve concurrency and parallelism in both spatial and temporal dimensions. </p>
<h2 id="best-paper-award-at-ieee-emc-symposium">2019, Best Paper Award at IEEE EMC Symposium </h2>
<p class="textCol">Our paper, “A Novel Statistical Model for the Electromagnetic Coupling to Electronics inside Enclosures” has been selected as 2019 Best EMC Symposium Paper Award in the <a href="https://www.emc2019.emcss.org">2019 IEEE International Symposium on Electromagnetic Compatibility, Signal &amp; Power Integrity</a>. It is a joint work with Edl Schamiloglu (UNM), Zachary B. Drikas (NRL), and Thomas Antonsen (UMD). 
<br /><br />
The work is supported by NSR CAREER Award, and <a href="http://ece-research.unm.edu/AFOSR-COE/">AFOSR/AFRL Center of Excellence: Science of Electronics in Extreme Electromagnetic Environments</a>. </p>
<p class="imgCol"><img src="/assets/images/news/EMC2019.png" alt="Fellowships" /></p>
<h2 id="honorable-mention-award-at-ieee-ap-s-symposium-student-paper-competition">2019, Honorable Mention Award at IEEE AP-S Symposium Student Paper Competition</h2>
<p>Shen Lin received the 2019 IEEE Antennas and Propagation Symposium Student Paper Competition Honorable Mention Award. The title of the paper is “Physics-Oriented Statistical Analysis of Information Transmission in Wave-Chaotic Environments”. </p>
<h2 id="rd-place-in-student-paper-competition-at-nemo-conference">2019, 3rd Place in Student Paper Competition at NEMO Conference</h2>
<p>Oameed Noakoasteen received the 3rd place in the student paper competition at 2019 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization. The title of the paper is “Physics-Informed deep Neural Networks for Transient Electromagnetic Analysis”. Congratulations to Oameed.</p>
<p>We propose a deep convolutional encoder-recurrent-decoder architecture to predict the time-evolution in transient electromagnetics. Based on the principles of linear superposition and space-time causality, the network is able to superimpose the learned scattering mechanisms (wave reflection, diffraction, and creeping wave, etc.) locally and emulate the transient electromagnetic problems. It is a joint work with Mr. Shu Wang.</p>
<h2 id="st-place-in-student-paper-competition-at-aces-symposium">2019, 1st Place in Student Paper Competition at ACES Symposium</h2>
<p>Shu Wang received the 1st place in the student paper competition at 2019 International Applied Computational Electromagnetics Society (ACES) Symposium. The title of the paper is “Platform-aware In-situ Antenna and Metamaterial Analysis and Design”. Congratulations to Shu!</p>
<p>The objective of this paper is to build a reconfigurable, reusable, and parallel model reduction platform towards transformative in-situ antenna design. The key idea is to introduce a separable and compressible platform Green’s function in an up-front offline computation. Once obtained, the online computational complexity does not depend on the size of the in-situ platform. As a result, in-situ design and optimization of multi-antenna systems can be performed at the same cost as the free-space radiation. The advancements make high-fidelity in-situ antenna design orders of magnitude faster. It is a joint work with Dr. Brian MacKie-Mason and Dr. Hongwei Gao.</p>
<h2 id="aces-symposium-short-course">2019 ACES Symposium Short Course</h2>
<p>Ever-increasing fidelity and accuracy needs for advanced electromagnetic (EM) applications have been pushing the problem sizes toward extreme scales. It puts a high premium on the investigation of high-performance algorithms with optimal computational complexity. In recent years, domain decomposition (DD) methods have enjoyed considerable success in solving large multi-scale EM problems. These methods feature divide-and-conquer in solution algorithms (applying the most suitable solution strategy to solve each sub-problem) and plug-in-play in software architectures (integrating individual EM solvers into a portable and extensible solution suite). They also result in highly efficient and naturally parallelizable algorithms on distributed memory many-core parallel computing systems. </p>
<p>This short course will review and discuss recent progress in the DD methods for solving differential and integral equations with applications to large-scale EM problems.</p>
</div>
</div>
</div></div>
<footer>
<div id="footer">
<p>Links for Members:</p>
<div><a href="https://git.acem.ece.illinois.edu/">Gitea</a></div>
</div>
<p id="author">Made by Kenneth Jao</p>
</footer>
</body>
</html>

@ -0,0 +1,513 @@
<!DOCTYPE html>
<html class="clearScroll" lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1"><!-- Begin Jekyll SEO tag v2.8.0 -->
<title>Publications | ACEM</title>
<meta name="generator" content="Jekyll v4.3.2" />
<meta property="og:title" content="ACEM" />
<meta property="og:locale" content="en_US" />
<meta name="description" content="Publications Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<meta property="og:description" content="Publications Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<link rel="canonical" href="http://localhost:4000" />
<meta property="og:url" content="http://localhost:4000" />
<meta property="og:site_name" content="ACEM" />
<meta property="og:type" content="website" />
<meta name="twitter:card" content="summary" />
<meta property="twitter:title" content="ACEM" />
<script type="application/ld+json">{"@context":"https://schema.org","@type":"WebSite","description":"Publications Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign.","name":"ACEM Publications Page","url":"http://localhost:4000/publications"}</script>
<!-- End Jekyll SEO tag -->
<!-- Font loading -->
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Montserrat:ital,wght@0,100;0,200;0,400;0,600;0,800;1,400&display=swap" rel="stylesheet">
<link rel="stylesheet" href="/assets/css/styles.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Publications | ACEM" />
</head>
<body>
<nav>
<div class="separator orange"></div>
<ul class="clearScroll">
<div id="logo">
<a href="/" alt="Advanced Computational Electromagnetics (ACEM) Research Group">ACEM</a>
</div>
<div id="navItems"><li ><a href="/">Home</a></li><li ><a href="/research/">Research</a></li><li ><a href="/applications/">Applications</a></li><li class="current"><a href="/publications/">Publications</a></li><li ><a href="/team/">Team</a></li></div>
</ul>
</nav>
<div id="postContent" class="content">
<svg height="100%" width="100%" viewBox="0 0 5 3.5" class="upAccent" preserveAspectRatio="none">
<path d="M 0 0 V 2 C 1 3.5 4 3.5 5 2 V 0">
</svg>
<div>
<h1 id="publications-and-conference-presentations">Publications and Conference Presentations</h1>
<h2 id="2024">2024:</h2>
<p>[J.8] G. Cao and Z. Peng, “RayProNet: A Neural Point Field Framework for Radio Propagation Modeling in 3D Environments,” IEEE Journal on Multiscale and Multiphysics Computational Techniques, vol. 9, pp. 330-340, 2024.</p>
<p>[J.7] E. Colella, L. Bastianelli, V. M. Primiani, Z. Peng, F. Moglie and G. Gradoni, “Quantum Optimization of Reconfigurable Intelligent Surfaces for Mitigating Multipath Fading in Wireless Networks,” in IEEE Journal on Multiscale and Multiphysics Computational Techniques, vol. 9, pp. 403-414, 2024.</p>
<p>[J.6] Z.-Y. Liang, H. -W. Gao, X. -M. Xin, S. Wang and Z. Peng, “A Mixed Discretization Scheme for Discontinuous Galerkin Domain Decomposition Method Applied to Surface Integral Equations,” in IEEE Antennas and Wireless Propagation Letters, doi: 10.1109/LAWP.2024.3489661.</p>
<p>[J.5] I. Jung, Z. Peng, Y. Rahmat-Samii, “Recent Advances in Reconfigurable Electromagnetic Sur- faces: Engineering Design, Full-Wave Analysis, and Large-Scale Optimization,” Electromagnetic Science, in press, doi: 10.23919/emsci.2024.0020, 2024.</p>
<p>[J.4] S. Lin, S. Luo, Y. Shao, B. D. Addissie, Z. B. Drikas, G. Gradoni, and Z. Peng, “Statistical Analysis of Cavity Quality Factor Due to Localized Losses With the Stochastic Green’s Function Method,” IEEE Trans. Electromagnetic Compatibility, vol. 66, no. 3, pp. 844-858, June 2024.</p>
<p>[J.3] H.-W. Gao, X. -M. Xin, Q. J. Lim, S. Wang, and Z. Peng, “Efficient Full-Wave Simulation of Large-Scale Metasurfaces and Metamaterials,” IEEE Trans. Antennas Propag., vol. 72, no. 1, pp. 800-811, Jan. 2024.</p>
<p>[J.2] O. Noakoasteen, C. Christodoulou, Z. Peng, S. K. Goudos, “Physics-informed surrogates for electromagnetic dynamics using Transformers and graph neural networks”, IET Microw. Antennas Propag. 18:505-515, 2024.</p>
<p>[J.1] Q. J. Lim, C. Ross, A. Ghosh, F. Vook, G. Gradoni and Z. Peng, “Quantum-Assisted Combinatorial Optimization for Reconfigurable Intelligent Surfaces in Smart Electromagnetic Environments,” IEEE Trans. Antennas Propag., vol. 72, no. 1, pp. 147-159, Jan. 2024.</p>
<p>[C.11] G. N. Muñoz and Z. Peng, “High-Performance Discontinuous Galerkin Time-Domain Method for the Analysis of Electromagnetic Resonant Modes,” 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA), Lisbon, Portugal, 2024, pp. 1-1, doi: 10.1109/ICEAA61917.2024.10701883.</p>
<p>[C.10] S. Lin, S. Luo, Y. Shao, Z. Peng, B. D. Addissie and Z. B. Drikas, “Fusion of Parameter- ized and Physics-oriented Statistical Surrogate Models for EM Coupling on Wires in Complex Electronic Enclosures,” 2024 IEEE International Symposium on Electromagnetic Compatibility, Signal &amp; Power Integrity (EMC+SIPI), Phoenix, AZ, USA, 2024, pp. 392-397, doi: 10.1109/EM- CSIPI49824.2024.10705532.</p>
<p>[C.9] E. A. D. Dhombridge, T. W. Hussey, Z. V. Peng, P. Bremner and E. Schamiloglu, “Three Coupling Models Compared in a Distributed Port,” 2024 IEEE International Symposium on Electromagnetic Compatibility, Signal &amp; Power Integrity (EMC+SIPI), Phoenix, AZ, USA, 2024, pp. 557-557, doi: 10.1109/EMCSIPI49824.2024.10705464.</p>
<p>[C.8] S. Luo, S. Lin, Y. Shao and Z. Peng, “On the Formulation of Stochastic Green’s Function Method for Aperture Coupled Enclosures,” 2024 IEEE International Symposium on Electromagnetic Compatibility, Signal &amp; Power Integrity (EMC+SIPI), Phoenix, AZ, USA, 2024, pp. 502-507, doi: 10.1109/EMCSIPI49824.2024.10705534.</p>
<p>[C.7] C. Ross, G. Gradoni and Z. Peng, “A Novel Bayesian Optimization Framework for RIS-Assisted Wireless Networks,” 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), Firenze, Italy, 2024, pp. 605-606, doi: 10.1109/AP-S/INC-USNC-URSI52054.2024.10685875.</p>
<p>[C.6] Q. J. Lim and Z. Peng, “Swarm-Based Antenna Array Synthesis Through Spin-Based Bifurcation Algorithm,” 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), Firenze, Italy, 2024, pp. 1477-1478, doi: 10.1109/AP-S/INC-USNC-URSI52054.2024.10686029.</p>
<p>[C.5] G. Gradoni, E. Colella, M. Khalily and Z. Pang, “Hybrid Quantum-Classical Optimisation of Large Reflective Metasurfaces Under Random Field Excitation,” 2024 IEEE INC-USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), Florence, Italy, 2024, pp. 126-126, doi: 10.23919/INC-USNC-URSI61303.2024.10632483.</p>
<p>[C.4] Q. J. Lim and Z. Peng, “A Quantum-inspired Metaheuristic Algorithm for Beampattern Synthesis in Multi-User MIMO,” 2024 International Applied Computational Electromagnetics Society Symposium (ACES), Orlando, FL, USA, 2024, pp. 1-2.</p>
<p>[C.3] G. Cao and Z. Peng, “A Scalable Multi-Physics Simulation of Dancing Ferrofluid,” 2024 International Applied Computational Electromagnetics Society Symposium (ACES), Orlando, FL, USA, 2024, pp. 1-2.</p>
<p>[C.2] G. Cao and Z. Peng, “A Novel Neural Point Field Framework for End-to-End Wireless Channel Modeling,” 2024 International Applied Computational Electromagnetics Society Symposium (ACES), Orlando, FL, USA, 2024, pp. 1-2.</p>
<p>[C.1] E. Colella, L. Bastianelli, M. Khalily, F. Moglie, Z. Peng and G. Gradoni, “Quantum Optimisation of Reconfigurable Surfaces in Complex Propagation Environments,” 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, United Kingdom, 2024, pp. 1-5, doi: 10.23919/EuCAP60739.2024.10500955.</p>
<h2 id="2023">2023:</h2>
<p>[Book] Integral Equations for Analysis of Real-life Multi-scale Electromagnetic Problems, Editors: Francesca Vipiana, Zhen Peng, IET Academic Books</p>
<p>[J.4] Q. J. Lim, C. Ross, A. Ghosh, F. Vook, G. Gradoni and Z. Peng, “Quantum-Assisted Combinatorial Optimization for Reconfigurable Intelligent Surfaces in Smart Electromagnetic Environments,” in IEEE Transactions on Antennas and Propagation, doi: 10.1109/TAP.2023.3298134.</p>
<p>[J.3] S. Lin, S. Luo, S. Ma, J. Feng, Y. Shao, Z. B. Drikas, B. D. Addissie, S. M. Anlage, T. Antonsen, and Z. Peng, “Predicting Statistical Wave Physics in Complex Enclosures: A Stochastic Dyadic Green’s Function Approach,” in IEEE Transactions on Electromagnetic Compatibility, vol. 65, no. 2, pp. 436-453, April 2023.</p>
<p>[J.2] J. Tobon, V. F. Martin, A. Serna, Z. Peng, and F. Vipiana, “On the Use of a Localized Huygens Surface Scheme for the Adaptive H-Refinement of Multi-Scale Problems,” in IEEE Transactions on Antennas and Propagation, doi: 10.1109/TAP.2023.3317972.</p>
<p>[J.1] X.-M. Xin, H. -W. Gao, S. Wang, Z. Peng and X.-Q. Sheng, “An Efficient and Effective Preconditioner for the Discontinuous Galerkin Domain Decomposition Method of Surface Integral Equation,” in IEEE Antennas and Wireless Propagation Letters, vol. 22, no. 10, pp. 2367-2371, Oct. 2023, doi: 10.1109/LAWP.2023.3288535.</p>
<p>[C.9] Shen Lin, Yang Shao, Bisrat D. Addissie, Zachary Drikas, and Zhen Peng, “Statistical Characterization of Cavity Quality Factor via the Stochastic Green’s Function Approach”, 2023 IEEE International Symposium on Electromagnetic Compatibility, Signal &amp; Power Integrity, Grand Rapids, Michigan, USA, August 2023.</p>
<p>[C.8] Qi Jian Lim, Hong-Wei Gao, and Zhen Peng, “Full-Wave Simulation of a 10,000-element Reconfigurable Intelligent Surface with a Single Workstation Computer”, 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, San Diego, California, USA, July 2023. (Honorable Mention Award in SPC)</p>
<p>[C.7] Sangrui Luo, Shen Lin, and Zhen Peng, “A Hybrid Predictive Model for the Spatial-Spectral Analysis of Wave Physics in Complex Enclosures”, 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, San Diego, California, USA, July 2023. (Honorable Mention Award in SPC)</p>
<p>[C.6] Charles Ross, Gabriele Gradoni, and Zhen Peng, “A Hybrid Classical-Quantum Computing Framework for RIS-assisted Wireless Network”, 2023 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO’2023), June 28 - 30, 2023, Winnipeg, Canada.</p>
<p>[C.5] Qi Jian Lim and Zhen Peng, “Engineering Super-resolution Antenna Array by Quantum Integer Programming”, 17th European Conference on Antennas and Propagation, Florence, Italy, March 2023.</p>
<p>[C.4] Charles Ross, Qi Jian Lim, Gabriele Gradoni, and Zhen Peng, “Ultrafast Channel Estimation and Optimization with Reconfigurable Intelligent Surfaces: A Hybrid Classical-Quantum Computing Model”, 17th European Conference on Antennas and Propagation, Florence, Italy, March 2023.</p>
<p>[C.3] Gabriele Gradoni, Sergio Terranova, Qi Jian Lim, Charles Ross, and Zhen Peng, “Random Ising Hamiltonian Model of Metasurfaces in Complex Environments”, 17th European Conference on Antennas and Propagation, Florence, Italy, March 2023.</p>
<p>[C.2] Sangrui Luo, Shen Lin, and Zhen Peng, “An Augmented Stochastic Green’s Function Method with the Short-orbit Contribution,” 2023 International Applied Computational Electromagnetics Society (ACES) Symposium, Monterey, California, USA, March 2023. (Best Student Paper Finalist)</p>
<p>[C.1] Zhen Peng, “Quantum Machine Learning for Engineering Reconfigurable Intelligent Surfaces,” SIAM Conference on Computational Science and Engineering (CSE23), Amsterdam, The Netherlands, February 2023. (Abstract and invited talk)</p>
<h2 id="2022">2022:</h2>
<p>[Roadmap Paper] Smart Surface Radio Environments, Reviews of Electromagnetics, Vol. I, 2022, DOI: 10.53792/RoE/2022.1/21012</p>
<p>[J.1] Hong-wei Gao, Shu Wang, Xin-qing Sheng, and Z. Peng, “Rapid Numerical Analysis of Electrically Large PEC Platforms With Local Variations via a Platform Green’s Function Method,” in IEEE Transactions on Antennas and Propagation, vol. 70, no. 10, pp. 9544-9556, Oct. 2022.</p>
<p>[C.6] Shen Lin, Yang Shao, and Zhen Peng, “On the Vectorial Property of Stochastic Dyadic Green’s Function in Complex Electronic Enclosures,” 2022 IEEE International Symposium on Electromagnetic Compatibility &amp; Signal/Power Integrity (EMCSI), Spokane, WA, USA, 2022.</p>
<p>[C.5] V. F. Martin, A. Serna, J. Tobón, Z. Peng and F. Vipiana, “Efficient Solution of Multi-Scale Problems with Localized Mesh Refinement Schemes and Huygens’ Surfaces,” 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 2022.</p>
<p>[C.4] Charles Ross, Gabriele Gradoni, and Zhen Peng, “Optimization of Reconfigurable Intelligence Surfaces at Wireless Endpoints via the Ising Spin Glass Model,” 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 2022.</p>
<p>[C.3] Charles Ross, Gabriele Gradoni, and Zhen Peng, “Combinatorial Optimization of Reconfigurable Intelligence Surfaces at Wireless Endpoints using the Ising Spin Glass Model,” 3rd URSI AT-AP-RASC, Gran Canaria, 29 May - 3 June 2022.</p>
<p>[C.2] Qi Jian Lim and Zhen Peng, “Quantum Integer Programming for Super-resolution Array Beamforming,” 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 2022.</p>
<p>[C.1] Qi Jian Lim, Charles Ross, Gabriele Gradoni, and Zhen Peng, “Quantum-Assisted Combinatorial Optimization of Reconfigurable Intelligent Surfaces”, 16th European Conference on Antennas and Propagation, March 2022. (Best Electromagnetics Paper Award)</p>
<h2 id="2021">2021:</h2>
<p>[J.1] Charles Ross, Gabriele Gradoni, Qi Jian Lim, and Z. Peng, “Engineering Reflective Metasurfaces With Ising Hamiltonian and Quantum Annealing,” in IEEE Transactions on Antennas and Propagation, vol. 70, no. 4, pp. 2841-2854, April 2022.</p>
<p>[C.7] S. Lin and Z. Peng, “On the Statistical Analysis of Space-Time Wave Physics in Complex Enclosures, “2021 IEEE 30th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), Austin, TX, USA, 2021 (Best Conference Paper Award).</p>
<p>[C.6] F. Guo et al., “The IEEE EPS Packaging Benchmark Suite,” 2021 IEEE 30th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), Austin, TX, USA, 2021, pp. 1-4, doi: 10.1109/EPEPS51341.2021.9609142.</p>
<p>[C.5] Shen Lin and Zhen Peng, “On the Information Entropy of Ray-Chaotic Indoor Environments,” 2021 International Conference on Electromagnetics in Advanced Applications (ICEAA), Honolulu, HI, USA, 2021.</p>
<p>[C.4] Charles Ross, Qi Jian Lim, Gabriele Gradoni, and Zhen Peng, “Engineering Reflective Intelligence Surface by Quantum Adiabatic Evolution,” 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Singapore, Dec. 2022.</p>
<p>[C.3] Shen Lin and Zhen Peng, “A Space-Time Stochastic Green’s Function Method for Statistical Analysis of Wave Physics in Ray-Chaotic Enclosures,” 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Singapore, Dec. 2022.</p>
<p>[C.2] Charles Ross, Gabriele Gradoni, and Zhen Peng, “Engineering Reflective Intelligence Surface with Ising Hamiltonian and Quantum Annealing,” 2021 International Applied Computational Electromagnetics Society Symposium (ACES), Hamilton, ON, Canada, 2021. (Best Student Paper Finalist)</p>
<p>[C.1] E. Schamiloglu et al., “The Science of Electronics in Extreme Electromagnetic Environments I - Enclosure Coupling,” 2021 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, 2021.</p>
<h2 id="2020">2020:</h2>
<p>[J.1] Oameed Noakoasteen, Shu Wang, Zhen Peng, and Christos Christodoulou, “Physics-Informed Deep Neural Networks for Transient Electromagnetic Analysis,” in IEEE Open Journal of Antennas and Propagation, vol. 1, pp. 404-412, 2020.</p>
<p>[J.2] Shen Lin, Zhen Peng, and Thomas M. Antonsen, “A Stochastic Green’s Function for Solution of Wave Propagation in Wave-Chaotic Environments,” in IEEE Transactions on Antennas and Propagation, vol. 68, no. 5, pp. 3919-3933, May 2020.</p>
<p>[J.3] J. A. Tobon Vasquez, Z. Peng, J. -F. Lee, G. Vecchi and F. Vipiana, “Automatic Localized Nonconformal Mesh Refinement for Surface Integral Equations,” in IEEE Transactions on Antennas and Propagation, vol. 68, no. 2, pp. 967-975, Feb. 2020.</p>
<p>[C.1] Shen Lin and Zhen Peng, “Statistical Analysis of Information Transmission in Ray-Chaotic Enclosures: A Stochastic Green’s Function Approach,” 2020 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Montreal, Quebec, Canada, July 2020. (3rd place in the student paper competition)</p>
<h2 id="2019">2019</h2>
<p>[J.1] Shu Wang, Yang Shao, and Zhen Peng, “A Parallel-in-Space-Time Method for Transient Electromagnetic Problems”, IEEE Transactions on Antennas and Propagation, DOI: 10.1109/TAP.2019.2909937, 2019. </p>
<p>[C.6] Shu Wang and Zhen Peng, ``A Novel Space-Time Building Block Methodology for Transient Electromagnetic Analysis,’‘ 28th Conference on Electrical Performance of Electronic Packaging and Systems, Montreal, Canada October 2019. (Best Paper Award)</p>
<p>[C.5] Shen Lin, Zhen Peng, Edl Schamiloglu, Zachary B. Drikas, and Thomas Antonsen, “Novel Statistical Model for the Electromagnetic Coupling to Electronics inside Enclosures,’’ 2019 IEEE International Symposium on Electromagnetic Compatibility, Signal &amp; Power Integrity, New Orleans, Louisiana, USA, July 2019. (IEEE EMC Symposium Best Paper Award)</p>
<p>[C.4] Shen Lin and Zhen Peng, “Physics-Oriented Statistical Analysis of Information Transmission in Wave-Chaotic Environments,” IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting (2019 IEEE AP-S/USNC-URSI), Atlanta, Georgia, USA, July 2019. (Honorable Mention Award in Student Paper Competition)</p>
<p>[C.3] Shu Wang and Zhen Peng,  “Space-Time Building Block for Multiscale Transient Electromagnetic Analysis,” 2019 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, Boston, USA, May 2019. </p>
<p>[C.2] Oameed Noakoasteen, Shu Wang and Zhen Peng,  “Physics-Informed Deep Neural Networks for Transient Electromagnetic Analysis,” 2019 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, Boston, USA, May 2019. (3rd place in Best Student Paper Competition)</p>
<p>[C.1] Shu Wang, Brian Mackie-Mason and Zhen Peng, “Platform-Aware In-Situ Antenna and Metamaterial Analysis and Design,” 2019 International Applied Computational Electromagnetics Society (ACES) Symposium, Miami, Florida, USA, April 2019. (Best Student Paper Award)</p>
<h2 id="2018">2018</h2>
<p>[J.2] Brian MacKie-Mason, Yang Shao, Andrew Greenwood and Zhen Peng, “A supercomputing-enabled first-principles analysis of radio wave propagation in urban environments,” IEEE Transactions on Antennas and Propagation, DOI: 10.1109/TAP.2018.2874674, 2018. (special issue on Radio Wave Propagation)</p>
<p>[J.1] Hong-Wei Gao, Zhen Peng, and Xin-Qing Sheng, “A coarse-grained integral equation method for multi-scale electromagnetic analysis,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 3, pp. 1607-1612, March 2018.</p>
<p>[C.8] Shu Wang and Zhen Peng, “Parallel-in-Space-Time Analysis of Electromagnetic Interference in Electronic Enclosures,” 2018 IEEE 27th Conference on Electrical Performance of Electronic Packaging Systems (EPEPS), San Jose, October 2018. (Best Student Paper Award Finalist)</p>
<p>[C.7] Shen Lin, Evelyn Dohme and Zhen Peng, “A Stochastic Green’s Function - Integral Equation Method for Communication in Diffusive Multipath Environments,” 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), Cartagena, Colombia, September 2018. (ICEAA IEEE-APWC Best Paper Award)</p>
<p>[C.6] Shen Lin and Zhen Peng, “First-Principles Statistical Model of Communication Through Wave-Chaotic Environments,” IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting (2018 IEEE AP-S/USNC-URSI), Boston, Massachusetts, USA, July 2018. (Honorable Mention Award in Student Paper Competition)</p>
<p>[C.5] Shu Wang and Zhen Peng, “Breaking the Scaling Limit: A Parallel-in-Space-and-Time Method for Transient Electromagnetic Problems,” IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting (2018 IEEE AP-S/USNC-URSI), Boston, Massachusetts, USA, July 2018.</p>
<p>[C.4] Oameed Noakoasteen, Shu Wang, and Zhen Peng, “Emulation of Transient Electrodynamic Physics via Deep Neural Networks,” IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting (2018 IEEE AP-S/USNC-URSI), Boston, Massachusetts, USA, July 2018.</p>
<p>[C.3] Zhen Peng, Shen Lin, Edl Schamiloglu, and Thomas Antonsen, “A Stochastic Green’s Function Method for Wave Propagation in Chaotic Environments’,’ 12th European Conference on Antennas and Propagation (EUCAP 2018), London, UK, April 2018. (Invited contribution for Convened Session: Fundamental Challenges and Novel Methodologies in the Next-Generation Computational Electromagnetics)</p>
<p>[C.2] Shu Wang and Zhen Peng, “A Space-Time Domain Decomposition Method for High-fideity Electromagnetic Simulation,” 2018 International Applied Computational Electromagnetics Society (ACES) Symposium, Denver, Colorado, USA, March 2018. (Best Student Paper Award)</p>
<p>[C.1] Shen Lin and Zhen Peng, “A Novel Stochastic Integral Equation Method for Wireless Communication in Diffuse Multipath Environments,” 2018 International Applied Computational Electro- magnetics Society (ACES) Symposium, Denver, Colorado, USA, March 2018. (Best Student Paper Award Finalist)</p>
<h2 id="2017">2017</h2>
<p>[J.2] Zhen Peng, Yang Shao, Hong-Wei Gao, Shu Wang and Shen Lin, “High-Fidelity, high-performance computational algorithms for intra-system electromagnetic interference analysis of IC and elec- tronics,” IEEE Transactions on Components, Packaging and Manufacturing Technology, Invited paper for Special Topics Section on Addressing Signal and Power Integrity in Future Generation Systems. vol. 7, no. 5, pp. 653-668, May 2017. (Best Paper Award among papers published in the Transactions during year 2017)</p>
<p>[J.1] Hong-Wei Gao, Zhen Peng, and Xin-Qing Sheng, “A Geometry-Aware Domain Decomposition Preconditioning for Hybrid Finite Element-Boundary Integral Method,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 4, pp. 1875-1885, April 2017.</p>
<p>[C.12] Shen Lin and Zhen Peng, “A Novel Stochastic Wave Model Statistically Replicating Rever- beration Chambers,” 26th Conference on Electrical Performance of Electronic Packaging and Systems, San Jose, California, USA, October 2017. (Best Student Paper Award)</p>
<p>[C.11] Shu Wang and Zhen Peng, “Space-Time Parallel Computation for Time-Domain Maxwell’s Equations,” 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), Verona, Italy, September 2017. (ICEAA IEEE-APWC Awards Finalist)</p>
<p>[C.10] Shen Lin and Zhen Peng, “Fusion of First-Principles and Statistical Analysis in Complex Electronics Systems, ” XXXII General Assembly and Scientific Symposium of the International Union of Radio Science (URSIGASS 2017), Montreal, Canada, August 2017. (Invited Talk)</p>
<p>[C.9] Zhen Peng, Yang Shao and Shen Lin, “First-Principles Modeling and Statistical Characterization of Wireless Channels in Complex Electromagnetic Environments, ” XXXII General Assembly and Scientific Symposium of the International Union of Radio Science (URSIGASS 2017), Montreal, Canada, August 2017. (Invited Talk)</p>
<p>[C.8] Shu Wang and Zhen Peng, “A Space-Time Parallel Domain Decomposition Method for High Fidelity Electromagnetic Analysis,” 2017 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, San Diego, California, USA, July 2017.</p>
<p>[C.7] Shen Lin, Zhen Peng, and Thomas Antonsen, “Quantitative Statistical Analysis with Physics-based Surrogate Modeling for Wave Chaotic Systems,” 2017 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, San Diego, California, USA, July 2017. (Honorable Mention Award in Student Paper Competition)</p>
<p>[C.6] Brian Mackie-Mason and Zhen Peng, “Towards Real-time In-Situ Antenna Analysis and Design on Platforms of 1000 Wavelengths,” 2017 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, San Diego, California, USA, July 2017.</p>
<p>[C.5] Yang Shao and Zhen Peng, “Supercomputing-Enabled First-Principles Analysis of Wireless Channels in Urban Environments,” 2017 International Microwave Symposium (IMS), Honolulu, Hawaii, June 2017. (entered into the best IMS Advanced Practice Paper)</p>
<p>[C.4] Zhen Peng and Shen Lin, “EM-CAD for Complex Electronics Systems: A Journey from Order to Chaos,” 2017 IEEE MTT-S International Conference on Numerical Electromagnetic and Mul- tiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, Sevilla, Spain, May 2017. (Invited Talk)</p>
<p>[C.3] Zhen Peng, “Geometry-Aware Domain Decomposition Methods in High-Fidelity Electromagnetic Design,” 2017 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications, Sevilla, Spain, May 2017.</p>
<p>[C.2] Shen Lin, Zhen Peng, and Thomas Antonsen, “Fusion of First-Principles and Statistical Analyses in Complex Electronics Systems,” 21th IEEE Workshop on Signal Integrity and Power Integrity (SPI2017), Baveno, Italy, May 2017. (Young Investigator Training Program Awardee)</p>
<p>[C.1] Zhen Peng, “Domain Decomposition in the Wave Chaos Analysis,” 2017 SIAM Conference on Computational Science and Engineering, Atlanta, Georgia, USA, February 2017. (Invited Talk)</p>
<h2 id="journal-papers---2016">Journal Papers (- 2016):</h2>
<p>[38] Zhen Peng, Ralf Hiptmair, Yang Shao and Brian MacKie-Mason, “Domain decomposition preconditioning for surface integral equations in solving challenging electromagnetic scattering problems,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 1, pp. 210-223, Jan. 2016.</p>
<p>[37] Brian MacKie-Mason, Andrew Greenwood and Zhen Peng, “An adaptive, parallel surface integral equation solver for very large-scale electromagnetic modeling and simulation,” Progress In Electromagnetics Research, Invited paper for the Commemorative Collection on the 150-Year Anniversary of Maxwell’s Equations, vol. 154, pp. 143-162, 2015. </p>
<p>[36] Zhen Peng, “A novel multi-trace boundary integral equation formulation for electromagnetic cavity scattering problems,” IEEE Transactions on Antennas and Propagation, ISSN:0018-926X, doi:10.1109/TAP.2015.2458328, 2015.</p>
<p>[35] Ralf Hiptmair, Carlos Jerez-Hanckes, Jin-Fa Lee, and Zhen Peng, “Domain decomposition for boundary integral equations via local multi-trace formulations,” in Domain Decomposition Methods in Science and Engineering XXI (J. Erhel, M. J. Gander, L. Halpern, G. Pichot, T. Sassi, and O. Widlund, eds.), vol. 98 of the seriesLecture Notes in Computational Science and Engineering, pp. 43-57, Springer International Publishing, 2014.</p>
<p>[34] Victorita Dolean, Martin Gander, Stephane Lanteri, Jin-Fa Lee and Zhen Peng, “Effective transmission conditions for domain decomposition methods applied to the Time-Harmonic Curl-CurlMaxwell’s Equations,” Journal of Computational Physics, doi:10.1016/j.jcp.2014.09.024, 2014.</p>
<p>[33] Zhen Peng, Kheng-Hwee Lim and Jin-Fa Lee, “A boundary integral equation domain decomposition method for electromagnetic scattering from large and deep cavities,” Journal of Computational Physics, doi:10.1016/j.jcp.2014.10.010, 2014.</p>
<p>[32] Jian-Gong Wei, Zhen Peng and Jin-Fa lee, “Multi-scale electromagnetic computations using ahierarchical multi-level fast multipole algorithm,” Radio Science, doi:10.1002/2013RS005250,2014.</p>
<p>[31] Victorita Dolean, Martin Gander, Stephane Lanteri, Jin-Fa Lee and Zhen Peng, “Optimized Schwarz Methods for Curl-Curl Time-Harmonic Maxwell’s Equations,” in Domain Decomposition Methods in Science and Engineering XXI (J. Erhel, M. J. Gander, L. Halpern, G. Pichot, T. Sassi, and O. Widlund, eds.), vol. 98 of the series Lecture Notes in Computational Science and Engineering, pp. 587-595, Springer International Publishing, 2014.</p>
<p>[30] R. Hiptmair and C. Jerez-Hanckes and J. Lee and Z. Peng, ”Domain Decomposition for Boundary Integral Equations via Local Multi-Trace Formulations”, in review, SAM Report 2013-08, 2013.</p>
<p>[29] Zhen Peng, Kheng-Hwee Lim and Jin-Fa Lee, “A Discontinuous Galerkin Surface Integral Equation Method for Electromagnetic Wave Scattering From Nonpenetrable targets,” IEEE Transactions on Antennas and Propagation, vol. 61, No. 7, pp. 3617-3628, July 2013. (IEEE Antenna and Propagation Sergei A. Schelkunoff Transactions Prize Paper Award)</p>
<p>[28] Zhen Peng, Kheng-Hwee Lim and Jin-Fa Lee, “Non-conformal Domain Decomposition Methods for Solving Large Multi-scale Electromagnetic Scattering Problems,” Proceedings of the IEEE, vol. 101, no. 2, pp. 298-319, 2013. (Invited paper for Special Issue on Large-scale Electromagnetic Computation for Modeling and Applications)</p>
<p>[27] Zhen Peng, Kheng-Hwee Lim and Jin-Fa Lee, “Computations of Electromagnetic Wave Scattering from Penetrable Composite Targets using a Surface Integral Equation Method with Multiple Traces,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 1, pp. 256-269, 2013. </p>
<p>[26] Yang Shao, Zhen Peng and Jin-Fa Lee, “Thermal analysis of high-power integrated circuits and packages using non-conformal domain decomposition method,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 3, no. 8, pp. 1321-1331, 2013.</p>
<p>[25] Jian-Gong Wei, Zhen Peng, Jin-Fa lee, “A Fast Direct Matrix Solver for Surface Integral Equation Methods for Electromagnetic Wave Scattering from Non-penetratable Targets,” Radio Science, vol. 47, RS5003, 2012.</p>
<p>[24] Zhen Peng and Jin-Fa Lee, “A Scalable Non-overlapping and Non-conformal Domain Decomposition Method for Solving Time-harmonic Maxwell Equations in R3,” SIAM Journal on ScientificComputing., vol. 34, no.3, pp. A1266-A1295, 2012.</p>
<p>[23] Yang Shao, Zhen Peng, Kheng-Hwee Lim and Jin-Fa Lee, “Non-conformal Domain Decomposition Methods for Time Harmonic Maxwell Equations,” Proceedings of the Royal Society A, vol.468, no. 2145, pp. 2433-2460, 2012. (Invited Paper)</p>
<p>[22] Xiao-Min Pan, Wei-Chao Pi, Ming-lin Yang, Zhen Peng and Xin-qing Sheng, “Solving Problems with over One Billion Unknowns by the MLFMA,” IEEE Transactions on Antennas andPropagation, vol. 60, no. 5, pp. 2571-2574, 2012.</p>
<p>[21] Yang Shao, Zhen Peng and Jin-Fa Lee, “Thermal-Aware DC IR-Drop Co-Analysis Using Non-conformal Domain Decomposition Methods,” Proceedings of the Royal Society A, vol. 468, no. 2142, pp. 1652-1675, June, 2012. (Invited Paper)</p>
<p>[20] Xiao-Min Pan, Jian-Gong Wei, Zhen Peng and Xin-Qing Sheng, “A fast algorithm for multiscale electromagnetic problems using interpolative decomposition and multilevel fast multipole algorithm,” Radio Science, vol. 47, issue 1, 2012.</p>
<p>[19] Zhen Pengand Jin-Fa Lee, “Non-conformal domain decomposition method with mixed truesecond order transmission condition for solving large finite antenna arrays,” IEEETransactions on Antennas and Propagation, vol. 59, no.5, pp. 1638-1651,2011.</p>
<p>[18] Zhen Peng,Xiaochuan Wang and Jin-Fa Lee, “Integral equation based domain decompositionmethod for solving electromagnetic wave scattering from non-penetrableobjects,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 9, pp. 230-241, 2011.</p>
<p>[17] Yang Shao,Zhen Peng and Jin-Fa Lee, “Full wave 3-D full package signal integrity analysisusing non-conformal domain decomposition method,” IEEE Transactions on MicrowaveTheory and Techniques, vol. 59, no. 2, pp. 230-241, 2011.</p>
<p>[16] XiaochuanWang, Zhen Peng and Jin-Fa Lee, “Multi-solver domain decomposition method formodeling EMC effects of multiple antennas on a large air platform,” IEEETransactions on Electromagnetic Compatibility,10.1109/TEMC.2011.2161871, 2011.</p>
<p>[15] Yang Shao,Zhen Peng and Jin-Fa Lee, “High speed interconnects of multi-layer PCB analysisby using non-conformal domain decomposition method,” IEEE Transactions on AdvancedPackaging, In Press, 2010.</p>
<p>[14] Zhen Peng,Mattew B. Stephanson, and Jin-Fa Lee, “Fast computation of angular responses oflarge-scale three-dimensional electromagnetic wave scattering,” IEEE Transactions on Antennas and Propagation, vol. 58,no.9, pp. 3004-3012, Sep. 2010.</p>
<p>[13] Zhen Pengand Jin-Fa Lee, “Non-conformal domain decomposition method with second ordertransmission conditions for time-harmonic electromagnetics,” Journalof Computational Physics, vol. 229, pp. 5615-5629, 2010.</p>
<p>[12] Zhen Peng,Vineet Rawat, and Jin-Fa Lee, “One way domain decomposition method with secondorder transmission conditions for solving electromagnetic way problems,” Journalof Computational Physics, vol. 229, pp. 1181-1197, 2010.</p>
<p>[11] Xin-Qing Sheng, Zhen Peng, “Analysis of Scattering by Large Objects withOff-diagonally Anisotropic Material Using Finite Element-BoundaryIntegral-Multilevel Fast Multipole Algorithm,” IET Microwave Antennas and Propagation, vol. 4, Iss. 4, pp. 492-500, 2010.</p>
<p>[10] Zhen Peng, Xin-Qing Sheng and F. Yin, “An efficient twofold iterativealgorithm of FE-BI-MLFMA using multilevel inverse-based ILU preconditioning,” Progress In Electromagnetics Research, PIER93, 369-384, 2009.</p>
<p>[9] Zhen Peng and Xin-Qing Sheng, “A flexible and efficientHigher-Order FE-BI-MLFMA for Scattering by a Large Body with Deep Cavities,” IEEE Transactions on Antennas and Propagation, pp. 2031-2042, vol. 56, no. 7,2008.</p>
<p>[8] Zhen Peng and Xin-Qing Sheng, “A bandwidth estimation approach for theasymptotic waveform evaluation technique,” IEEE Transactions on Antennas and Propagation, pp.913-917, vol. 56, no. 3, 2008.</p>
<p>[7] Zhen Peng and Xin-Qing Sheng, “Application of rational functionapproximation technique to hybrid FE-BI-MLFMA,” Acta Electronica Sinica, pp.446-452, vol. 36, no. 3, Mar, 2008.</p>
<p>[6] Zhen Peng and Xin-Qing Sheng, “Application of multilevel ILUpreconditioning technique to hybrid FE/BI/MLFMA method,” Acta Electronica Sinica, pp.230-234, vol. 36, no. 2, Feb., 2008.</p>
<p>[5] Zhen Peng and Xin-Qing Sheng, “Application of rational functionapproximation technique to hybrid FE-BI-MLFMA,” International Journal of RF and Microwave Computer-Aided Engineering, pp. 521-532, vol. 17, no. 6. Nov.2007.</p>
<p>[4] Zhen Peng and Xin-Qing Sheng, “Application of asymptotic waveformapproximation technique to hybrid FE-BI Method for 3D Scattering,” Science in China, Series F: Information Sciences, pp.124-134, vol. 50, no. 1, Feb.2007.</p>
<p>[3] Xin-Qing Sheng and Zhen Peng, “Further cognition of hybrid FE/BI/MLFMA —investigation of the hybrid computing technique for scattering by large complextargets,” Acta Electronica Sinica, pp.93-98, vol. 34, no. 1, Jan. 2006.</p>
<p>[2] Zhen Peng and Xin-Qing Sheng, “Application of rational functionapproximation technique to hybrid FE/BI/MLFMA for 3D Scattering,” PIERSOnline, pp. 521-532, vol. 3, no. 6. 2007.</p>
<p>[1] Zhen Peng and Xin-Qing Sheng, “Fast algorithm of edge-element forthe high-order modes in dielectric-loaded waveguides with arbitrarilytransverse cross-sections,” Acta Electronica Sinica. pp.2149-2152, vol. 33, no. 12, Dec.2005.</p>
<h2 id="recent-conference-papers-2013-2016">Recent Conference Papers, 2013-2016:</h2>
<p>[44] Shen Lin, Zhen Peng, and Thomas Antonsen, “A hybrid method for quantitative statistical analysis of in-situ IC and electronics in complex and wave-chaotic enclosures,” 2016 Progress In Electromagnetic Research Symposium (PIERS), Shanghai, China, August 2016.</p>
<p>[43] Brian Mackie-Mason and Zhen Peng, “High-fidelity, high-performance integral equation solver for time-harmonic Maxwell’s Equations,” 2016 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, Puerto Rico, USA, June 2016.</p>
<p>[42] Shu Wang, Hong-Wei Gao, Yang Shao, and Zhen Peng, “Scalable full-wave algorithms for signal integrity analysis of 3D ICs and Packages,” 2016 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, Puerto Rico, USA, June 2016.</p>
<p>[41] Shen Lin, Zhen Peng, and Thomas Antonsen, “Multi-scale modeling and stochastic analysis of IC and electronics in complex and wave-chaotic enclosures,” 2016 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, Puerto Rico, USA, June 2016.</p>
<p>[40] Yang Shao, Shu Wang, and Zhen Peng, “Exploring high-fidelity modeling and multi-scale simula- tion methods for EMI/EMC analysis of IC and electronics,” 2016 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, Puerto Rico, USA, June 2016.</p>
<p>[39] Hong-Wei Gao, Zhen Peng, and Xing-Qing Sheng, “A multi-scale surface integral equation do- main decomposition method for high-fidelity electromagnetic simulation,” 2016 IEEE Inter- national Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, Puerto Rico, USA, June 2016.</p>
<p>[38] Zhen Peng, “High-performance surface integral equation solvers towards extreme-scale electro- magnetic computation,” 2016 SIAM Annual Meeting, Boston, Massachusetts, USA, July 2016.</p>
<p>[37] Shen Lin, Zhen Peng, and Thomas Antonsen, “A quantitative statistical analysis of in-situ IC and electronics in complex and wave-chaotic enclosure,” 2016 International Microwave Symposium, San Francisco, California, USA, May 2016.</p>
<p>[36] Shen Lin, Hong-Wei Gao, and Zhen Peng, “High-Fidelity, high-performance full-wave computa- tional algorithm for intra-system EMI analysis of IC and electronics,” 20th IEEE Workshop on Signal Integrity and Power Integrity (SPI2016), Turin, Italy, May 2016.</p>
<p>[35] Zhen Peng and Brian MacKie-Mason, “High-performance surface integral equation solvers to- wards extreme-scale electromagnetic modeling and simulation,” 2016 IEEE International Con- ference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES), Honolulu, Hawaii, USA, March 2016.</p>
<p>[34] Yang Shao, Shu Wang, and Zhen Peng, “Hierarchical modeling and scalable algorithms forin-situ characterization of 3D IC packages,” 2016 IEEE International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics(ACES), Honolulu, Hawaii, USA, March 2016. </p>
<p>[33] Zhen Peng, “Recent advances in discontinuous Galerkin boundary element methods for MaxwellEquations,” 2016 USNC-URSI National Radio Science Meeting, Boulder, Colorado, USA, January 2016.</p>
<p>[32] Zhen Peng, Yang Shao and Shu Wang, “Hierarchical Modeling and Scalable Algorithms for In-Situ Analysis of Integrated Circuit Packages, ” 24rd Conference on Electrical Performance ofElectronic Packaging and Systems (EPEPS 2015), San Jose, CA, Oct., 2015.</p>
<p>[31] Zhen Peng and Brian Mackie-Mason, “A Geometry-aware Integral Equation Domain Decomposi-tion Method for Maxwell’s Equations,” 23rd International Conference on Domain DecompositionMethods (DD XXIII), Jeju Island, Korea, July, 2015.</p>
<p>[30] Brian MacKie-Mason and Zhen Peng, “Adaptive, Scalable Domain Decomposition Methods forSurface Integral Equations,” 2015 IEEE International Symposium on Antennas and Propagationand USNC-URSI National Radio Science Meeting, Vancouver, Canada, July, 2015.</p>
<p>[29] ZhenPengandRalfHiptmair,“DiscontinuousGalerkinBoundaryElementMethodsforMaxwell’sEquations: Discretization, Formulation and Preconditioning,” 2015 IEEE International Sympo-sium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, Vancouver, Canada, USA, July, 2015.</p>
<p>[28] Yang Shao, Kheng-Hwee Lim, Zhen Peng and Jin-Fa Lee, “Domain Decomposition Methodswith Fast Direct Solvers for Multi-scale Electromagnetic Problems,” 2015 IEEE InternationalSymposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting,Vancouver, Canada, USA, July, 2015.</p>
<p>[27] Zhen Peng and Brian MacKie-Mason, “Integral equation discontinuous Galerkin methods fortime harmonic electromagnetic wave problems,” The 31th Annual Review of Progress in AppliedComputational Electromagnetics (ACES 2015), Williamsburg, Virginia, USA, March 2015.</p>
<p>[26] Zhen Peng, “High performance domain decomposition methods for simulation-aided design ofcomplex antenna systems,” The 31th Annual Review of Progress in Applied Computational Electromagnetics (ACES 2015), Williamsburg, Virginia, USA, March 2015. </p>
<p>[25] Zhen Peng and Yang Shao, “High performance domain decomposition methods for signal integrity modeling in 3-D Interconnects, ” 23rd Conference on Electrical Performance of ElectronicPackaging and Systems (EPEPS 2014), Portland, Oregon, Oct., 2014.</p>
<p>[24] Zhen Peng, “Boundary integral equation methods for high-fidelity electromagnetic problems, ”XXXI General Assembly and Scientific Symposium of the International Union of Radio Science(URSIGASS 2014), Beijing, China, August, 2014.</p>
<p>[23] Zhen Peng and Jin-Fa Lee, “Surface integral equation methods for multi-scale electromagneticproblems, ”XXXI General Assembly and Scientific Symposium of the International Union ofRadio Science (URSIGASS 2014), Beijing, China, August, 2014.</p>
<p>[22] Zhen Peng and Yang Shao, “EMI/EMC analysis of complex electronic systems with externalhigh power microwave pulses, ” AMEREM-2014, University of New Mexico, Albuquerque, NewMexico, USA, July, 2014.</p>
<p>[21] Zhen Peng, Mike Klopfer and Ravi K. Jain, “Recent advances in surface integral methods foranalyzing quantum-dot-based plasmonic nano-structures,” 2014 IEEE International Symposiumon Antennas and Propagation and USNC-URSI National Radio Science Meeting, Memphis, Ten-nessee, USA, July, 2014. </p>
<p>[20] Zhen Peng and Jin-Fa Lee, “Discontinuous Galerkin boundary element methods for complex elec-tromagnetic applications,” 2014 IEEE International Symposium on Antennas and Propagationand USNC-URSI National Radio Science Meeting, Memphis, Tennessee, USA, July, 2014.</p>
<p>[19] Zhen Peng, “Boundary Integral Equation Methods for High-fidelity Composite ElectromagneticProblems,” 2014 CBMS-NSF Conference Fast Direct Solvers for Elliptic PDEs, Dartmouth Col-lege, June, USA.</p>
<p>[18] ZhenPengandJin-FaLee,“IntegralequationdiscontinuousGalerkinmethodsforTime-HarmonicMaxwell Equations,” 12th International Workshop on Finite Elements for Microwave Engineering, Chengdu, China, May, 2014.</p>
<p>[17] Zhen Peng and Jin-Fa Lee, “Boundary integral equation domain decomposition methods for com-plex electromagnetic problems,” 12th International Workshop on Finite Elements for MicrowaveEngineering, Chengdu, China, May, 2014.</p>
<p>[16] Zhen Peng and Jin-Fa Lee, “Discontinuous Galerkin boundary element methods for complexelectromagnetic problems,” The 30th Annual Review of Progress in Applied Computational Elec-tromagnetics (ACES 2014), Jacksonville, Florida, USA, March 2014.</p>
<p>[15] Zhen Peng and Jin-Fa Lee, “Recent advances in surface integral equation formulation for anal-ysis of multi-scale and composite systems,” International Conference on Electromagnetics inAdvanced Applications (ICEAA2013), Torino, Italy, Sep. 2013.</p>
<p>[14] Yang Shao, Zhen Peng and Jin-Fa Lee, “Rigorous conductor modeling of signal integrity inintegrated circuits,” International Conference on Electromagnetics in Advanced Applications(ICEAA2013), Torino, Italy, Sep. 2013.</p>
<p>[13] Zhen Peng and Jin-Fa Lee, “Integral equation discontinuous Galerkin methods for time-harmonicelectromagnetic problems,” Asia-Pacific Radio Science Conference AP-RASC’13, Taipei, Tai-wan, Sep. 2013.</p>
<p>[12] Jue Wang, Zhen Peng and Jin-Fa Lee, “Ferromagnetic nano-wires: homogenization and applica-tions,” Asia-Pacific Radio Science Conference AP-RASC’13, Taipei, Taiwan, Sep. 2013.</p>
<p>[11] Yang Shao, Zhen Peng, Jin-Fa Lee, Diego M. Solis and Jose M. Taboada, “Advances in surfaceintegral equation for nano-scale optical wireless nanolink,” Progress in Electromagnetics ResearchSymposium (PIERS), Stockholm, Sweden, Aug. 2013.</p>
<p>[10] Zhen Peng and Jin-Fa Lee, “Surface integral equation methods for multi-scale composite prob-lems,” Progress in Electromagnetics Research Symposium (PIERS), Stockholm, Sweden, Aug.2013.</p>
<p>[9] Zhen Peng, Kheng-Hwee Lim and Jin-Fa Lee, “A discontinuous Galerkin integral equationmethod for time-harmonic electromagnetic problems,” 2013 IEEE International Symposium onAntennas and Propagation and USNC-URSI National Radio Science Meeting, July 7-13, Or-lando, USA.</p>
<p>[8] Zhen Peng, Kheng-Hwee Lim and Jin-Fa Lee, “A generalized multi-trace surface integral equationdomain decomposition method with optimized transmission condition,” 2013 IEEE InternationalSymposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting,July 7-13, Orlando, USA.</p>
<p>[7] Jue Wang, Zhen Peng and Jin-Fa Lee, “Homogenization and applications of ferromagnetic nanowires based metamaterials,” 2013 IEEE International Symposium on Antennas and Propagationand USNC-URSI National Radio Science Meeting, July 7-13, Orlando, USA.</p>
<p>[6] Jorge Tobon, Francesca Vipiana, Giuseppe Vecchi, Zhen Peng and Jin-Fa Lee, “WidebandEMC/EMI analysis using skeletonalized domain decomposition method,” 2013 IEEE Inter-national Symposium on Antennas and Propagation and USNC-URSI National Radio ScienceMeeting, July 7-13, Orlando, USA. </p>
<p>[5] Jiangong Wei, Zhen Peng and Jin-Fa Lee, “Multi-scale structures analysis using automatic h-refinement and discontinuous Galerkin integral equation,” 2013 IEEE International Symposiumon Antennas and Propagation and USNC-URSI National Radio Science Meeting, July 7-13,Orlando, USA.</p>
<p>[4] Zhen Peng and Jin-Fa Lee, “A heterogeneous domain decomposition method for the full waveanalysis of complex airborne antenna systems,” International Symposium on ElectromagneticTheory (EMTS 2013), May 20-23, Hiroshima, Japan.</p>
<p>[3] Yang Shao, Zhen Peng, and Jin-Fa Lee, “Rigorous conductor modeling of signal integrity inICs using multi-solver domain decomposition methods,” Progress in Electromagnetics ResearchSymposium (PIERS), Taipei, March 2013.</p>
<p>[2] Jue Wang, Zhen Peng and Jin-Fa Lee, “Homogenization and application of ferromagnetic nano-wires based metamaterials,” Progress in Electromagnetics Research Symposium (PIERS), Taipei,March 2013. </p>
<p>[1] J.A.T. Vasquez, F. Vipiana, Z. Peng, J.-F. Lee, andG. Vecchi, “An automatic h-refinementscheme for discontinuous Galerkin integral equations in the analysis of multi-scalestructures,” 2013 7th European Conferenceon Antennas and Propagation (EuCAP), pages 4048-4049, Apr. 2013. </p>
<h2 id="conference-papers-2005-2012">Conference Papers (2005-2012):</h2>
<p>[1] Zhen Peng, Kheng-Hwee Lim and Jin-Fa Lee, “Electromagnetic Scattering Analysis of a Largeand Deep Inlet Embedded in an Arbitrarily Shaped Host Body,” 2012 IEEE International Sym-posium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, July8-14, Chicago, USA.</p>
<p>[2] Zhen Peng, Kheng-Hwee Lim and Jin-Fa Lee, “A Non-conformal Integral Equation DomainDecomposition Method for Electromagnetic Scattering Analysis of Large Multi-Scale Objects,”2012 IEEE International Symposium on Antennas and Propagation and USNC-URSI NationalRadio Science Meeting, July 8-14, Chicago, USA.</p>
<p>[3] Jin-Fa Lee and Zhen Peng, “Comparisons of Heterogeneous Multiscale Finite Element Methodand Localized Homogenization Process for Modeling Aperiodic Metamaterials,” invited paperfor special session Challenging Canonical Scattering Problems and New EM Problems involv-ing Special Materials, 2012 IEEE International Symposium on Antennas and Propagation andUSNC-URSI National Radio Science Meeting, July 8-14, Chicago, USA.</p>
<p>[4] Jue Wang, Zhen Peng, and Jin-Fa Lee, “Conformal PML Modeling in DGTD using ContinuousMaterial Properties.,” 2012 IEEE International Symposium on Antennas and Propagation andUSNC-URSI National Radio Science Meeting, July 8-14, Chicago, USA.</p>
<p>[5] Jian-Gong Wei, Zhen Peng, and Jin-Fa Lee, “A Hierarchical Multi-Level Fast Multipole Methodfor Wideband Multiscale Electromagnetic Wave Scattering from Non-Penetrable Targets in R3,”Student paper contest finalist, 2012 IEEE International Symposium on Antennas and Propaga-tion and USNC-URSI National Radio Science Meeting, July 8-14, Chicago, USA.</p>
<p>[6] Xiao-chuan Wang, Zhen Peng, and Jin-Fa Lee, “A New Integral Equation Based Domain Decom-position Method for Electromagnetic Analysis of Large Multi-Scale Problems,” Student papercontest honorable mention, 2012 IEEE International Symposium on Antennas and Propagationand USNC-URSI National Radio Science Meeting, July 8-14, Chicago, USA.</p>
<p>[7] Zhen Peng, Jin-Fa Lee, V. Dolean, M. J Gander and S. Lanteri, “Speed up Non-conformalDDM Convergence using an Asymmetric Optimal Transmission Condition,” 21th InternationalConference on Domain Decomposition Methods (DD21), June 25 to 29, 2012, Rennes, France.</p>
<p>[8] Zhen Peng and Jin-Fa Lee, “Speed up Non-conformal DDM Convergence using an AsymmetricOptimal Transmission Condition,” 21th International Conference on Domain DecompositionMethods (DD21), June 25 to 29, 2012, Rennes, France.</p>
<p>[9] Zhen Peng, Kheng-Hwee Lim and Jin-Fa Lee, “Non-conformal Domain Decomposition Methodsfor Modeling Large Finite Antenna Arrays,” 11th International Workshop on Finite Elementsfor Microwave Engineering – FEM2012, June 4-6, Colorado, USA.</p>
<p>[10] Zhen Peng and Jin-Fa Lee, “A Non-overlapping and Non-conformal Domain DecompositionMethod with Optimized Second Order Transmission Conditions for Time-Harmonic MaxwellEquations in R3,” 11th International Workshop on Finite Elements for Microwave Engineering– FEM2012, June 4-6, Colorado, USA.</p>
<p>[11] Yang Shao, Zhen Peng and Jin-Fa lee, “Transient Thermal Analysis using a Non-conformal Do-main Decomposition Approach,” 11th International Workshop on Finite Elements for MicrowaveEngineering – FEM2012, June 4-6, Colorado, USA.</p>
<p>[12] Jue Wang, Zhen Peng and Jin-Fa lee, “Conformal PML Modeling in DGTD using ContinuousMaterial Properties,” 11th International Workshop on Finite Elements for Microwave Engineering – FEM2012, June 4-6, Colorado, USA.</p>
<p>[13] Yang Shao, Zhen Peng and Jin-Fa lee, “Thermal-Aware DC IR-Drop Co-Analysis using a Non-conformal Domain Decomposition Approach,” 11th International Workshop on Finite Elementsfor Microwave Engineering – FEM2012, June 4-6, Colorado, USA.</p>
<p>[14] Yang Shao, Zhen Peng and Jin-Fa Lee, “Numerical IR-Drop Analysis of 3-D IC Packaging usingNon-Conformal Domain Decomposition Method,” 2012 Asia-Pacific International SymposiumExhibition on Electromagnetic Compatibility (2012 APEMC), May 21-May 24, Singapore.</p>
<p>[15] Xiao-chuan Wang, Zhen Peng and Jin-Fa lee, “ A Full-wave Solution Strategy for Computing An-tenna Couplings on a Mockup Fighter Aircraft at Ku Band,” 2012 ESA Workshop on AerospaceEMC, May 21-May 23, Venice, Italy. </p>
<p>[16] Yang Shao,Zhen Peng, and Jin-Fa Lee, ‘’Multi-physics analysis of high-power ICs usingnon-conformal domain decomposition method,’’ 2011 International Conference onElectromagnetics in Advanced Applications (ICEAA), Torino, Italy, Sep.2011.</p>
<p>[17] Zhen Peng,Fei-Ran Lei, Jue Wang and Jin-Fa Lee, “New computational strategies forelectromagnetic modeling of multi-scale heterogeneous composites,” IEEEInternational Symposium on Antennas and Propagation and USNC/URSI NationalRadio Science Meeting, Spokane, Washington, United States., July 2011.</p>
<p>[18] Zhen Peng,Kheng-Hwee Lim and Jin-Fa Lee, “A non-overlapping Boundary integral equationdomain decomposition method for electromagnetic scattering at partly coatedmetallic objects,” IEEE International Symposium on Antennas and Propagation and USNC/URSINational Radio Science Meeting, Spokane, Washington, United States.,July 2011.</p>
<p>[19] JiangongWei, Zhen Peng, and Jin-Fa Lee, “A hierarchical direct solver of surfaceintegral equation methods for electromagnetic wave problems in R3,” IEEEInternational Symposium on Antennas and Propagation and USNC/URSI NationalRadio Science Meeting, Spokane, Washington, United States., July 2011.</p>
<p>[20] Zhen Peng,and Jin-Fa Lee, “A surface integral equation domain decomposition method forthe scattering of the 3-D homogeneous objects,” IEEE International Symposium onAntennas and Propagation and USNC/URSI National Radio Science Meeting,Spokane, Washington, United States., July 2011.</p>
<p>[21]  YuanhongZhao, Matthew Stephanson, Zhen Peng and Jin-Fa Lee, “Helicopter rotormodulation effects on antenna radiation and scattering problem,” IEEEInternational Symposium on Antennas and Propagation and USNC/URSI NationalRadio Science Meeting, Spokane, Washington, United States., July 2011.</p>
<p>[22] Jue wang,Stylianos Dosopoulos, Zhen Peng and Jin-Fa Lee, “High order paralleldiscontinuous Galerkin time domain method with curvilinear element andcontinuously varying material properties for Maxwell’s equations,” IEEEInternational Symposium on Antennas and Propagation and USNC/URSI NationalRadio Science Meeting, Spokane, Washington, United States., July 2011.</p>
<p>[23] Zhen Peng,Jue Wang, Fei-Ran Lei and Jin-Fa Lee, “New computational strategies forelectromagnetic modeling of multi-scale heterogeneous composites,” the5th European Conference on Antennas and Propagation, Rome, Italy, Apr.2011.</p>
<p>[24] Zhen Pengand Jin-Fa Lee, “Domain decomposition method for combined field integralequations in computational electromagnetics,” 20th International Conference onDomain Decomposition Methods, San Diego, California, Feb. 2011.</p>
<p>[25] Zhen Peng,Yang Shao and Jin-Fa Lee, “Advanced model order reduction Technique inreal-life IC/package design,“ IEEE Electrical Design of Advanced Packaging&amp; Systems Symposium, Singapore, Dec. 2010.</p>
<p>[26]  Yang Shao,Zhen Peng and Jin-Fa Lee, “3-D full-package signal integrity analysis using domaindecomposition method,” 19th Conference on ElectricalPerformance of Electronic Packaging and Systems, Austin, Texas, UnitedStates, Oct. 2010.</p>
<p>[27] Zhen Peng,Xiaochuan Wang and Jin-Fa Lee, ‘’Integral equation domain decomposition methodfor solving electromagnetic wave scattering from non-penetrable objects,’’ 2010International Conference on Electromagnetics in Advanced Applications (ICEAA),pp. 821-824, Sydney, Australia, Sept. 2010.</p>
<p>[28]  Yang Shao,Zhen Peng and Jin-Fa Lee, “High speed interconnects of multi-layer PCB analysisby using non-conformal domain decomposition method,” IEEE EMC Symposium, Ft.Lauderdale, Florida, United States, July 2010.</p>
<p>[29] Yang Shao,Zhen Peng and Jin-Fa Lee, “Signal integrity analysis of multi-layer multi-scaleIC-package problem using non-conformal DDM,” The 10th InternationalWorkshop on Finite Elements for Microwave Engineering, Meredith, NewHampshire, United States, 2010.</p>
<p>[30]  XiaochuanWang, Zhen Peng and Jin-Fa Lee, “Simulation of EMC effects of multiple antennason a large air platform,” The 10th International Workshopon Finite Elements for Microwave Engineering, Meredith, New Hampshire,United States., Oct. 2010.</p>
<p>[31] Zhen Peng,Feiran Lei and Jin-Fa Lee, “Recently studies on domain decomposition method forsolving multi-scale electromagnetic wave problem,” The 10th InternationalWorkshop on Finite Elements for Microwave Engineering, Meredith, NewHampshire, United States., Oct. 2010.</p>
<p>[32] Jue Wang,Zhen Peng and Jin-Fa Lee, “Simulation of magnetic photonic crystals for antennaapplications using domain decomposition method,” The 10th InternationalWorkshop on Finite Elements for Microwave Engineering, Meredith, NewHampshire, United States., Oct. 2010.</p>
<p>[33] Zhen Pengand Jin-Fa Lee, “A non-overlapping and non-conformal domain decomposition methodwith second order transmission condition for modeling large finite antennaarrays,” URSI 20th International Symposium on Electromagnetic Theory,Berlin, Germany, Aug., 2010.</p>
<p>[34] Zhen Peng,Xiaochuan Wang, Feiran Lei and Jin-Fa Lee, “Integral equation based domaindecomposition method for electromagnetic wave scattering problem,” URSI20th International Symposium on Electromagnetic Theory,Berlin, Germany, Aug., 2010.</p>
<p>[35] Zhen Peng,Xiao-Chuan Wang and Jin-Fa Lee, “Integral equation based domain decompositionmethod for multi-scale electromagnetic wave problems,” IEEE International Symposium onAntennas and Propagation and USNC/URSI National Radio Science Meeting,Toronto, Ontario, Canada, July 2010.</p>
<p>[36] Zhen Pengand Jin-Fa Lee, “Global plane waves deflation technique and a mixed 2ndorder transmission condition for non-conformal domain decomposition method forsolving multi-scale electromagnetic wave problems,” IEEE International Symposium onAntennas and Propagation and USNC/URSI National Radio Science Meeting,Toronto, Ontario, Canada, July 2010.</p>
<p>[37] Zhen Pengand Jin-Fa Lee, “True 2nd order transmission condition inconjunction with corner edge penalty term for non-conformal domaindecomposition methods in solving time-harmonic Maxwell equations,” IEEEInternational Symposium on Antennas and Propagation and USNC/URSI NationalRadio Science Meeting, Toronto, Ontario, Canada, July 2010.</p>
<p>[38] XiaochuanWang, Zhen Peng, M. Stephanson, and Jin-Fa Lee, ‘’Modeling EMC/EMI effects ofantenna systems on large platforms using multi-solver domain decompositionmethods,’’ the 4th European Conference on Antennas and Propagation, Barcelona,Spain, April 2010.</p>
<p>[39] M.Stephanson, Zhen Peng,, Jiangong Wei, Jin-Fa Lee, ‘’Calderon preconditionedCFIE with MLFMM for acceleration,’’ the 4th European Conference on Antennas andPropagation, Barcelona, Spain, April 2010.</p>
<p>[40] Zhen Peng,Yang Shao and Jin-Fa Lee, “Analyses ofhigh speed interconnects using a non-conformal domain decomposition method,” AsiaPacific Symposium on Electromagnetic Compatibility, Beijing, China,Apr. 2010.</p>
<p>[41] Zhen Peng and Jin-Fa Lee, “An efficient domain decomposition method forsolving extremely large cavity scattering problems,” Progress in Electromagnetics Research Symposium (PIERS), Xian, China, Mar. 2010.</p>
<p>[42] Zhen Peng,Vineet Rawat and Jin-Fa Lee, “Domaindecomposition methods with second order transmission conditions for solvingmulti-scale electromagnetic wave problems,” COMPUMAG , Brazil, Nov.2009.</p>
<p>[43] Zhen Pengand Jin-Fa Lee, “Fast analysis of LCD reflector using full wave method,” IEEEInternational Symposium on Antennas and Propagation and USNC/URSI NationalRadio Science Meeting, Charleston, SC USA, 2009.</p>
<p>[44] Zhen Peng and Jin-Fa Lee, “Study of model order reduction techniques formodeling large antenna array,” IEEE International Symposium on Antennas andPropagation and USNC/URSI National Radio Science Meeting, Charleston,SC USA, 2009.</p>
<p>[45] Zhen Peng and Xin-Qing Sheng, “A twofold iterative algorithm ofhybrid FE/BI/MLFMA based on multilevel ILU preconditioning and node-edgeelement,” Progress in Electromagnetics Research Symposium (PIERS), Beijing, China, 2007.</p>
<p>[46] Zhen Peng and Xin-Qing Sheng, “Application of rational functionapproximation technique to hybrid FE/BI/MLFMA for 3Dscattering,” Progress in Electromagnetics Research Symposium (PIERS),Beijing,China, 2007.</p>
<p>[47] Xin-Qing Sheng and Zhen Peng, “A high performance electromagneticfinite element —node edge element,” Antenna Symposium of China,May. 2007.</p>
<p>[48] Zhen Peng and Xin-Qing Sheng, “A bandwidth estimation approachfor the asymptotic waveform evaluation technique,” Cross Trait Tri-Regional Wireless Science and Technology Conference, 2007.</p>
<p>[49] Zhen Peng and Xin-Qing Sheng, “A special higher-Order FE-BI-MLFMAfor scattering by large and eeep cavities,” Cross Trait Tri-Regional Wireless Science and Technology Conference, 2007.</p>
<p>[50] Zhen Peng and Xin-Qing Sheng, “A FEM-Based fast algorithm forhigh-order modes in dielectric-loaded waveguides,” Asia-Pacific Microwave Conference (APMC) Proceedings, IEEE Press, pp. 745-749, 2005.</p>
</div>
</div>
<footer>
<div id="footer">
<p>Links for Members:</p>
<div><a href="https://git.acem.ece.illinois.edu/">Gitea</a></div>
</div>
<p id="author">Made by Kenneth Jao</p>
</footer>
</body>
</html>

@ -0,0 +1,111 @@
<!DOCTYPE html>
<html class="clearScroll" lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1"><!-- Begin Jekyll SEO tag v2.8.0 -->
<title>Domain Decomposition Methodology for Solving Maxwell's Equations | ACEM</title>
<meta name="generator" content="Jekyll v4.3.2" />
<meta property="og:title" content="ACEM" />
<meta property="og:locale" content="en_US" />
<meta name="description" content="Domain Decomposition Methodology for Solving Maxwell's Equations Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<meta property="og:description" content="Domain Decomposition Methodology for Solving Maxwell's Equations Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<link rel="canonical" href="http://localhost:4000" />
<meta property="og:url" content="http://localhost:4000" />
<meta property="og:site_name" content="ACEM" />
<meta property="og:type" content="website" />
<meta name="twitter:card" content="summary" />
<meta property="twitter:title" content="ACEM" />
<script type="application/ld+json">{"@context":"https://schema.org","@type":"WebSite","description":"Domain Decomposition Methodology for Solving Maxwell's Equations Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign.","name":"ACEM Domain Decomposition Methodology for Solving Maxwell's Equations Page","url":"http://localhost:4000/domain decomposition methodology for solving maxwell's equations"}</script>
<!-- End Jekyll SEO tag -->
<!-- Font loading -->
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Montserrat:ital,wght@0,100;0,200;0,400;0,600;0,800;1,400&display=swap" rel="stylesheet">
<link rel="stylesheet" href="/assets/css/styles.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Domain Decomposition Methodology for Solving Maxwell's Equations | ACEM" />
</head>
<body>
<nav>
<div class="separator orange"></div>
<ul class="clearScroll">
<div id="logo">
<a href="/" alt="Advanced Computational Electromagnetics (ACEM) Research Group">ACEM</a>
</div>
<div id="navItems"><li ><a href="/">Home</a></li><li class="current"><a href="/research/">Research</a></li><li ><a href="/applications/">Applications</a></li><li ><a href="/publications/">Publications</a></li><li ><a href="/team/">Team</a></li></div>
</ul>
</nav>
<div id="postContent" class="content">
<svg height="100%" width="100%" viewBox="0 0 5 3.5" class="upAccent" preserveAspectRatio="none">
<path d="M 0 0 V 2 C 1 3.5 4 3.5 5 2 V 0">
</svg>
<div>
<h1 id="domain-decomposition-methodology-for-solving-maxwells-equations">Domain Decomposition Methodology for Solving Maxwell’s Equations</h1>
<p>One basic research that we have conducted is the study of robust yet efficient ways for solving Maxwell Equations. The research, usually called computational electromagnetics (CEM), is highly mathematical and abstract in itself, and can be stated as one of the principal research topics in electromagnetic fields. The implication and impact of this research are astronomical. It is the heart of modern computer-aided engineering/computer-aided design (CAE/CAD) tools for advanced antennas, radio propagation, integrated circuits, EM interference and compatibility, signal and power integrity, and other applications in EM and microwave engineering.</p>
<p>Nowadays, ever-increasing fidelity and accuracy need for advanced EM applications have been pushing the problem sizes towards extreme scales. It puts a high premium on high-performance algorithms with optimal computational complexity. Moreover, increased demands are being placed on an integrated design and analysis environment, which requires new simulation tools to be well integrated into design processes.
The goal of this research is to investigate first-principles modeling and analysis tools for these extremely large, multi-scale problems. The emphasis is placed on advancing parallel algorithms that are provably scalable, and facilitating a design-through-analysis paradigm for emerging and future complex systems.</p>
<p>In recent years, domain decomposition (DD) methods have enjoyed considerable success in solving large multi-scale EM problems. These methods feature divide-and-conquerin solution algorithms (applying the most suitable solution strategy to solve each sub-problem) and plug-in-play in software architectures (integrating individual EM solvers into a portable and extensible solution suite). They also result in highly efficient and naturally parallelizable algorithms on distributed memory many-core parallel computing systems.</p>
<p><img src="/assets/images/research/DDOverview.png" alt="DomainDecomposition" /></p>
<p>The main innovations in computational algorithms are summarized as follows:</p>
<h3 id="multi-resolution-discontinuous-galerkin-boundary-element-method-dg-bem-13">Multi-resolution discontinuous Galerkin boundary element method (DG-BEM) [1–3].</h3>
<p>The objective of this work is to allow the solution of integral equations using discontinuous trial and test functions without any consideration of continuity requirements across element’s boundaries. We can mix different types of elements and employ different order of basis functions within the same discretization. Built upon the DG-BEM, we investigate a rigorous, adaptive, and parallel coarse-graining method to reduce the computational complexity in the multi-scale computation. The work received 2014 IEEE Antenna and Propagation Sergei A. Schelkunoff Transactions Prize Paper Award.</p>
<h4 id="1-z-peng-k-h-lim-and-j-f-lee-a-discontinuous-galerkin-surface-integral-equation-method-for-elec--tromagnetic-wave-scattering-from-nonpenetrable-targets-ieee-trans-antennas-propagat-vol-61-no-7-pp-36173628-2013">[1] Z. Peng, K.-H. Lim, and J.-F. Lee, “A discontinuous Galerkin surface integral equation method for elec- tromagnetic wave scattering from nonpenetrable targets,” IEEE Trans. Antennas Propagat., vol. 61, no. 7, pp. 3617–3628, 2013.</h4>
<h4 id="2-z-peng-r-hiptmair-y-shao-and-b-mackie-mason-domain-decomposition-preconditioning-for-surface-integral-equations-in-solving-challenging-electromagnetic-scattering-problems-ieee-trans-antennas-and-propagation-vol-64-pp-210223-jan-2016">[2] Z. Peng, R. Hiptmair, Y. Shao, and B. MacKie-Mason, “Domain decomposition preconditioning for surface integral equations in solving challenging electromagnetic scattering problems,” IEEE Trans. Antennas and Propagation, vol. 64, pp. 210–223, Jan 2016.</h4>
<h4 id="3-h-gao-z-peng-and-x-sheng-a-coarse-grained-integral-equation-method-for-multiscale-electromagnetic-analysis-ieee-transactions-on-antennas-and-propagation-vol-66-pp-16071612-march-2018">[3] H. Gao, Z. Peng, and X. Sheng, “A coarse-grained integral equation method for multiscale electromagnetic analysis,” IEEE Transactions on Antennas and Propagation, vol. 66, pp. 1607–1612, March 2018.</h4>
<h3 id="geometry-aware-domain-decomposition-method-ga-ddm-46">Geometry-aware domain decomposition method (GA-DDM) [4–6].</h3>
<p>The work can be viewed as a problem decomposition, how to take a complex, multi-scale EM problem and divide it up into sub-problems that can be solved independently and concurrently. Research outcomes lead to: (1) divide-and-conquer in solution algorithms (applying the most suitable solution strategy to solve each sub-problem); (2) plug- in-play in software architectures (integrating individual EM solvers into a portable and extensible solution suite); (3) highly efficient and naturally parallelizable algorithms on distributed memory many-core parallel computing systems. The work received 2018 Best Transaction Paper Award - IEEE Transactions on Components, Packaging and Manufacturing Technology.</p>
<h4 id="4-v-dolean-m-j-gander-s-lanteri-j-f-lee-and-z-peng-effective-transmission-conditions-for-domain-decomposition-methods-applied-to-the-time-harmonic-curl-curl-maxwells-equations-j-comput-phys-vol-280-pp-232247-jan-2015">[4] V. Dolean, M. J. Gander, S. Lanteri, J.-F. Lee, and Z. Peng, “Effective transmission conditions for domain decomposition methods applied to the time-harmonic curl-curl Maxwell’s equations,” J. Comput. Phys., vol. 280, pp. 232–247, Jan. 2015.</h4>
<h4 id="5-h-gao-z-peng-and-x-q-sheng-a-geometry-aware-domain-decomposition-preconditioning-for-hybrid-finite-element-boundary-integral-method-ieee-transactions-on-antennas-and-propagation-vol-pp-no-99-pp-11-2017">[5] H. Gao, Z. Peng, and X. Q. Sheng, “A geometry-aware domain decomposition preconditioning for hybrid finite element-boundary integral method,” IEEE Transactions on Antennas and Propagation, vol. PP, no. 99, pp. 1–1, 2017.</h4>
<h4 id="6-z-peng-y-shao-h-w-gao-s-wang-and-s-lin-high-fidelity-high-performance-computational-algorithms-for-intrasystem-electromagnetic-interference-analysis-of-ic-and-electronics-ieee-transactions-on-components-packaging-and-manufacturing-technology-vol-pp-no-99-pp-116-2017">[6] Z. Peng, Y. Shao, H. W. Gao, S. Wang, and S. Lin, “High-fidelity, high-performance computational algorithms for intrasystem electromagnetic interference analysis of IC and electronics,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. PP, no. 99, pp. 1–16, 2017.</h4>
<h3 id="space-time-parallel-computation-for-maxwells-equations-7-8">Space-time parallel computation for Maxwell’s Equations [7-8].</h3>
<p>A recent breakthrough in my research is the parallel-in-time computation for time-dependent EM wave problems. The objective is to leverage the emerging exascale high-performance computing (HPC) platforms to address the space-scale and time-scale challenges in extreme fidelity EM analysis. (Best Student Paper Award in 2018 ACES conference, Best Conference Paper Award at 2019 EPEPS conference)</p>
<h4 id="7-shu-wang-yang-shao-and-zhen-peng-a-parallel-in-space-and-time-method-for-transient-electromagnetic-problems-ieee-trans-antennas-propag-vol-67-no-6-pp-3961-3973-june-2019">[7] Shu Wang, Yang Shao, and Zhen Peng, “A Parallel-in-Space-and-Time Method for Transient Electromagnetic Problems,” IEEE Trans. Antennas Propag., vol. 67, no. 6, pp. 3961-3973, June 2019.</h4>
<h4 id="8-shu-wang-and-zhen-peng-a-novel-space-time-building-block-methodology-for-transient-electromagnetic-analysis-28th-conference-on-electrical-performance-of-electronic-packaging-and-systems-montreal-quebec-canada-october-2019">[8] Shu Wang and Zhen Peng, “A Novel Space-Time Building Block Methodology for Transient Electromagnetic Analysis,” 28th Conference on Electrical Performance of Electronic Packaging and Systems, Montreal, Quebec, Canada, October 2019.</h4>
<h3 id="multi-trace-boundary-integral-equation-method-911">Multi-trace boundary integral equation method [9–11].</h3>
<p>A novel multi-trace boundary IE formulation is investigated for the solution of the time-harmonic EM problems in large and deep cavities. The new formulation leads to a well-conditioned system equation, and it is immune from cavity resonances effects</p>
<h4 id="9-r-hiptmair-c-jerez-hanckes-j-f-lee-and-z-peng-domain-decomposition-for-boundary-integral-equations-via-local-multi-trace-formulations-in-domain-decomposition-methods-in-science-and-engineering-xxi-j-erhel-m-j-gander-l-halpern-g-pichot-t-sassi-and-o-widlund-eds-vol-98-of-lecture-notes-in-computational-science-and-engineering-pp-4357-springer-international-publishing-2014">[9] R. Hiptmair, C. Jerez-Hanckes, J.-F. Lee, and Z. Peng, “Domain decomposition for boundary integral equations via local multi-trace formulations,” in Domain Decomposition Methods in Science and Engineering XXI (J. Erhel, M. J. Gander, L. Halpern, G. Pichot, T. Sassi, and O. Widlund, eds.), vol. 98 of Lecture Notes in Computational Science and Engineering, pp. 43–57, Springer International Publishing, 2014.</h4>
<h4 id="10-z-peng-k-h-lim-and-j-f-lee-a-boundary-integral-equation-domain-decomposition-method-for-electromagnetic-scattering-from-large-and-deep-cavities-j-comput-phys-vol-280-no-1-pp-626642-2015">[10] Z. Peng, K.-H. Lim, and J.-F. Lee, “A boundary integral equation domain decomposition method for electromagnetic scattering from large and deep cavities,” J. Comput. Phys., vol. 280, no. 1, pp. 626–642, 2015.</h4>
<h4 id="11-z-peng-a-novel-multitrace-boundary-integral-equation-formulation-for-electromagnetic-cavity-scattering-problems-ieee-trans-antennas-propagat-vol-63-pp-44464457-oct-2015">[11] Z. Peng, “A novel multitrace boundary integral equation formulation for electromagnetic cavity scattering problems,” IEEE Trans. Antennas Propagat., vol. 63, pp. 4446–4457, Oct 2015.</h4>
<h3 id="ddm-for-reduced-order-model-1213">DDM for reduced order model [12–13].</h3>
<p>The proposed work starts with a stationary-variable domain decomposition, where the computational domain is decomposed into large fixed parts and small portions with local variations. Subsequently, we introduce a separable and compressible platform Green’s function at the outer surface of those variable subdomains in an upfront offline calculation. Once obtained, the online computational complexity does not depend on the size of the in situ platform. (Best Student Paper Award in 2019 ACES conference)</p>
<h4 id="12-s-wang-b-mackie-mason-and-z-peng-platform-aware-in-situ-antenna-and-metamaterial-analysis-and-design-2019-international-applied-computational-electromagnetics-society-symposium-aces-miami-fl-usa-2019-pp-1-2">[12] S. Wang, B. MacKie-Mason and Z. Peng, “Platform-Aware In-Situ Antenna and Metamaterial Analysis and Design,” 2019 International Applied Computational Electromagnetics Society Symposium (ACES), Miami, FL, USA, 2019, pp. 1-2.</h4>
<h4 id="13-h--w-gao-s-wang-x--q-sheng-and-z-peng-rapid-numerical-analysis-of-electrically-large-pec-platforms-with-local-variations-via-a-platform-greens-function-method-in-ieee-transactions-on-antennas-and-propagation-vol-70-no-10-pp-9544-9556-oct-2022">[13] H. -W. Gao, S. Wang, X. -Q. Sheng and Z. Peng, “Rapid Numerical Analysis of Electrically Large PEC Platforms With Local Variations via a Platform Green’s Function Method,” in IEEE Transactions on Antennas and Propagation, vol. 70, no. 10, pp. 9544-9556, Oct. 2022.</h4>
</div>
</div>
<footer>
<div id="footer">
<p>Links for Members:</p>
<div><a href="https://git.acem.ece.illinois.edu/">Gitea</a></div>
</div>
<p id="author">Made by Kenneth Jao</p>
</footer>
</body>
</html>

@ -0,0 +1,65 @@
<!DOCTYPE html>
<html class="clearScroll" lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1"><!-- Begin Jekyll SEO tag v2.8.0 -->
<title>Electromagnetic Information Theory for Wireless Communication | ACEM</title>
<meta name="generator" content="Jekyll v4.3.2" />
<meta property="og:title" content="ACEM" />
<meta property="og:locale" content="en_US" />
<meta name="description" content="Electromagnetic Information Theory for Wireless Communication Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<meta property="og:description" content="Electromagnetic Information Theory for Wireless Communication Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<link rel="canonical" href="http://localhost:4000" />
<meta property="og:url" content="http://localhost:4000" />
<meta property="og:site_name" content="ACEM" />
<meta property="og:type" content="website" />
<meta name="twitter:card" content="summary" />
<meta property="twitter:title" content="ACEM" />
<script type="application/ld+json">{"@context":"https://schema.org","@type":"WebSite","description":"Electromagnetic Information Theory for Wireless Communication Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign.","name":"ACEM Electromagnetic Information Theory for Wireless Communication Page","url":"http://localhost:4000/electromagnetic information theory for wireless communication"}</script>
<!-- End Jekyll SEO tag -->
<!-- Font loading -->
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Montserrat:ital,wght@0,100;0,200;0,400;0,600;0,800;1,400&display=swap" rel="stylesheet">
<link rel="stylesheet" href="/assets/css/styles.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Electromagnetic Information Theory for Wireless Communication | ACEM" />
</head>
<body>
<nav>
<div class="separator orange"></div>
<ul class="clearScroll">
<div id="logo">
<a href="/" alt="Advanced Computational Electromagnetics (ACEM) Research Group">ACEM</a>
</div>
<div id="navItems"><li ><a href="/">Home</a></li><li class="current"><a href="/research/">Research</a></li><li ><a href="/applications/">Applications</a></li><li ><a href="/publications/">Publications</a></li><li ><a href="/team/">Team</a></li></div>
</ul>
</nav>
<div id="postContent" class="content">
<svg height="100%" width="100%" viewBox="0 0 5 3.5" class="upAccent" preserveAspectRatio="none">
<path d="M 0 0 V 2 C 1 3.5 4 3.5 5 2 V 0">
</svg>
<div>
<h1 id="electromagneticinformation-theory-for-wireless-communication">Electromagnetic Information Theory for Wireless Communication</h1>
<p>Electromagnetic field theory provides the fundamental physics of wireless communications. Over the pastdecades, EM theory has played a significant role in the design, performance assessment, and deployment planningof wireless devices and systems. Meanwhile, ever increasing demands for the network capacity in wirelesscommunications have pushed the data rate towards and beyond multi-Gigabits per second (Gbps). Massivedistributed arrays, mm-wave bands, network densification, and new waveforms serve as promising and powerfuloptions for achieving these rates. The major limiting factor preventing these emerging wireless systemsfrom realizing their full potential is our understanding of the physical layer. Specifically, our ability to preciselymodel the physics of wireless signal propagation channels in diverse and complex environments.</p>
<p>The objective of this research is to investigate electromagnetic information theory for wireless communication through complicated diffuse mulitpath environments. Applications include indoor radio channels,dense urban cells, transmission through diffusive random media and disordered media,etc. The objective is attained by cutting across traditional disciplinary boundaries between electromagnetictheory, wave chaos physics, random statistical analysis and information theory. The methodology is to firstestablish fundamental statistical representations of diffuse multipath media, then integrate component-specificfeatures of transmitters and receivers, and finally encode the governing physics into the mathematical information theory. </p>
<p><img src="/assets/images/research/ProblemStatement.jpg" alt="ProblemStatement" />
<img src="/assets/images/research/SGFComm.png" alt="SGFComm" /></p>
</div>
</div>
<footer>
<div id="footer">
<p>Links for Members:</p>
<div><a href="https://git.acem.ece.illinois.edu/">Gitea</a></div>
</div>
<p id="author">Made by Kenneth Jao</p>
</footer>
</body>
</html>

@ -0,0 +1,70 @@
<!DOCTYPE html>
<html class="clearScroll" lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1"><!-- Begin Jekyll SEO tag v2.8.0 -->
<title>Extreme-Scale Electromagnetic Modeling and Simulation in the Supercomputing Era | ACEM</title>
<meta name="generator" content="Jekyll v4.3.2" />
<meta property="og:title" content="ACEM" />
<meta property="og:locale" content="en_US" />
<meta name="description" content="Extreme-Scale Electromagnetic Modeling and Simulation in the Supercomputing Era Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<meta property="og:description" content="Extreme-Scale Electromagnetic Modeling and Simulation in the Supercomputing Era Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<link rel="canonical" href="http://localhost:4000" />
<meta property="og:url" content="http://localhost:4000" />
<meta property="og:site_name" content="ACEM" />
<meta property="og:type" content="website" />
<meta name="twitter:card" content="summary" />
<meta property="twitter:title" content="ACEM" />
<script type="application/ld+json">{"@context":"https://schema.org","@type":"WebSite","description":"Extreme-Scale Electromagnetic Modeling and Simulation in the Supercomputing Era Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign.","name":"ACEM Extreme-Scale Electromagnetic Modeling and Simulation in the Supercomputing Era Page","url":"http://localhost:4000/extreme-scale electromagnetic modeling and simulation in the supercomputing era"}</script>
<!-- End Jekyll SEO tag -->
<!-- Font loading -->
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Montserrat:ital,wght@0,100;0,200;0,400;0,600;0,800;1,400&display=swap" rel="stylesheet">
<link rel="stylesheet" href="/assets/css/styles.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Extreme-Scale Electromagnetic Modeling and Simulation in the Supercomputing Era | ACEM" />
</head>
<body>
<nav>
<div class="separator orange"></div>
<ul class="clearScroll">
<div id="logo">
<a href="/" alt="Advanced Computational Electromagnetics (ACEM) Research Group">ACEM</a>
</div>
<div id="navItems"><li ><a href="/">Home</a></li><li class="current"><a href="/research/">Research</a></li><li ><a href="/applications/">Applications</a></li><li ><a href="/publications/">Publications</a></li><li ><a href="/team/">Team</a></li></div>
</ul>
</nav>
<div id="postContent" class="content">
<svg height="100%" width="100%" viewBox="0 0 5 3.5" class="upAccent" preserveAspectRatio="none">
<path d="M 0 0 V 2 C 1 3.5 4 3.5 5 2 V 0">
</svg>
<div>
<h1 id="extreme-scale-electromagnetic-modeling-and-simulation-in-thesupercomputing-era">Extreme-Scale Electromagnetic Modeling and Simulation in the Supercomputing Era</h1>
<h5 id="collaborators-ralf-hiptmaireth-andrew-greenwoodafrl">Collaborators: Ralf Hiptmair@ETH, Andrew Greenwood@AFRL</h5>
<p>One basic research I have conducted is the pursuit of robust and yet efficient ways to solve Maxwell equations in their entirety. The research, usually called computational electromagnetics (CEM), is highly mathematical and abstract in itself, and can be stated as one of the principal research topics in electromagnetic fields. The implication and impact of this research is astronomical. It is the heart of modern computer-aided engineering/computer-aided design (CAE/CAD) tools for advanced antennas, radio frequency integrated circuits, electromagnetic interference and compatibility, signal and power integrity and other applications in electromagnetic and microwave engineering. </p>
<p>Ever-increasing fidelity and accuracy need for advanced EM applications have been pushing the problem sizestowards extreme scales. It puts a high premium on investigation of high-performance algorithms with optimal computational complexity. Moreover, increased demands are being placed on an integrated design andanalysis environment, which requires new simulation tools to be well integrated into design processes. Here,I briefly summarize my research contributions in the high-resolution and high-performance algorithms, whereboth simulation capability and modeling fidelity scale with the exponential growth in computing power. </p>
<p><img src="/assets/images/research/Motivation.png" alt="Motivation" /></p>
<p><img src="/assets/images/research/ParallelStrategy.png" alt="ParallelStrategy" /></p>
<p><img src="/assets/images/research/CarrierAntenna.png" alt="CarrierAntenna" /></p>
</div>
</div>
<footer>
<div id="footer">
<p>Links for Members:</p>
<div><a href="https://git.acem.ece.illinois.edu/">Gitea</a></div>
</div>
<p id="author">Made by Kenneth Jao</p>
</footer>
</body>
</html>

@ -0,0 +1,66 @@
<!DOCTYPE html>
<html class="clearScroll" lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1"><!-- Begin Jekyll SEO tag v2.8.0 -->
<title>First-Principles Electromagnetic Field-Based Millimeter-Wave Channel Models | ACEM</title>
<meta name="generator" content="Jekyll v4.3.2" />
<meta property="og:title" content="ACEM" />
<meta property="og:locale" content="en_US" />
<meta name="description" content="First-Principles Electromagnetic Field-Based Millimeter-Wave Channel Models Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<meta property="og:description" content="First-Principles Electromagnetic Field-Based Millimeter-Wave Channel Models Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<link rel="canonical" href="http://localhost:4000" />
<meta property="og:url" content="http://localhost:4000" />
<meta property="og:site_name" content="ACEM" />
<meta property="og:type" content="website" />
<meta name="twitter:card" content="summary" />
<meta property="twitter:title" content="ACEM" />
<script type="application/ld+json">{"@context":"https://schema.org","@type":"WebSite","description":"First-Principles Electromagnetic Field-Based Millimeter-Wave Channel Models Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign.","name":"ACEM First-Principles Electromagnetic Field-Based Millimeter-Wave Channel Models Page","url":"http://localhost:4000/first-principles electromagnetic field-based millimeter-wave channel models"}</script>
<!-- End Jekyll SEO tag -->
<!-- Font loading -->
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Montserrat:ital,wght@0,100;0,200;0,400;0,600;0,800;1,400&display=swap" rel="stylesheet">
<link rel="stylesheet" href="/assets/css/styles.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="First-Principles Electromagnetic Field-Based Millimeter-Wave Channel Models | ACEM" />
</head>
<body>
<nav>
<div class="separator orange"></div>
<ul class="clearScroll">
<div id="logo">
<a href="/" alt="Advanced Computational Electromagnetics (ACEM) Research Group">ACEM</a>
</div>
<div id="navItems"><li ><a href="/">Home</a></li><li class="current"><a href="/research/">Research</a></li><li ><a href="/applications/">Applications</a></li><li ><a href="/publications/">Publications</a></li><li ><a href="/team/">Team</a></li></div>
</ul>
</nav>
<div id="postContent" class="content">
<svg height="100%" width="100%" viewBox="0 0 5 3.5" class="upAccent" preserveAspectRatio="none">
<path d="M 0 0 V 2 C 1 3.5 4 3.5 5 2 V 0">
</svg>
<div>
<h1 id="first-principles-electromagnetic-field-based-millimeter-wave-channel-models">First-Principles Electromagnetic Field-Based Millimeter-Wave Channel Models</h1>
<h5 id="collaborator-christoschristodoulouunm">Collaborator: Christos Christodoulou@UNM</h5>
<p>The objective of this work is to investigate a high-resolution and first-principles computationalmethodology for mmWave propagation channels in realistic usage scenarios. The work provides unprecedented resolution in deterministic channel modeling, andoffers a fundamental knowledge of mmWave channel characteristics and propagation behavior. Theadvancements are expected to initiate the transition from traditional ray-based high-frequency approximation to EM field-based full wave modeling methodology.</p>
<p><img src="/assets/images/research/1010ABQDowntownAntenna.png" alt="DowntownAntenna" /></p>
<p><img src="/assets/images/research/ABQFullWave.png" alt="ABQFullWave" /></p>
</div>
</div>
<footer>
<div id="footer">
<p>Links for Members:</p>
<div><a href="https://git.acem.ece.illinois.edu/">Gitea</a></div>
</div>
<p id="author">Made by Kenneth Jao</p>
</footer>
</body>
</html>

@ -0,0 +1,177 @@
<!DOCTYPE html>
<html class="clearScroll" lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1"><!-- Begin Jekyll SEO tag v2.8.0 -->
<title>Research | ACEM</title>
<meta name="generator" content="Jekyll v4.3.2" />
<meta property="og:title" content="ACEM" />
<meta property="og:locale" content="en_US" />
<meta name="description" content="Research Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<meta property="og:description" content="Research Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<link rel="canonical" href="http://localhost:4000" />
<meta property="og:url" content="http://localhost:4000" />
<meta property="og:site_name" content="ACEM" />
<meta property="og:type" content="website" />
<meta name="twitter:card" content="summary" />
<meta property="twitter:title" content="ACEM" />
<script type="application/ld+json">{"@context":"https://schema.org","@type":"WebSite","description":"Research Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign.","name":"ACEM Research Page","url":"http://localhost:4000/research"}</script>
<!-- End Jekyll SEO tag -->
<!-- Font loading -->
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Montserrat:ital,wght@0,100;0,200;0,400;0,600;0,800;1,400&display=swap" rel="stylesheet">
<link rel="stylesheet" href="/assets/css/styles.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Research | ACEM" />
</head>
<body>
<nav>
<div class="separator orange"></div>
<ul class="clearScroll">
<div id="logo">
<a href="/" alt="Advanced Computational Electromagnetics (ACEM) Research Group">ACEM</a>
</div>
<div id="navItems"><li ><a href="/">Home</a></li><li class="current"><a href="/research/">Research</a></li><li ><a href="/applications/">Applications</a></li><li ><a href="/publications/">Publications</a></li><li ><a href="/team/">Team</a></li></div>
</ul>
</nav>
<style>
#slideshow img, span {
animation: slideshow 50s infinite;
opacity: 0;
}
@keyframes slideshow {
4.0% {opacity: 1;}
20.0% {opacity: 1;}
24.0% {opacity: 0;}
}
#slideshow .orange {
position: relative;
top: 100%;
}
#slideshow img:nth-child(1) { animation-delay: 0s; }
#slideshow span:nth-child(6) { animation-delay: 0s; }
#slideshow img:nth-child(2) { animation-delay: 10s; }
#slideshow span:nth-child(7) { animation-delay: 10s; }
#slideshow img:nth-child(3) { animation-delay: 20s; }
#slideshow span:nth-child(8) { animation-delay: 20s; }
#slideshow img:nth-child(4) { animation-delay: 30s; }
#slideshow span:nth-child(9) { animation-delay: 30s; }
#slideshow img:nth-child(5) { animation-delay: 40s; }
#slideshow span:nth-child(10) { animation-delay: 40s; }
</style>
<div id="slideshowContainer">
<div id="slideshow"><img src="/assets/images/slideshow/ece_building.jpg" alt="Electrical Engineering Building"><img src="/assets/images/slideshow/antenna_analysis.png" alt="Platform-level In-Situ and Co-Site Antenna Analysis"><img src="/assets/images/slideshow/city_scale_channel.png" alt="Wireless Channel Modeling at the City Scale"><img src="/assets/images/slideshow/smart_radio.png" alt="Quantum-Assisted Smart Radio Environment"><img src="/assets/images/slideshow/statistical_wave_physics.png" alt="Statistical Wave Physics in Information Transmission"><span alt="Electrical Engineering Building">Electrical Engineering Building</span><span alt="Platform-level In-Situ and Co-Site Antenna Analysis">Platform-level In-Situ and Co-Site Antenna Analysis</span><span alt="Wireless Channel Modeling at the City Scale">Wireless Channel Modeling at the City Scale</span><span alt="Quantum-Assisted Smart Radio Environment">Quantum-Assisted Smart Radio Environment</span><span alt="Statistical Wave Physics in Information Transmission">Statistical Wave Physics in Information Transmission</span><div class="separator orange"></div>
</div>
</div><div class="topCard">
<div>
<h1>GOALS</h1>
<p>Our goal is to simulate classical and quantum electrodynamic physics with intelligent algorithms on state-of-the-art computers, where virtual experiments can be performed for the prediction, discovery, and design of complex systems.</p>
</div>
</div>
<div id="bannerContent" class="content">
<div class="nonItems">
<svg height="100%" width="100%" viewBox="0 0 5 1" class="downAccent" preserveAspectRatio="none">
<path d="M 0 0 V 0.2 C 1 0.5 4 0.5 5 0.2 V 0">
</svg>
<div>
<h1 id="research-statement">Research Statement</h1>
<p>The foundation of our research is theoretical, computational, and statistical electromagnetics. The classical electromagnetic (EM) theory guided by Maxwell’s Equations has been around for over 150 years. It has an incredible impact on many modern technologies such as antennas and wireless communication, integrated circuits and computer technologies, remote sensing, lasers and optoelectronics, and more. Nowadays, with the exponential growth in computing power, machine intelligence and data revolution, quantum technologies and materials, there are enormous opportunities to continue advancing fundamental EM theories toward next-generation technology developments and applications.</p>
<p><img src="/assets/images/research/ResearchOverview2019.png" alt="Overview" /></p>
<p>Our rudimentary research is the pursuit of mathematical and computational models that enable the prediction and discovery of classical and quantum electrodynamic phenomena. These models will allow for the design and optimization of novel electromagnetic and wireless systems at unprecedented scales, and contribute through education to the advancement of understanding.
Our recent research focus on four interrelated areas: (1) classical electromagnetism with scalable algorithms, (2) statistical electromagnetics integrating order and chaos, (3) quantum electromagnetics: simulating probability in space and time domain, and (4) Smart Radio Environments for NextG wireless systems.</p>
<h1 class="centerHeading" id="research-topics">Research Topics</h1>
</div>
</div><div class="item"><div class="itemScroll clearScroll">
<div class="itemInner">
<div class="description">
<h2 id="domain-decomposition-methodology-for-solving-maxwells-equations-at-scale">Domain Decomposition Methodology for Solving Maxwell’s Equations at Scale</h2>
<p>The goal of this research is to investigate first-principles modeling and analysis tools for these extremely large, multi-scale problems. The emphasis is placed on advancing parallel algorithms that are provably scalable, and facilitating a design-through-analysis paradigm for emerging and future complex systems.</p>
<p><a href="/research/domain-decomposition/">Read More</a></p>
</div>
<div class="image">
<img src="/assets/images/research/DDOverview.png" alt="DomainDecomposition" />
</div>
</div>
</div>
</div><div class="item"><svg height="100%" width="100%" viewBox="0 0 5 1" class="upAccent" preserveAspectRatio="none">
<path d="M 0 1 V 0.8 C 1 0.5 4 0.5 5 0.8 V 1">
</svg>
<svg height="100%" width="100%" viewBox="0 0 5 1" class="downAccent" preserveAspectRatio="none">
<path d="M 0 0 V 0.2 C 1 0.5 4 0.5 5 0.2 V 0">
</svg><div class="itemScroll clearScroll">
<div class="itemInner">
<div class="description">
<h2 id="physics-oriented-statistical-wave-analysis-for-chaotic-and-disordered-scattering-environments">Physics-Oriented Statistical Wave Analysis for Chaotic and Disordered Scattering Environments</h2>
<p>The main objective of this work is to investigate new fundamental mathematical models and computational algorithms for statistical wave analysis in complex, confined EM environments. This objective is attained by integrating wave chaos physics, random statistical analysis, and high-performance algorithms on state-of-the-art computational platforms. The research will overcome key challenges in the statistical characterization of three general classes of problems, fully wave chaotic systems, mixed integrable and chaotic systems, and complex fluctuating scattering environments.</p>
<p><a href="/research/physics-oriented-statistical-wave-analysis/">Read More</a></p>
</div>
<div class="image">
<img src="/assets/images/research/SGF-Motivation.png" alt="CavityCase" />
</div>
</div>
</div>
</div><div class="item"><div class="itemScroll clearScroll">
<div class="itemInner">
<div class="description">
<h2 id="quantum-computing-and-optimization-in-smart-radio-environments">Quantum Computing and Optimization in Smart Radio Environments</h2>
<p>Fusing electromagnetic models with quantum computing (QC) algorithms for rapid optimization of reconfigurable intelligent surfaces (RIS)-assisted beyond-5G/6G wireless networks.</p>
<p><a href="/research/quantum-optimization-RIS/">Read More</a></p>
</div>
<div class="image">
<img src="/assets/images/research/Quantum-RIS.png" alt="QuantumRIS" />
</div>
</div>
</div>
</div></div>
<footer>
<div id="footer">
<p>Links for Members:</p>
<div><a href="https://git.acem.ece.illinois.edu/">Gitea</a></div>
</div>
<p id="author">Made by Kenneth Jao</p>
</footer>
</body>
</html>

@ -0,0 +1,90 @@
<!DOCTYPE html>
<html class="clearScroll" lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1"><!-- Begin Jekyll SEO tag v2.8.0 -->
<title>Physics-Oriented Statistical Wave Analysis Integrating Order and Chaos | ACEM</title>
<meta name="generator" content="Jekyll v4.3.2" />
<meta property="og:title" content="ACEM" />
<meta property="og:locale" content="en_US" />
<meta name="description" content="Physics-Oriented Statistical Wave Analysis Integrating Order and Chaos Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<meta property="og:description" content="Physics-Oriented Statistical Wave Analysis Integrating Order and Chaos Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<link rel="canonical" href="http://localhost:4000" />
<meta property="og:url" content="http://localhost:4000" />
<meta property="og:site_name" content="ACEM" />
<meta property="og:type" content="website" />
<meta name="twitter:card" content="summary" />
<meta property="twitter:title" content="ACEM" />
<script type="application/ld+json">{"@context":"https://schema.org","@type":"WebSite","description":"Physics-Oriented Statistical Wave Analysis Integrating Order and Chaos Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign.","name":"ACEM Physics-Oriented Statistical Wave Analysis Integrating Order and Chaos Page","url":"http://localhost:4000/physics-oriented statistical wave analysis integrating order and chaos"}</script>
<!-- End Jekyll SEO tag -->
<!-- Font loading -->
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Montserrat:ital,wght@0,100;0,200;0,400;0,600;0,800;1,400&display=swap" rel="stylesheet">
<link rel="stylesheet" href="/assets/css/styles.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Physics-Oriented Statistical Wave Analysis Integrating Order and Chaos | ACEM" />
</head>
<body>
<nav>
<div class="separator orange"></div>
<ul class="clearScroll">
<div id="logo">
<a href="/" alt="Advanced Computational Electromagnetics (ACEM) Research Group">ACEM</a>
</div>
<div id="navItems"><li ><a href="/">Home</a></li><li class="current"><a href="/research/">Research</a></li><li ><a href="/applications/">Applications</a></li><li ><a href="/publications/">Publications</a></li><li ><a href="/team/">Team</a></li></div>
</ul>
</nav>
<div id="postContent" class="content">
<svg height="100%" width="100%" viewBox="0 0 5 3.5" class="upAccent" preserveAspectRatio="none">
<path d="M 0 0 V 2 C 1 3.5 4 3.5 5 2 V 0">
</svg>
<div>
<h1 id="physics-oriented-statistical-wave-analysis-integrating-order-and-chaos">Physics-Oriented Statistical Wave Analysis Integrating Order and Chaos</h1>
<h5 id="collaborators-thomas-antonsenumd-steven-anlageumd-zachary-drikasnrl-bisrat-addissienrl---edlschamilogluunm-sameer-hemmadyunm">Collaborators: Thomas Antonsen@UMD, Steven Anlage@UMD, Zachary Drikas@NRL, Bisrat Addissie@NRL, Edl Schamiloglu@UNM, Sameer Hemmady@UNM</h5>
<p>Even though we are seeking the highest possible fidelity, the computer representation will not be exactly the same compared to the real world. These uncertainties may arise from imprecise knowledge of the system, small differences in manufacturing, or numerical errors in the simulations. For integrable, regular wave systems, these small differences can be considered as local perturbations of the entire system. Hence, the numerical solution is still a very good approximation to the exact solution of the physical problem. However, the situation can be completely different in non-integrable, wave-chaotic systems. The EM wave solutions can be extremely sensitive to details and initial conditions. It makes the traditional first-principles deterministic approaches relevant only to a specific realization.</p>
<p>Wave chaos concerns solutions of wave equations, which in the semiclassical limit or short-wavelength limit can be described by chaotic ray trajectories. One representative class of wave-chaotic problems is confined EM systems, e.g. the antennas and electronics within large and complicated enclosures. In the high-frequency regime, the complex boundary of the enclosure can lead to high modal density and high modal overlap. Wave solutions inside these enclosures show strong fluctuations that are extremely sensitive to the exact geometry of the enclosure, the location of internal electronics, and the operating frequency. The extreme sensitivity and nonequilibrium nature make it a challenging task to analyze the uncertain behavior of the interactions. The fundamental difficulty of treating classically non-integrable systems has been precisely realized by the applied physics community. The chaotic dynamics have been discussed in the context of acoustics, electromagnetics, and quantum mechanics.</p>
<p><img src="/assets/images/research/SGF-Motivation.png" alt="CavityCase" /></p>
<p>This project investigates an innovative theoretical solution to Maxwell’s Equations in the wave chaotic (random, diffusive) media. The fundamental solution, named stochastic Green’s function, rigorously integrates the coherent and incoherent contributions within a unified compact form. Furthermore, by incorporating the component-, site-, system-specific information with the universal chaotic dynamics, the work accomplishes a comprehensive framework for thestatistical analysis and uncertainty quantification of complex wave systems. The advancements will achieve first-ever an imperative simulation-driven, design-under-chaos capability, and a virtual experimental facility statisticallyreplicating real-world wave propagation environments. </p>
<p><img src="/assets/images/research/SGF-derivation.png" alt="CavityCase" /></p>
<p>Along the line of research, we have advanced the theory of SGF from the spatial domain (narrowband) to broadband frequency domain and delay-Doppler domain. The work accomplishes a physics-oriented, mathematically tractable statistical wave model with diverse applications, including the mode-stirred reverberation chamber (2019 IEEE EMC Symposium Best Paper Award), EMC/EMI of electronic systems (2021 EPEPS Best Paper Award), information transmission in wave-chaotic indoor channels, statistical design of time-reversal systems, wavefront shaping and focusing, sensing and targeting.</p>
<h3 id="theory-and-derivation-of-scalar-stochastic-greens-function">Theory and Derivation of Scalar Stochastic Green’s Function</h3>
<h4 id="1-s-lin-z-peng-and-t-antonsen-a-stochastic-greens-function-for-solution-of-wave-propagation-in-wave-chaotic-environments-ieee-trans-antennas-propag-vol-68-no-5-pp-3919-3933-may-2020">[1] S. Lin, Z. Peng, and T. Antonsen, “A Stochastic Green’s Function for Solution of Wave Propagation in Wave-Chaotic Environments,” IEEE Trans. Antennas Propag., vol. 68, no. 5, pp. 3919-3933, May 2020.</h4>
<h3 id="theory-and-derivation-of-vector-dyadic-stochastic-greens-function">Theory and Derivation of Vector Dyadic Stochastic Green’s Function</h3>
<h4 id="2-s-lin-s-luo-s-ma-j-feng-y-shao-z-b-drikas-b-d-addissie-s-m-anlage-t-antonsen-and-z-peng-predicting-statistical-wave-physics-in-complex-enclosures-a-stochastic-dyadic-greens-function-approach-inieee-transactions-on-electromagnetic-compatibility-vol-65-no-2-pp-436-453-april-2023">[2] S. Lin, S. Luo, S. Ma, J. Feng, Y. Shao, Z. B. Drikas, B. D. Addissie, S. M. Anlage, T. Antonsen, and Z. Peng, “Predicting Statistical Wave Physics in Complex Enclosures: A Stochastic Dyadic Green’s Function Approach,” in IEEE Transactions on Electromagnetic Compatibility, vol. 65, no. 2, pp. 436-453, April 2023.</h4>
<h3 id="investigation-of-the-space-time-stochastic-greens-function">Investigation of the Space-time Stochastic Green’s Function</h3>
<h4 id="3-s-lin-and-z-peng-on-the-statistical-analysis-of-space-time-wave-physics-in-complex-enclosures-30th-conference-on-electrical-performance-of-electronic-packaging-and-systems-october-2021">[3] S. Lin and Z. Peng, “On the Statistical Analysis of Space-Time Wave Physics in Complex Enclosures,” 30th Conference on Electrical Performance of Electronic Packaging and Systems, October 2021.</h4>
<h3 id="investigation-of-the-broadband-stochastic-greens-function">Investigation of the Broadband Stochastic Green’s Function</h3>
<h4 id="4-s-lin-and-z-peng-statistical-analysis-of-information-transmission-in-ray-chaotic-enclosures-a-stochastic-greens-function-approach-2020-ieee-international-symposium-on-antennas-and-propagation-july-2020">[4] S. Lin and Z. Peng, “Statistical Analysis of Information Transmission in Ray-Chaotic Enclosures: A Stochastic Green’s Function Approach”, 2020 IEEE International Symposium on Antennas and Propagation, July 2020.</h4>
<p>https://resourcecenter.ieeeaps.org/conferences/2020-ap-symposium/APS2020SYM0060.html</p>
</div>
</div>
<footer>
<div id="footer">
<p>Links for Members:</p>
<div><a href="https://git.acem.ece.illinois.edu/">Gitea</a></div>
</div>
<p id="author">Made by Kenneth Jao</p>
</footer>
</body>
</html>

@ -0,0 +1,94 @@
<!DOCTYPE html>
<html class="clearScroll" lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1"><!-- Begin Jekyll SEO tag v2.8.0 -->
<title>Quantum Computing and Optimization in Smart Radio Environments | ACEM</title>
<meta name="generator" content="Jekyll v4.3.2" />
<meta property="og:title" content="ACEM" />
<meta property="og:locale" content="en_US" />
<meta name="description" content="Quantum Computing and Optimization in Smart Radio Environments Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<meta property="og:description" content="Quantum Computing and Optimization in Smart Radio Environments Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<link rel="canonical" href="http://localhost:4000" />
<meta property="og:url" content="http://localhost:4000" />
<meta property="og:site_name" content="ACEM" />
<meta property="og:type" content="website" />
<meta name="twitter:card" content="summary" />
<meta property="twitter:title" content="ACEM" />
<script type="application/ld+json">{"@context":"https://schema.org","@type":"WebSite","description":"Quantum Computing and Optimization in Smart Radio Environments Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign.","name":"ACEM Quantum Computing and Optimization in Smart Radio Environments Page","url":"http://localhost:4000/quantum computing and optimization in smart radio environments"}</script>
<!-- End Jekyll SEO tag -->
<!-- Font loading -->
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Montserrat:ital,wght@0,100;0,200;0,400;0,600;0,800;1,400&display=swap" rel="stylesheet">
<link rel="stylesheet" href="/assets/css/styles.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Quantum Computing and Optimization in Smart Radio Environments | ACEM" />
</head>
<body>
<nav>
<div class="separator orange"></div>
<ul class="clearScroll">
<div id="logo">
<a href="/" alt="Advanced Computational Electromagnetics (ACEM) Research Group">ACEM</a>
</div>
<div id="navItems"><li ><a href="/">Home</a></li><li class="current"><a href="/research/">Research</a></li><li ><a href="/applications/">Applications</a></li><li ><a href="/publications/">Publications</a></li><li ><a href="/team/">Team</a></li></div>
</ul>
</nav>
<div id="postContent" class="content">
<svg height="100%" width="100%" viewBox="0 0 5 3.5" class="upAccent" preserveAspectRatio="none">
<path d="M 0 0 V 2 C 1 3.5 4 3.5 5 2 V 0">
</svg>
<div>
<h1 id="quantum-computing-and-optimization-in-smart-radio-environments">Quantum Computing and Optimization in Smart Radio Environments</h1>
<h5 id="collaborator-gabriele-gradonisurrey">Collaborator: Gabriele Gradoni@Surrey</h5>
<p>With rapidly evolving quantum devices and materials, in the near future, there will likely be special-purpose quantum computers with hundreds of high-quality qubits and controllable nearest-neighbor couplings. A forward- thinking question is, how do we leverage “quantum advantage” and develop quantum algorithms for electromagnetic problems and wireless applications? In this section, we will discuss our recent studies of quantum computing algorithms and hybrid classical-quantum computing models for reconfigurable wireless environments.</p>
<p>The reconfigurable intelligent surface (RIS) is emerging as a key technology for the next generation of wireless networks. The general goal is to turn the wireless environment into a smart/reconfigurable space that plays an active role in the wireless communication performance. Going beyond 5G and entering 6G, it is envisaged that large-scale, distributed RIS devices may be deployed at the surface of interacting objects,
e.,g. wall, windows, and furniture, in the propagation channel. A joint optimization of wireless endpoints and distributed RISs would lead to a dynamically programmable and customized wireless environment, with a goal of providing enhanced coverage with high energy efficiency and supporting ultra-fast and seamless connectivity.</p>
<p>To harness the full potential of a RIS-enabled smart wireless environment, one needs to rapidly optimize the states of RIS with prescribed objective functions, e.g., beamforming, localization/focusing, and channel diversity. This constitutes a substantial computational task in both the physical and network layer of wireless communication. Furthermore, one assumption adopted in the wireless community is that the RISs are nearly passive due to minimal hardware complexity and power requirements. Namely, the RIS may not have the capability to sense the wireless channel and estimate directions of arrival/departure. The channel estimation cannot be implemented on the RIS side, but rather at wireless endpoints of the communication link. This makes the channel optimization of RIS-assisted networks very challenging.</p>
<p>The scientific contribution in this work is a physics-oriented, mathematically tractable computational framework for optimizing RIS configuration in complex radio environments. Such optimization is performed without the need to estimate the segmented channels that link the transmitter to the RIS and the RIS to the receiver. The new idea starts with expressing the power of end-to-end channel transfer function as an Ising Hamiltonian model. A hybrid classical-quantum computing model is proposed next to navigate the RIS configuration space and to rapidly optimize the RIS state in a multipath radio environment. Compared to the state-of-the-art solutions, we show that the Ising Hamiltonian model serves as a unified mathematical model describing wave physics in the RIS-assisted wireless network. By leveraging the computing power of quantum adiabatic evolution and mathematics of tensor contraction, the channel estimation and optimization can be completed in the order of milliseconds. The outcomes enable the possibility of ultrafast optimization adapting to dynamic wireless environments.</p>
<p><img src="/assets/images/research/Quantum-RIS.png" alt="QuantumRIS" /></p>
<p>We believe that the physics of complex systems fused with quantum computing will constitute a game changer in the modeling and design of large network of RIS devices cooperating in order to transform real-life propagation environments into a resource for future mobile networks, including SONs and cell-free networks.</p>
<h3 id="a-basic-introduction-to-quantum-annealing-for-engineering-metasurfaces">A basic introduction to quantum annealing for engineering metasurfaces:</h3>
<h4 id="c-ross-g-gradoni-q-j-lim-and-z-peng-engineering-reflective-metasurfaces-with-ising-hamiltonian-and-quantum-annealing-ieee-transactions-on-antennas-and-propagation-vol-70-no-4-pp-28412854-2022">C. Ross, G. Gradoni, Q. J. Lim, and Z. Peng, “Engineering reflective metasurfaces with Ising hamiltonian and quantum annealing,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 4, pp. 2841–2854, 2022.</h4>
<h3 id="a-discussion-of-quantum-assisted-combinatorial-optimization-for-reconfigurable-surfaces">A discussion of quantum-assisted combinatorial optimization for reconfigurable surfaces:</h3>
<h4 id="q-j-lim-c-ross-g-gradoni-and-z-peng-quantum-assisted-combinatorial-optimization-of-reconfigurable-intelligent-surfaces-16th-european-conference-on-antennas-and-propagation-27-march---01-april-2022-best-electromagnetics-paper-award">Q. J. Lim, C. Ross, G. Gradoni, and Z. Peng, “Quantum-Assisted Combinatorial Optimization of Reconfigurable Intelligent Surfaces,” 16th European Conference on Antennas and Propagation, 27 March - 01 April, 2022 (Best Electromagnetics Paper Award).</h4>
<h4 id="q-j-lim-c-ross-a-ghosh-f-vook-g-gradoni-and-z-peng-quantum-assisted-combinatorial-optimization-for-reconfigurable-intelligent-surfaces-in-smart-electromagnetic-environments-in-ieee-transactions-on-antennas-and-propagation-doi-101109tap20233298134">Q. J. Lim, C. Ross, A. Ghosh, F. Vook, G. Gradoni and Z. Peng, “Quantum-Assisted Combinatorial Optimization for Reconfigurable Intelligent Surfaces in Smart Electromagnetic Environments,” in IEEE Transactions on Antennas and Propagation, doi: 10.1109/TAP.2023.3298134.</h4>
<h4 id="e-colella-l-bastianelli-m-khalily-f-moglie-z-peng-and-g-gradoni-quantum-optimisation-of-reconfigurable-surfaces-in-complex-propagation-environments2024-18th-european-conference-on-antennas-and-propagation-eucap-glasgow-united-kingdom-2024-pp-1-5-doi-1023919eucap60739202410500955">E. Colella, L. Bastianelli, M. Khalily, F. Moglie, Z. Peng and G. Gradoni, “Quantum Optimisation of Reconfigurable Surfaces in Complex Propagation Environments,” 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, United Kingdom, 2024, pp. 1-5, doi: 10.23919/EuCAP60739.2024.10500955.</h4>
<h4 id="g-gradoni-s-terranova-q-j-lim-c-ross-and-z-peng-random-ising-hamiltonian-model-of-metasurfaces-in-complex-environments2023-17th-european-conference-on-antennas-and-propagation-eucap-florence-italy-2023-pp-1-5-doi-1023919eucap57121202310132939">G. Gradoni, S. Terranova, Q. J. Lim, C. Ross and Z. Peng, “Random Ising Hamiltonian Model of Metasurfaces in Complex Environments,” 2023 17th European Conference on Antennas and Propagation (EuCAP), Florence, Italy, 2023, pp. 1-5, doi: 10.23919/EuCAP57121.2023.10132939.</h4>
<h4 id="gradoni-g-di-renzo-m-diaz-rubio-a-tretyakov-s-caloz-c-peng-z-phang-s-2022-smart-surface-radio-environments-reviews-of-electromagnetics-1-1-42httpsdoiorg1053792roe2022121012">Gradoni, G., Di Renzo, M., Diaz-Rubio, A., Tretyakov, S., Caloz, C., Peng, Z., …Phang, S. (2022). Smart Surface Radio Environments. Reviews of Electromagnetics, 1, 1-42. https://doi.org/10.53792/roe/2022.1/21012</h4>
<h3 id="hybrid-classical-quantum-computing-framework-for-ris-assisted-smart-radio-environments">Hybrid Classical-Quantum Computing Framework for RIS-assisted Smart Radio Environments:</h3>
<h4 id="c-ross-g-gradoni-and-z-peng-a-hybrid-classical-quantum-computing-framework-for-ris-assisted-wireless-network2023-ieee-mtt-s-international-conference-on-numerical-electromagnetic-and-multiphysics-modeling-and-optimization-nemo-winnipeg-mb-canada-2023-pp-99-102-doi-101109nemo56117202310202166">C. Ross, G. Gradoni and Z. Peng, “A Hybrid Classical-Quantum Computing Framework for RIS-assisted Wireless Network,” 2023 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), Winnipeg, MB, Canada, 2023, pp. 99-102, doi: 10.1109/NEMO56117.2023.10202166.</h4>
</div>
</div>
<footer>
<div id="footer">
<p>Links for Members:</p>
<div><a href="https://git.acem.ece.illinois.edu/">Gitea</a></div>
</div>
<p id="author">Made by Kenneth Jao</p>
</footer>
</body>
</html>

@ -0,0 +1,153 @@
<!DOCTYPE html>
<html class="clearScroll" lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1"><!-- Begin Jekyll SEO tag v2.8.0 -->
<title>Team | ACEM</title>
<meta name="generator" content="Jekyll v4.3.2" />
<meta property="og:title" content="ACEM" />
<meta property="og:locale" content="en_US" />
<meta name="description" content="Team Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<meta property="og:description" content="Team Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<link rel="canonical" href="http://localhost:4000" />
<meta property="og:url" content="http://localhost:4000" />
<meta property="og:site_name" content="ACEM" />
<meta property="og:type" content="website" />
<meta name="twitter:card" content="summary" />
<meta property="twitter:title" content="ACEM" />
<script type="application/ld+json">{"@context":"https://schema.org","@type":"WebSite","description":"Team Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign.","name":"ACEM Team Page","url":"http://localhost:4000/team"}</script>
<!-- End Jekyll SEO tag -->
<!-- Font loading -->
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Montserrat:ital,wght@0,100;0,200;0,400;0,600;0,800;1,400&display=swap" rel="stylesheet">
<link rel="stylesheet" href="/assets/css/styles.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Team | ACEM" />
</head>
<body>
<nav>
<div class="separator orange"></div>
<ul class="clearScroll">
<div id="logo">
<a href="/" alt="Advanced Computational Electromagnetics (ACEM) Research Group">ACEM</a>
</div>
<div id="navItems"><li ><a href="/">Home</a></li><li ><a href="/research/">Research</a></li><li ><a href="/applications/">Applications</a></li><li ><a href="/publications/">Publications</a></li><li class="current"><a href="/team/">Team</a></li></div>
</ul>
</nav>
<style>
#slideshow img, span {
animation: slideshow 50s infinite;
opacity: 0;
}
@keyframes slideshow {
4.0% {opacity: 1;}
20.0% {opacity: 1;}
24.0% {opacity: 0;}
}
#slideshow .orange {
position: relative;
top: 100%;
}
#slideshow img:nth-child(1) { animation-delay: 0s; }
#slideshow span:nth-child(6) { animation-delay: 0s; }
#slideshow img:nth-child(2) { animation-delay: 10s; }
#slideshow span:nth-child(7) { animation-delay: 10s; }
#slideshow img:nth-child(3) { animation-delay: 20s; }
#slideshow span:nth-child(8) { animation-delay: 20s; }
#slideshow img:nth-child(4) { animation-delay: 30s; }
#slideshow span:nth-child(9) { animation-delay: 30s; }
#slideshow img:nth-child(5) { animation-delay: 40s; }
#slideshow span:nth-child(10) { animation-delay: 40s; }
</style>
<div id="slideshowContainer">
<div id="slideshow"><img src="/assets/images/slideshow/ece_building.jpg" alt="Electrical Engineering Building"><img src="/assets/images/slideshow/antenna_analysis.png" alt="Platform-level In-Situ and Co-Site Antenna Analysis"><img src="/assets/images/slideshow/city_scale_channel.png" alt="Wireless Channel Modeling at the City Scale"><img src="/assets/images/slideshow/smart_radio.png" alt="Quantum-Assisted Smart Radio Environment"><img src="/assets/images/slideshow/statistical_wave_physics.png" alt="Statistical Wave Physics in Information Transmission"><span alt="Electrical Engineering Building">Electrical Engineering Building</span><span alt="Platform-level In-Situ and Co-Site Antenna Analysis">Platform-level In-Situ and Co-Site Antenna Analysis</span><span alt="Wireless Channel Modeling at the City Scale">Wireless Channel Modeling at the City Scale</span><span alt="Quantum-Assisted Smart Radio Environment">Quantum-Assisted Smart Radio Environment</span><span alt="Statistical Wave Physics in Information Transmission">Statistical Wave Physics in Information Transmission</span><div class="separator orange"></div>
</div>
</div><div class="topCard">
<div>
<h1>ABOUT</h1>
<p>We are research group in the Department of Electrical Engineering at the University of Illinois Urbana-Champaign, focusing on applied and computational electromagnetics.</p>
</div>
</div>
<div id="bannerContent" class="content">
<div class="nonItems">
<svg height="100%" width="100%" viewBox="0 0 5 1" class="downAccent" preserveAspectRatio="none">
<path d="M 0 0 V 0.2 C 1 0.5 4 0.5 5 0.2 V 0">
</svg>
<div>
<h1 class="centerHeading" id="our-team">Our Team</h1>
</div>
</div><div class="item"><div class="itemScroll clearScroll">
<div class="itemInner">
<div class="description">
<h2 id="zhen-peng">Zhen Peng</h2>
<p>Dr. Zhen Peng is the principal investigator of the ACEM Research Group. He is currently an Associate Professor at the Department of Electrical Engineering at the University of Illinois at Urbana-Champaign. His research interests are in the area of computational, statistical and applied electromagnetics. The goal is to simulate classical and quantum electrodynamic physics with intelligent algorithms on state-of-the-art computers, where virtual experiments can be performed for the prediction, discovery, and design of complex systems at unprecedented scales.</p>
<p><a href="/team/zhen-peng/">Read More</a></p>
</div>
<div class="image">
<img src="/assets/images/team/zhen-peng-profile.png" alt="ZhenPeng" />
</div>
</div>
</div>
</div><div class="nonItems"><svg height="100%" width="100%" viewBox="0 0 5 1" class="upAccent" preserveAspectRatio="none">
<path d="M 0 1 V 0.8 C 1 0.5 4 0.5 5 0.8 V 1">
</svg><div>
<h1 id="group-members">Group Members</h1>
<h2 id="postdoc-research-asssociate">Postdoc Research Asssociate</h2>
<p>Shen Lin (Postdoc Research Associate): <em>shenlin2 at illinois.edu</em>.</p>
<h2 id="phd-graduate-students">PhD Graduate Students</h2>
<p>Charles Ross (PhD Graduate Student): <em>cr26 at illinois.edu</em>.</p>
<p>Sangrui Luo (PhD Graduate Student): <em>sangrui2 at illinois.edu</em>.</p>
<p>Qi Jian Lim (PhD Graduate Student): <em>qjlim2 at illinois.edu</em>.</p>
<p>Gonzalo Núñez Muñoz (PhD Graduate Student): <em>gonzalo9 at illinois.edu</em>.</p>
<p>Kenneth Jao (MS Graduate Student): <em>ksjao2 at illinois.edu</em>.</p>
<p>Ge Cao (PhD Graduate Student): <em>gecao2 at illinois.edu</em>.</p>
<p>Incheol (Aiden) Jung (PhD Graduate Student): <em>incheol3 at illinois.edu</em>.</p>
<p>Samuel Jung (PhD Graduate Student): <em>syj5 at illinois.edu</em>.</p>
</div>
</div></div>
<footer>
<div id="footer">
<p>Links for Members:</p>
<div><a href="https://git.acem.ece.illinois.edu/">Gitea</a></div>
</div>
<p id="author">Made by Kenneth Jao</p>
</footer>
</body>
</html>

@ -0,0 +1,188 @@
<!DOCTYPE html>
<html class="clearScroll" lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1"><!-- Begin Jekyll SEO tag v2.8.0 -->
<title>Zhen Peng | ACEM</title>
<meta name="generator" content="Jekyll v4.3.2" />
<meta property="og:title" content="ACEM" />
<meta property="og:locale" content="en_US" />
<meta name="description" content="Zhen Peng Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<meta property="og:description" content="Zhen Peng Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign." />
<link rel="canonical" href="http://localhost:4000" />
<meta property="og:url" content="http://localhost:4000" />
<meta property="og:site_name" content="ACEM" />
<meta property="og:type" content="website" />
<meta name="twitter:card" content="summary" />
<meta property="twitter:title" content="ACEM" />
<script type="application/ld+json">{"@context":"https://schema.org","@type":"WebSite","description":"Zhen Peng Page of Advanced Computational Electromagnetics (ACEM) Research Lab at University of Illinois Urbana-Champaign.","name":"ACEM Zhen Peng Page","url":"http://localhost:4000/zhen peng"}</script>
<!-- End Jekyll SEO tag -->
<!-- Font loading -->
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Montserrat:ital,wght@0,100;0,200;0,400;0,600;0,800;1,400&display=swap" rel="stylesheet">
<link rel="stylesheet" href="/assets/css/styles.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/feed.xml" title="Zhen Peng | ACEM" />
</head>
<body>
<nav>
<div class="separator orange"></div>
<ul class="clearScroll">
<div id="logo">
<a href="/" alt="Advanced Computational Electromagnetics (ACEM) Research Group">ACEM</a>
</div>
<div id="navItems"><li ><a href="/">Home</a></li><li ><a href="/research/">Research</a></li><li ><a href="/applications/">Applications</a></li><li ><a href="/publications/">Publications</a></li><li class="current"><a href="/team/">Team</a></li></div>
</ul>
</nav>
<div id="postContent" class="content">
<svg height="100%" width="100%" viewBox="0 0 5 3.5" class="upAccent" preserveAspectRatio="none">
<path d="M 0 0 V 2 C 1 3.5 4 3.5 5 2 V 0">
</svg>
<div>
<h1 id="zhen-peng">Zhen Peng</h1>
<p>\ Dr. Zhen Peng 
\ Associate Professor
\ Electromagnetics Lab and Center for Computational Electromagnetics
\ Department of Electrical and Computer Engineering
\ University of Illinois at Urbana-Champaign
\ 306 N. Wright Street, Urbana, IL 61801-2918, USA
\ +1 (217) 244-1259
\ zvpeng@illinois.edu</p>
<h2 id="biographical-sketch">Biographical Sketch</h2>
<p>Dr. Zhen Peng is currently an Associate Professor in the Department of Electrical and Computer Engineering (ECE ILLINOIS), University of Illinois at Urbana-Champaign. He earned his Ph.D. degree in electromagnetics and microwave engineering from the Chinese Academy of Science, Beijing, China, in 2008. From 2008 to 2013, he was with the ElectroScience Laboratory, The Ohio State University, Columbus, OH, USA, first as a Postdoctoral Fellow, from 2008 to 2009, and then as a Senior Research Associate, from 2010 to 2013. From 2013 to 2019, he was an Assistant Professor with the Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM, USA.</p>
<p>His research interests are in the area of computational, statistical, and applied electromagnetics. The goal is to develop mathematical and computational models that advance the understanding, prediction, and discovery of classical, chaotic, and quantum wave phenomena. These models allow for the design and optimization of novel electromagnetic systems at unprecedented scales, and contribute through education to the advancement of understanding. The recent research is focused on four interrelated areas: (1) classical electromagnetism with scalable algorithms, (2) statistical electromagnetics: theories and practices, (3) quantum electromagnetics: simulating probability in space and time domain, and (4) fusion of wave physics and quantum computing in wireless communication.</p>
<p>His research work has an impact on both civilian and commercial engineering applications, including advanced antenna design, radio frequency integrated circuits, electromagnetic interference and compatibility, signal and power integrity, and wireless communication. work has received support from NSF CAREER, NSF EPSRC-ECCS, NSF CCF, AFOSR Center of Excellence, ONR CDEW, DARPA WARDEN, Army SBIR, Navy STTR, Sandia National Laboratories, Lockheed Martin Aeronautics in California, CST-Computer Simulation Technology in Germany, DSO National Laboratories in Singapore, and VERUS Research in New Mexico.</p>
<h2 id="awards-and-recognitions">Awards and Recognitions</h2>
<p>Dr. Peng has published over 64 journal papers, 140 conference papers, delivered 32 invited talks, and offered 7 short courses. Dr. Peng’s research contributions have been recognized through a series of awards and honors. He is a recipient of three IEEE Transaction Paper Awards, eight Best Conference Paper Awards, and multiple Young Scientist Awards. He has also served as the advisor for students who have won twelve Best Student Paper Awards to date at various conferences. In addition, he received the NSF CAREER award in 2018 and the ACES Early Career Award in 2015. He is also an IEEE Antennas and Propagation (AP-S) Society Distinguished Lecturer (2024-2026).</p>
<ul>
<li>IEEE Transaction Paper Awards</li>
</ul>
<p>2024, Richard B. Schulz Award for the Honorable Mention Transactions Paper in IEEE Transactions on Electromagnetic Compatibility
2018, IEEE CPMT Best Transaction Paper Award - IEEE Transactions on Components, Packaging and Manufacturing Technology
2014, IEEE Antenna and Propagation Sergei A. Schelkunoff Transactions Prize Paper Award</p>
<ul>
<li>Best Conference Paper Awards</li>
</ul>
<p>2024, Best EMC Symposium Paper Award - 2nd Place (at the 2024 IEEE International Symposium on Electromagnetic Compatibility, Signal &amp; Power Integrity (EMC+SIPI).)
2022, Best Electromagnetics Paper Award (at 16th European Conference on Antennas and Propagation)
2021, EPEPS Best Paper Award (at 30th Conference on Electrical Performance of Electronic Packaging and Systems)
2019, EPEPS Best Paper Award (at 28th Conference on Electrical Performance of Electronic Packaging and Systems)
2019, IEEE EMC Symposium Best Paper Award (at 2019 IEEE International Symposium on Electromagnetic Compatibility, Signal &amp; Power Integrity)
2018, The ICEAA - IEEE APWC Award (at International Conference on Electromagnetics in Advanced Applications and IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications)
2016, 20th IEEE Workshop on Signal Integrity and Power Integrity Best Poster Paper Award</p>
<ul>
<li>Young Scientist Awards</li>
</ul>
<p>2017, IEEE Albuquerque Section’s Outstanding Young Engineer Award; 2016, International Union of Radio Science (URSI) Asia-Pacific Radio Science Conference; 2014, XXXI General Assembly and Scientific Symposium of the International Union of Radio Science (URSIGASS 2014); 2013, Asia-Pacific Radio Science Conference (AP-RASC 13); 2013, International Symposium on Electromagnetic Theory (EMT-S 2013); 2010, International Symposium on Electromagnetic Theory (EMT-S 2010)</p>
<ul>
<li>Advisor of students’ honors and awards</li>
</ul>
<p>Global Electromagnetics Conference Young Scientist Award (2024), Raj Mittra Outstanding Research Award (2024), Dr. Eric K. Walton Graduate Award (2024), Yuen T. Lo Outstanding Research Award (2023)
The IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO) Student Paper Competition (2nd Place 2023, 3rd Place 2019)
IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting (APS-URSI) Student Paper Competition (Finalist 2021, 3rd Place 2020),
International Applied Computational Electromagnetics Society (ACES) Symposium Student Paper Competition (1st Place 2019, 1st Place 2018),
Best Student Paper Award in 26th Conference on Electrical Performance of Electronic Packaging and Systems</p>
<h2 id="society-service">Society Service</h2>
<ul>
<li>IEEE Antennas and Propagation Society:
<ul>
<li>Chair of New IEEE AP-S Technical Committee – Computational Electromagnetics</li>
</ul>
</li>
<li>Associate Editors:
<ul>
<li>IEEE Open Journal of Antennas and Propagation (2023-present)</li>
<li>IEEE Transactions on Components, Packaging and Manufacturing Technology (2023)</li>
<li>IEEE Transactions on Microwave Theory and Techniques (2018-2020)</li>
</ul>
</li>
<li>
<p>Co-founder (with Hakan Bagci and Sima Noghanian) of the ACES School of Electromagnetics (2023, 2024)</p>
</li>
<li>
<p>Technical PRogram Committee and Others:</p>
<ul>
<li>Conference on Electrical Performance of Electronic Packaging and Systems (2020-present)</li>
<li>The IEEE Antennas and Propagation Society Topical Meeting on Computational Electromagnetics (ICCEM 2020, 2017, 2016, 2015)</li>
<li>The 13th European Conference on Antennas and Propagation (EUCAP 2019)</li>
<li>The International Workshop on Finite Elements for Microwave Engineering (FEM Workshop 2017, 2016)</li>
</ul>
</li>
<li>Short Courses at Conferences:
<ul>
<li>2024 IEEE Intl. Symp. on Antennas &amp; Propagation &amp; ITNC-USNC-URSI Radio Sci. Mtg. (AP-S/URSI) (with Weng Cho Chew, Thomas E. Roth, Purdue; Dong-Yeop Na, Pohang UST; Gabriele Gradoni, University of Surrey; Paolo Rocca, Luca Tosi, University of Trento, Italy), Short Course Title: Quantum Electromagnetics and Its Applications</li>
<li>2024 IEEE MTT-S International Microwave Symposium (IMS) Workshop Organizer and Speaker (with Michael Haider, TUM; Thomas E. Roth, Purdue, Vladimir Okhmatovski, University of Manitoba, Canada), Short Course Title: Quantum Circuits, Methods, and Algorithms in Microwave Engineering</li>
<li>2023 IEEE AP-S/URSI (with Weng Cho Chew, Thomas E. Roth, Purdue University; Dong-Yeop Na, Pohang University of Science and Technology; Paolo Rocca, Nicola Anselmi, University of Trento, Italy), Short Course Title: Quantum Electromagnetics and Its Applications</li>
<li>2023 IEEE IMS 2023 Workshop Organizer and Speaker (with Johannes Russer, TUM; Vladimir Okhmatovski, University of Manitoba, Canada), Short Course Title: Quantum Circuits, Methods, and Algorithms in Electromagnetics and Microwave Applications</li>
<li>2022 IEEE AP-S/URSI (with Weng Cho Chew, Thomas E. Roth, Dong-Yeop NA, Purdue University, U.S.A.; Paolo Rocca, Giacomo Olivieri, Andrea Massa, University of Trento, Italy), Short Course Title: Quantum Electromagnetics and Its Applications</li>
<li>2019 International Applied Computational Electromagnetics Society (ACES) Symposium, Short Course Title: Domain Decomposition Methods for Differential and Integral Equations</li>
<li>2014 The 30th International Review of Progress in Applied Computational Electromagnetics, Short Course Title: Boundary Integral Equation Domain Decomposition Methods for Complex Electromagnetic Applications</li>
<li>2012 The 28th International Review of Progress in Applied Computational Electromagnetics, Short Course Title: Non-overlapping and Non-conformal Domain Decomposition Method for Full Wave Solution of Time Harmonic Maxwell’s Equations</li>
<li>2011 The 27th International Review of Progress in Applied Computational Electromagnetics, Short Course Title: CEM Algorithms for EMC/EMI Modeling: Electrically Large (Antennas on Platform) and Small (Signal Integrity in Integrated Circuits and Packaging) Problems</li>
</ul>
</li>
</ul>
<h2 id="most-representative-publications">Most Representative Publications:</h2>
<p>[1] Q. J. Lim, C. Ross, A. Ghosh, F. Vook, G. Gradoni, and Z. Peng, “Quantum-Assisted Combinatorial Optimization for Reconfigurable Intelligent Surfaces in Smart Electromagnetic Environments,” IEEE Trans. Antennas Propag., vol. 72, no. 1, pp. 147-159, Jan. 2024.</p>
<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>* *Significance*: This paper presents a physics-based, hybrid classical-quantum optimization framework for reconfigurable intelligent surfaces (RIS), drawing inspiration from the statistical mechanics of correlated spins. The key innovation is mapping the electromagnetic power to the Ising Hamiltonian function, effectively transforming the RIS configuration optimization problem into finding the ground state of the Ising model. Moreover, this framework successfully demonstrates a quantum advantage in solving complex combinatorial optimization problems in smart radio environments.
</code></pre></div></div>
<p>[2] S. Lin, S. Luo, S. Ma, J. Feng, Y. Shao, Z. B. Drikas, B. D. Addissie, S. M. Anlage, T. Antonsen, and Z. Peng, “Predicting Statistical Wave Physics in Complex Enclosures: A Stochastic Dyadic Green’s Function Approach,” IEEE Trans. Electromagnetic Compatibility, vol. 65, no. 2, pp. 436-453, April 2023.
* <em>Significance</em>: This research focuses on developing physics-oriented statistical representations and algorithms for complex, wave-chaotic environments. The paper introduces an innovative computational methodology known as the stochastic Green’s function (SGF) method, which statistically describes the multipath, ray-chaotic interactions between transmitters and receivers. The work accomplishes a physics-oriented, mathematically tractable statistical wave model with diverse applications, including the mode-stirred reverberation chamber, information transmission in wave-chaotic indoor channels, statistical design of time-reversal systems, wavefront shaping and focusing, sensing and targeting.</p>
<p>[3] G. Cao and Z. Peng, “RayProNet: A Neural Point Field Framework for Radio Propagation Modeling in 3D Environments,” IEEE Journal on Multiscale and Multiphysics Computational Techniques, vol. 9, pp. 330-340, 2024.</p>
<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>* *Significance*: This research introduces a novel machine learning-empowered methodology for wireless channel modeling. It leverages a point-cloud-based neural network combined with spherical harmonics encoding to predict radio path loss maps in both indoor and outdoor environments. By embedding electromagnetic wave propagation physics into neural networks, this framework enables efficient and scalable modeling of complex 3D wireless scenarios, significantly enhancing the speed and adaptability required for network design and optimization.
</code></pre></div></div>
<p>[4] Zhen Peng, Yang Shao, Hong-Wei Gao, Shu Wang and Shen Lin, “High-Fidelity, High-Performance Computational Algorithms for Intra-System Electromagnetic Interference Analysis of IC and Electronics,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 7, no. 5, pp. 653-668, May 2017.</p>
<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>* *Significance*: As next-generation electronic systems evolve to achieve greater functionality and smaller sizes, electromagnetic interference (EMI) between components becomes a critical challenge, impacting performance. This paper introduces high-fidelity, high-performance full-wave field solvers for scalable electromagnetic simulations of product-level integrated circuits (ICs) and electronics. The work enables concurrent multiscale modeling, accounting for the mutual interactions of circuits, 3D interconnects, packages, and PCBs. These innovations offer a powerful verification tool during the design stage, enhancing the ability to predict and optimize the performance of complex IC systems with high confidence in their in situ performance.
</code></pre></div></div>
<p>[5] Zhen Peng, Kheng-Hwee Lim, and Jin-Fa Lee, “A Discontinuous Galerkin Surface Integral Equation Method for Electromagnetic Wave Scattering from Nonpenetrable Targets,” IEEE Trans. Antennas Propag., vol. 61, no. 7, pp. 3617-3628, 2013.</p>
<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>* *Significance*: The objective of this work is to allow the solution of integral equations using discontinuous trial and test functions without any consideration of continuity requirements across element's boundaries. We can mix different types of elements and employ different order of basis functions within the same discretization. Built upon the DG-BEM, we investigate a rigorous, adaptive, and parallel coarse-graining method to reduce the computational complexity in multi-scale computation.
</code></pre></div></div>
<p>[6] Zhen Peng and Jin-Fa Lee, “A Scalable Non-overlapping and Non-conformal Domain Decomposition Method for Solving Time-harmonic Maxwell Equations in R3,” SIAM Journal on Scientific Computing., vol. 34, no. 3, pp. A1266-A1295, 2012.</p>
<div class="language-plaintext highlighter-rouge"><div class="highlight"><pre class="highlight"><code>* *Significance*: This paper lays the theoretical foundation for nonoverlapping finite element domain decomposition methods (FE-DDM) for solving the time-harmonic Maxwell equations. It introduces three key innovations: (a) a true second order transmission condition (SOTC) to enforce field continuities across domain interfaces; (b) a corner edge penalty term to account for corner edges between neighbouring subdomains; and (c) a global plane wave deflation technique to further improve the convergence of DDM for electrically large problems.
</code></pre></div></div>
</div>
</div>
<footer>
<div id="footer">
<p>Links for Members:</p>
<div><a href="https://git.acem.ece.illinois.edu/">Gitea</a></div>
</div>
<p id="author">Made by Kenneth Jao</p>
</footer>
</body>
</html>
Loading…
Cancel
Save