You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
279 lines
9.5 KiB
279 lines
9.5 KiB
2 years ago
|
C Copyright(C) 1999-2020 National Technology & Engineering Solutions
|
||
|
C of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
|
||
|
C NTESS, the U.S. Government retains certain rights in this software.
|
||
|
C
|
||
|
C See packages/seacas/LICENSE for details
|
||
|
|
||
|
C========================================================================
|
||
|
SUBROUTINE EXTH(IGLND,INVCN,MAXLN,NOD,INVLEN,XA,YA,ZA,CNTRA,
|
||
|
& SOLEA,SOLENA,ITT,iblk)
|
||
|
|
||
|
C************************************************************************
|
||
|
|
||
|
C Subroutine EXTH sets up the matrix and vectors for a least squares
|
||
|
C linear interpolation/extrapolation of element variable data to the
|
||
|
C nodes for 3-D elements. This routine has been checked out for 8-node
|
||
|
C hex and 4-node and 8-node (treated same as 4-node) tet elements.
|
||
|
C In the special case of data from only 4 elements, the result is not
|
||
|
C a true least squares fit in that the least squares error is zero.
|
||
|
|
||
|
C Calls subroutines FRGE & BS
|
||
|
|
||
|
C Called by ELTON3
|
||
|
|
||
|
C************************************************************************
|
||
|
|
||
|
C IGLND INT The global node number being processed
|
||
|
C INVCN INT Inverse connectivity (1:maxln,1:numnda)
|
||
|
C MAXLN INT The maximum number of elements connected to any node
|
||
|
C NOD INT The local node used to get elements from INVCN
|
||
|
C INVLEN INT The number of elements connected to NOD
|
||
|
C XA,etc REAL Vectors containing nodal coordinates
|
||
|
C CNTRA REAL Array containing the coordinates of the element
|
||
|
C centroids (1:3)
|
||
|
C SOLEA REAL The element variables
|
||
|
C SOLENA REAL Element variables at nodes
|
||
|
C number with the global mesh node number (1:numnda)
|
||
|
C ITT INT truth table
|
||
|
C iblk INT element block being processed (not ID)
|
||
|
C ICOP INT Flag defining co-planarity of elements (0-coplan, 1-not)
|
||
|
C S REAL The coefficient matrix for the least squares fit
|
||
|
C L INT Dummy vector - used in FRGE and BS
|
||
|
C X REAL The solution vector - used in BS
|
||
|
C G REAL Dummy vector - used in FRGE
|
||
|
C F REAL The load vector for the least squares fit
|
||
|
|
||
|
C************************************************************************
|
||
|
|
||
|
include 'aexds1.blk'
|
||
|
include 'amesh.blk'
|
||
|
include 'ebbyeb.blk'
|
||
|
include 'tapes.blk'
|
||
|
|
||
|
DIMENSION INVCN(MAXLN,*),XA(*),YA(*),ZA(*)
|
||
|
DIMENSION CNTRA(NUMEBA,*),SOLEA(NUMEBA,*)
|
||
|
DIMENSION SOLENA(NODESA,NVAREL),ITT(NVAREL,*)
|
||
|
DOUBLE PRECISION S(4,4),G(4),F(4),X(4)
|
||
|
INTEGER L(4)
|
||
|
|
||
|
C************************************************************************
|
||
|
ICOP = 0
|
||
|
|
||
|
C First check elements for coplanarity
|
||
|
|
||
|
C Construct a vector from first element centroid to second
|
||
|
|
||
|
VEC11 = CNTRA(INVCN(2,NOD),1) - CNTRA(INVCN(1,NOD),1)
|
||
|
VEC12 = CNTRA(INVCN(2,NOD),2) - CNTRA(INVCN(1,NOD),2)
|
||
|
VEC13 = CNTRA(INVCN(2,NOD),3) - CNTRA(INVCN(1,NOD),3)
|
||
|
V1MAG = SQRT(VEC11*VEC11 + VEC12*VEC12 + VEC13*VEC13)
|
||
|
|
||
|
C Construct a vector from first element centroid to third
|
||
|
|
||
|
VEC21 = CNTRA(INVCN(3,NOD),1) - CNTRA(INVCN(1,NOD),1)
|
||
|
VEC22 = CNTRA(INVCN(3,NOD),2) - CNTRA(INVCN(1,NOD),2)
|
||
|
VEC23 = CNTRA(INVCN(3,NOD),3) - CNTRA(INVCN(1,NOD),3)
|
||
|
|
||
|
C X-product vector-1 with vector-2 to get normal to plane defined
|
||
|
C by the two vectors then make a unit vector
|
||
|
|
||
|
VN1 = VEC12*VEC23 - VEC22*VEC13
|
||
|
VN2 = VEC13*VEC21 - VEC11*VEC23
|
||
|
VN3 = VEC11*VEC22 - VEC21*VEC12
|
||
|
VNMAG = SQRT(VN1*VN1 + VN2*VN2 + VN3*VN3)
|
||
|
VN1 = VN1 / VNMAG
|
||
|
VN2 = VN2 / VNMAG
|
||
|
VN3 = VN3 / VNMAG
|
||
|
|
||
|
C Dot product of normal vector with vectors from first element
|
||
|
C centroid to the remaining element centroids. If dot product
|
||
|
C is too small, data is coplanar - try the next vector.
|
||
|
C If dot product more then 0.1 times the vector, data is not
|
||
|
C coplanar, set ICOP to 1 and get on with it.
|
||
|
|
||
|
DO 5 I = 4, INVLEN
|
||
|
VEC1 = CNTRA(INVCN(I,NOD),1) - CNTRA(INVCN(1,NOD),1)
|
||
|
VEC2 = CNTRA(INVCN(I,NOD),2) - CNTRA(INVCN(1,NOD),2)
|
||
|
VEC3 = CNTRA(INVCN(I,NOD),3) - CNTRA(INVCN(1,NOD),3)
|
||
|
VIMAG = SQRT(VEC1*VEC1 + VEC2*VEC2 + VEC3*VEC3)
|
||
|
VDTMAG = SQRT(VN1*VEC1*VN1*VEC1 + VN2*VEC2*VN2*VEC2
|
||
|
& + VN3*VEC3*VN3*VEC3)
|
||
|
COMP = VDTMAG * 10.
|
||
|
IF (COMP .LT. VIMAG)THEN
|
||
|
GO TO 5
|
||
|
ELSE
|
||
|
ICOP = 1
|
||
|
go to 6
|
||
|
END IF
|
||
|
5 CONTINUE
|
||
|
|
||
|
C Zero matrix
|
||
|
|
||
|
6 CONTINUE
|
||
|
DO I = 1,4
|
||
|
DO J = 1,4
|
||
|
S(I,J) = 0.D+00
|
||
|
end do
|
||
|
end do
|
||
|
|
||
|
C Branch on coplanar data vs truly 3-d data
|
||
|
|
||
|
IF (ICOP .EQ. 1)THEN
|
||
|
|
||
|
C Set up matrix for linear fit
|
||
|
|
||
|
S(1,1) = DBLE(INVLEN)
|
||
|
DO 20 I = 1, INVLEN
|
||
|
S(1,2) = S(1,2)+DBLE(XA(IGLND) - CNTRA(INVCN(I,NOD),1))
|
||
|
S(1,3) = S(1,3)+DBLE(YA(IGLND) - CNTRA(INVCN(I,NOD),2))
|
||
|
S(1,4) = S(1,4)+DBLE(ZA(IGLND) - CNTRA(INVCN(I,NOD),3))
|
||
|
S(2,2) = S(2,2)+DBLE((XA(IGLND) - CNTRA(INVCN(I,NOD),1)) *
|
||
|
& (XA(IGLND) - CNTRA(INVCN(I,NOD),1)))
|
||
|
S(2,3) = S(2,3)+DBLE((YA(IGLND) - CNTRA(INVCN(I,NOD),2)) *
|
||
|
& (XA(IGLND) - CNTRA(INVCN(I,NOD),1)))
|
||
|
S(2,4) = S(2,4)+DBLE((ZA(IGLND) - CNTRA(INVCN(I,NOD),3)) *
|
||
|
& (XA(IGLND) - CNTRA(INVCN(I,NOD),1)))
|
||
|
S(3,3) = S(3,3)+DBLE((YA(IGLND) - CNTRA(INVCN(I,NOD),2)) *
|
||
|
& (YA(IGLND) - CNTRA(INVCN(I,NOD),2)))
|
||
|
S(3,4) = S(3,4)+DBLE((ZA(IGLND) - CNTRA(INVCN(I,NOD),3)) *
|
||
|
& (YA(IGLND) - CNTRA(INVCN(I,NOD),2)))
|
||
|
S(4,4) = S(4,4)+DBLE((ZA(IGLND) - CNTRA(INVCN(I,NOD),3)) *
|
||
|
& (ZA(IGLND) - CNTRA(INVCN(I,NOD),3)))
|
||
|
20 CONTINUE
|
||
|
S(2,1) = S(1,2)
|
||
|
S(3,1) = S(1,3)
|
||
|
S(4,1) = S(1,4)
|
||
|
S(3,2) = S(2,3)
|
||
|
S(4,2) = S(2,4)
|
||
|
S(4,3) = S(3,4)
|
||
|
|
||
|
C Forward Gauss elimination (Kincaid pg. 220) (double precision)
|
||
|
|
||
|
CALL FRGE(4,S,L,G)
|
||
|
|
||
|
C Set up load vectors - number of element variables
|
||
|
|
||
|
DO 30 IVAR = 1, NVAREL
|
||
|
IF (ITT(IVAR,iblk) .EQ. 0)GO TO 30
|
||
|
F(1) = 0.D+00
|
||
|
F(2) = 0.D+00
|
||
|
F(3) = 0.D+00
|
||
|
F(4) = 0.D+00
|
||
|
DO 40 I = 1, INVLEN
|
||
|
F(1) = F(1) + DBLE(SOLEA(INVCN(I,NOD),IVAR))
|
||
|
F(2) = F(2) + DBLE(SOLEA(INVCN(I,NOD),IVAR) *
|
||
|
& (XA(IGLND) - CNTRA(INVCN(I,NOD),1)))
|
||
|
F(3) = F(3) + DBLE(SOLEA(INVCN(I,NOD),IVAR) *
|
||
|
& (YA(IGLND) - CNTRA(INVCN(I,NOD),2)))
|
||
|
F(4) = F(4) + DBLE(SOLEA(INVCN(I,NOD),IVAR) *
|
||
|
& (ZA(IGLND) - CNTRA(INVCN(I,NOD),3)))
|
||
|
40 CONTINUE
|
||
|
|
||
|
C Back substitution (Kincaid pg. 223) (double precision)
|
||
|
|
||
|
CALL BS(4,S,F,L,X)
|
||
|
|
||
|
C Fill in nodal element value array (SOLENA)
|
||
|
C Note: X and Y distances in S and F are centered on node being
|
||
|
C interpolated to (IGLND), thus X, Y, Z are zero in the eq.
|
||
|
C Value = X(1) + X(2) * X + X(3) * Y + X(4) * Z
|
||
|
|
||
|
SOLENA(IGLND,IVAR) = SNGL(X(1))
|
||
|
30 CONTINUE
|
||
|
|
||
|
ELSE IF (ICOP .EQ. 0)THEN
|
||
|
|
||
|
C first unit vector
|
||
|
|
||
|
V11 = VEC11 / V1MAG
|
||
|
V12 = VEC12 / V1MAG
|
||
|
V13 = VEC13 / V1MAG
|
||
|
|
||
|
C compute 2nd (orthogonal) vector in plane - make it a unit vector
|
||
|
|
||
|
V21 = V12 * VN3 - VN2 * V13
|
||
|
V22 = VN1 * V13 - V11 * VN3
|
||
|
V23 = V11 * VN2 - VN1 * V12
|
||
|
V2MAG = SQRT(V21*V21 + V22*V22 + V23*V23)
|
||
|
V21 = V21 / V2MAG
|
||
|
V22 = V22 / V2MAG
|
||
|
V23 = V23 / V2MAG
|
||
|
|
||
|
C set up matrix for least squares fit
|
||
|
|
||
|
S(1,1) = DBLE(INVLEN)
|
||
|
DO 50 I = 1, INVLEN
|
||
|
|
||
|
C rotate coords
|
||
|
|
||
|
XORI = XA(IGLND)-CNTRA(INVCN(I,NOD),1)
|
||
|
YORI = YA(IGLND)-CNTRA(INVCN(I,NOD),2)
|
||
|
ZORI = ZA(IGLND)-CNTRA(INVCN(I,NOD),3)
|
||
|
XP = XORI*V11 + YORI*V12 + ZORI*V13
|
||
|
YP = XORI*V21 + YORI*V22 + ZORI*V23
|
||
|
|
||
|
S(1,2) = S(1,2)+DBLE(XP)
|
||
|
S(1,3) = S(1,3)+DBLE(YP)
|
||
|
S(2,2) = S(2,2)+DBLE(XP * XP)
|
||
|
S(2,3) = S(2,3)+DBLE(XP * YP)
|
||
|
S(3,3) = S(3,3)+DBLE(YP * YP)
|
||
|
50 CONTINUE
|
||
|
S(2,1) = S(1,2)
|
||
|
S(3,1) = S(1,3)
|
||
|
S(3,2) = S(2,3)
|
||
|
S(1,4) = 0.D+00
|
||
|
S(2,4) = 0.D+00
|
||
|
S(3,4) = 0.D+00
|
||
|
S(4,4) = 1.D+00
|
||
|
S(4,3) = 0.D+00
|
||
|
S(4,2) = 0.D+00
|
||
|
S(4,1) = 0.D+00
|
||
|
|
||
|
C Forward Gauss elimination (Kincaid pg. 220) (double precision)
|
||
|
|
||
|
CALL FRGE(4,S,L,G)
|
||
|
|
||
|
C Set up load vectors - number of element variables
|
||
|
|
||
|
DO 60 IVAR = 1, NVAREL
|
||
|
IF (ITT(IVAR,iblk) .EQ. 0)GO TO 60
|
||
|
F(1) = 0.D+00
|
||
|
F(2) = 0.D+00
|
||
|
F(3) = 0.D+00
|
||
|
F(4) = 0.D+00
|
||
|
DO 70 I = 1, INVLEN
|
||
|
XORI = XA(IGLND)-CNTRA(INVCN(I,NOD),1)
|
||
|
YORI = YA(IGLND)-CNTRA(INVCN(I,NOD),2)
|
||
|
ZORI = ZA(IGLND)-CNTRA(INVCN(I,NOD),3)
|
||
|
XP = XORI*V11 + YORI*V12 + ZORI*V13
|
||
|
YP = XORI*V21 + YORI*V22 + ZORI*V23
|
||
|
F(1) = F(1) + DBLE(SOLEA(INVCN(I,NOD),IVAR))
|
||
|
F(2) = F(2) + DBLE(SOLEA(INVCN(I,NOD),IVAR) * XP)
|
||
|
F(3) = F(3) + DBLE(SOLEA(INVCN(I,NOD),IVAR) * YP)
|
||
|
70 CONTINUE
|
||
|
|
||
|
C Back substitution (Kincaid pg. 223) (double precision)
|
||
|
|
||
|
CALL BS(4,S,F,L,X)
|
||
|
|
||
|
C Ordinaly you would need to rotate back into cartesian coords
|
||
|
C however, we only need X(1) so there is no need to rotate here
|
||
|
|
||
|
C X2 = SNGL(X(2))*V11 + SNGL(X(3))*V21
|
||
|
C X3 = SNGL(X(2))*V12 + SNGL(X(3))*V22
|
||
|
C X4 = SNGL(X(2))*V13 + SNGL(X(3))*V23
|
||
|
C X(2) = X2
|
||
|
C X(3) = X3
|
||
|
C X(4) = X4
|
||
|
|
||
|
C Fill in nodal element value array (SOLENA)
|
||
|
C Note: X and Y distances in S and F are centered on node being
|
||
|
C interpolated to (IGLND), thus X, Y, Z are zero in the eq.
|
||
|
C Value = X(1) + X(2) * X + X(3) * Y + X(4) * Z
|
||
|
|
||
|
SOLENA(IGLND,IVAR) = SNGL(X(1))
|
||
|
60 CONTINUE
|
||
|
END IF
|
||
|
RETURN
|
||
|
END
|