Cloned SEACAS for EXODUS library with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

278 lines
9.5 KiB

C Copyright(C) 1999-2020 National Technology & Engineering Solutions
C of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with
C NTESS, the U.S. Government retains certain rights in this software.
C
C See packages/seacas/LICENSE for details
C========================================================================
SUBROUTINE EXTH(IGLND,INVCN,MAXLN,NOD,INVLEN,XA,YA,ZA,CNTRA,
& SOLEA,SOLENA,ITT,iblk)
C************************************************************************
C Subroutine EXTH sets up the matrix and vectors for a least squares
C linear interpolation/extrapolation of element variable data to the
C nodes for 3-D elements. This routine has been checked out for 8-node
C hex and 4-node and 8-node (treated same as 4-node) tet elements.
C In the special case of data from only 4 elements, the result is not
C a true least squares fit in that the least squares error is zero.
C Calls subroutines FRGE & BS
C Called by ELTON3
C************************************************************************
C IGLND INT The global node number being processed
C INVCN INT Inverse connectivity (1:maxln,1:numnda)
C MAXLN INT The maximum number of elements connected to any node
C NOD INT The local node used to get elements from INVCN
C INVLEN INT The number of elements connected to NOD
C XA,etc REAL Vectors containing nodal coordinates
C CNTRA REAL Array containing the coordinates of the element
C centroids (1:3)
C SOLEA REAL The element variables
C SOLENA REAL Element variables at nodes
C number with the global mesh node number (1:numnda)
C ITT INT truth table
C iblk INT element block being processed (not ID)
C ICOP INT Flag defining co-planarity of elements (0-coplan, 1-not)
C S REAL The coefficient matrix for the least squares fit
C L INT Dummy vector - used in FRGE and BS
C X REAL The solution vector - used in BS
C G REAL Dummy vector - used in FRGE
C F REAL The load vector for the least squares fit
C************************************************************************
include 'aexds1.blk'
include 'amesh.blk'
include 'ebbyeb.blk'
include 'tapes.blk'
DIMENSION INVCN(MAXLN,*),XA(*),YA(*),ZA(*)
DIMENSION CNTRA(NUMEBA,*),SOLEA(NUMEBA,*)
DIMENSION SOLENA(NODESA,NVAREL),ITT(NVAREL,*)
DOUBLE PRECISION S(4,4),G(4),F(4),X(4)
INTEGER L(4)
C************************************************************************
ICOP = 0
C First check elements for coplanarity
C Construct a vector from first element centroid to second
VEC11 = CNTRA(INVCN(2,NOD),1) - CNTRA(INVCN(1,NOD),1)
VEC12 = CNTRA(INVCN(2,NOD),2) - CNTRA(INVCN(1,NOD),2)
VEC13 = CNTRA(INVCN(2,NOD),3) - CNTRA(INVCN(1,NOD),3)
V1MAG = SQRT(VEC11*VEC11 + VEC12*VEC12 + VEC13*VEC13)
C Construct a vector from first element centroid to third
VEC21 = CNTRA(INVCN(3,NOD),1) - CNTRA(INVCN(1,NOD),1)
VEC22 = CNTRA(INVCN(3,NOD),2) - CNTRA(INVCN(1,NOD),2)
VEC23 = CNTRA(INVCN(3,NOD),3) - CNTRA(INVCN(1,NOD),3)
C X-product vector-1 with vector-2 to get normal to plane defined
C by the two vectors then make a unit vector
VN1 = VEC12*VEC23 - VEC22*VEC13
VN2 = VEC13*VEC21 - VEC11*VEC23
VN3 = VEC11*VEC22 - VEC21*VEC12
VNMAG = SQRT(VN1*VN1 + VN2*VN2 + VN3*VN3)
VN1 = VN1 / VNMAG
VN2 = VN2 / VNMAG
VN3 = VN3 / VNMAG
C Dot product of normal vector with vectors from first element
C centroid to the remaining element centroids. If dot product
C is too small, data is coplanar - try the next vector.
C If dot product more then 0.1 times the vector, data is not
C coplanar, set ICOP to 1 and get on with it.
DO 5 I = 4, INVLEN
VEC1 = CNTRA(INVCN(I,NOD),1) - CNTRA(INVCN(1,NOD),1)
VEC2 = CNTRA(INVCN(I,NOD),2) - CNTRA(INVCN(1,NOD),2)
VEC3 = CNTRA(INVCN(I,NOD),3) - CNTRA(INVCN(1,NOD),3)
VIMAG = SQRT(VEC1*VEC1 + VEC2*VEC2 + VEC3*VEC3)
VDTMAG = SQRT(VN1*VEC1*VN1*VEC1 + VN2*VEC2*VN2*VEC2
& + VN3*VEC3*VN3*VEC3)
COMP = VDTMAG * 10.
IF (COMP .LT. VIMAG)THEN
GO TO 5
ELSE
ICOP = 1
go to 6
END IF
5 CONTINUE
C Zero matrix
6 CONTINUE
DO I = 1,4
DO J = 1,4
S(I,J) = 0.D+00
end do
end do
C Branch on coplanar data vs truly 3-d data
IF (ICOP .EQ. 1)THEN
C Set up matrix for linear fit
S(1,1) = DBLE(INVLEN)
DO 20 I = 1, INVLEN
S(1,2) = S(1,2)+DBLE(XA(IGLND) - CNTRA(INVCN(I,NOD),1))
S(1,3) = S(1,3)+DBLE(YA(IGLND) - CNTRA(INVCN(I,NOD),2))
S(1,4) = S(1,4)+DBLE(ZA(IGLND) - CNTRA(INVCN(I,NOD),3))
S(2,2) = S(2,2)+DBLE((XA(IGLND) - CNTRA(INVCN(I,NOD),1)) *
& (XA(IGLND) - CNTRA(INVCN(I,NOD),1)))
S(2,3) = S(2,3)+DBLE((YA(IGLND) - CNTRA(INVCN(I,NOD),2)) *
& (XA(IGLND) - CNTRA(INVCN(I,NOD),1)))
S(2,4) = S(2,4)+DBLE((ZA(IGLND) - CNTRA(INVCN(I,NOD),3)) *
& (XA(IGLND) - CNTRA(INVCN(I,NOD),1)))
S(3,3) = S(3,3)+DBLE((YA(IGLND) - CNTRA(INVCN(I,NOD),2)) *
& (YA(IGLND) - CNTRA(INVCN(I,NOD),2)))
S(3,4) = S(3,4)+DBLE((ZA(IGLND) - CNTRA(INVCN(I,NOD),3)) *
& (YA(IGLND) - CNTRA(INVCN(I,NOD),2)))
S(4,4) = S(4,4)+DBLE((ZA(IGLND) - CNTRA(INVCN(I,NOD),3)) *
& (ZA(IGLND) - CNTRA(INVCN(I,NOD),3)))
20 CONTINUE
S(2,1) = S(1,2)
S(3,1) = S(1,3)
S(4,1) = S(1,4)
S(3,2) = S(2,3)
S(4,2) = S(2,4)
S(4,3) = S(3,4)
C Forward Gauss elimination (Kincaid pg. 220) (double precision)
CALL FRGE(4,S,L,G)
C Set up load vectors - number of element variables
DO 30 IVAR = 1, NVAREL
IF (ITT(IVAR,iblk) .EQ. 0)GO TO 30
F(1) = 0.D+00
F(2) = 0.D+00
F(3) = 0.D+00
F(4) = 0.D+00
DO 40 I = 1, INVLEN
F(1) = F(1) + DBLE(SOLEA(INVCN(I,NOD),IVAR))
F(2) = F(2) + DBLE(SOLEA(INVCN(I,NOD),IVAR) *
& (XA(IGLND) - CNTRA(INVCN(I,NOD),1)))
F(3) = F(3) + DBLE(SOLEA(INVCN(I,NOD),IVAR) *
& (YA(IGLND) - CNTRA(INVCN(I,NOD),2)))
F(4) = F(4) + DBLE(SOLEA(INVCN(I,NOD),IVAR) *
& (ZA(IGLND) - CNTRA(INVCN(I,NOD),3)))
40 CONTINUE
C Back substitution (Kincaid pg. 223) (double precision)
CALL BS(4,S,F,L,X)
C Fill in nodal element value array (SOLENA)
C Note: X and Y distances in S and F are centered on node being
C interpolated to (IGLND), thus X, Y, Z are zero in the eq.
C Value = X(1) + X(2) * X + X(3) * Y + X(4) * Z
SOLENA(IGLND,IVAR) = SNGL(X(1))
30 CONTINUE
ELSE IF (ICOP .EQ. 0)THEN
C first unit vector
V11 = VEC11 / V1MAG
V12 = VEC12 / V1MAG
V13 = VEC13 / V1MAG
C compute 2nd (orthogonal) vector in plane - make it a unit vector
V21 = V12 * VN3 - VN2 * V13
V22 = VN1 * V13 - V11 * VN3
V23 = V11 * VN2 - VN1 * V12
V2MAG = SQRT(V21*V21 + V22*V22 + V23*V23)
V21 = V21 / V2MAG
V22 = V22 / V2MAG
V23 = V23 / V2MAG
C set up matrix for least squares fit
S(1,1) = DBLE(INVLEN)
DO 50 I = 1, INVLEN
C rotate coords
XORI = XA(IGLND)-CNTRA(INVCN(I,NOD),1)
YORI = YA(IGLND)-CNTRA(INVCN(I,NOD),2)
ZORI = ZA(IGLND)-CNTRA(INVCN(I,NOD),3)
XP = XORI*V11 + YORI*V12 + ZORI*V13
YP = XORI*V21 + YORI*V22 + ZORI*V23
S(1,2) = S(1,2)+DBLE(XP)
S(1,3) = S(1,3)+DBLE(YP)
S(2,2) = S(2,2)+DBLE(XP * XP)
S(2,3) = S(2,3)+DBLE(XP * YP)
S(3,3) = S(3,3)+DBLE(YP * YP)
50 CONTINUE
S(2,1) = S(1,2)
S(3,1) = S(1,3)
S(3,2) = S(2,3)
S(1,4) = 0.D+00
S(2,4) = 0.D+00
S(3,4) = 0.D+00
S(4,4) = 1.D+00
S(4,3) = 0.D+00
S(4,2) = 0.D+00
S(4,1) = 0.D+00
C Forward Gauss elimination (Kincaid pg. 220) (double precision)
CALL FRGE(4,S,L,G)
C Set up load vectors - number of element variables
DO 60 IVAR = 1, NVAREL
IF (ITT(IVAR,iblk) .EQ. 0)GO TO 60
F(1) = 0.D+00
F(2) = 0.D+00
F(3) = 0.D+00
F(4) = 0.D+00
DO 70 I = 1, INVLEN
XORI = XA(IGLND)-CNTRA(INVCN(I,NOD),1)
YORI = YA(IGLND)-CNTRA(INVCN(I,NOD),2)
ZORI = ZA(IGLND)-CNTRA(INVCN(I,NOD),3)
XP = XORI*V11 + YORI*V12 + ZORI*V13
YP = XORI*V21 + YORI*V22 + ZORI*V23
F(1) = F(1) + DBLE(SOLEA(INVCN(I,NOD),IVAR))
F(2) = F(2) + DBLE(SOLEA(INVCN(I,NOD),IVAR) * XP)
F(3) = F(3) + DBLE(SOLEA(INVCN(I,NOD),IVAR) * YP)
70 CONTINUE
C Back substitution (Kincaid pg. 223) (double precision)
CALL BS(4,S,F,L,X)
C Ordinaly you would need to rotate back into cartesian coords
C however, we only need X(1) so there is no need to rotate here
C X2 = SNGL(X(2))*V11 + SNGL(X(3))*V21
C X3 = SNGL(X(2))*V12 + SNGL(X(3))*V22
C X4 = SNGL(X(2))*V13 + SNGL(X(3))*V23
C X(2) = X2
C X(3) = X3
C X(4) = X4
C Fill in nodal element value array (SOLENA)
C Note: X and Y distances in S and F are centered on node being
C interpolated to (IGLND), thus X, Y, Z are zero in the eq.
C Value = X(1) + X(2) * X + X(3) * Y + X(4) * Z
SOLENA(IGLND,IVAR) = SNGL(X(1))
60 CONTINUE
END IF
RETURN
END